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Market efficiency 
of cryptocurrency: evidence 
from the Bitcoin market
Eojin Yi 1, Biao Yang 2, Minhyuk Jeong 3,4, Sungbin Sohn 5* & Kwangwon Ahn 3,4*

This study examines whether the Bitcoin market satisfies the (weak-form) efficient market hypothesis 
using a quantum harmonic oscillator, which provides the state-specific probability density functions 
that capture the superimposed Gaussian and non-Gaussian states of the log return distribution. 
Contrasting the mixed evidence from a variance ratio test, the high probability allocated to the 
ground state suggests a near-efficient Bitcoin market. Findings imply that as Bitcoin evolves into an 
efficient market, speculators might encounter difficulty in exploiting profitable trading strategies. 
Furthermore, when policymakers initiate tight regulations to control the market, they should closely 
monitor market efficiency as an index of price distortion.

“The rapidly evolving world of digital money”

New York Times, March 18, 2015.

The rapidly growing market capitalization and extreme price fluctuations of the cryptocurrency market have 
prompted policymakers and economists to define cryptocurrency within a financial and economic context. 
Many studies use Bitcoin, which has the longest history and the largest market capitalization, as a benchmark 
for cryptocurrency research. Considering the potential impact of transitioning to a paperless digital society on 
the financial market and real economy, it is important to analyze the Bitcoin market with quantitative evidence.

One of the hottest debates in finance and economics is whether the market is efficient. Over time, numerous 
studies have investigated the market efficiency of various assets for asset pricing, risk management, and asset 
allocation. Since Fama1, this landmark issue has been dealt with based on the concept of market information and 
return predictability. According to the efficient market hypothesis (EMH), since investors’ rational expectations 
based on relevant information are quickly reflected in market prices, price fluctuations are unpredictable. This 
has been tested in stock, bond, foreign exchange, and other emerging markets. The market information is divided 
into three levels: (1) historical price and return, (2) all publicly available information (in the public domain), 
and (3) information privately known or known only to a limited group of market participants. The weak-form 
EMH states that price is unpredictable using the first level of information.

We extend the literature by examining the weak-form EMH of Bitcoin. Some recent studies reported that the 
Bitcoin market does not follow EMH2–10. However, other studies documented that the Bitcoin market follows 
EMH11–14. For example, in opposition to Urquhart10’s findings, Nadarajah and Chu15 found that a power trans-
formation of Bitcoin returns is weakly efficient. Moreover, several studies have reported that the Bitcoin market 
is still transitional as it is currently inefficient; but steadily improving16–21. For instance, Sigaki et al.22 provided 
evidence of the changes in informational efficiency of the cryptocurrency market, which could have originated 
from collective phenomena in marketplaces23. Essentially, there is still mixed evidence on the efficiency of the 
Bitcoin market.

Among the various methods for measuring market efficiency, the variance ratio (VR) test is a well-known 
standard based on the random walk hypothesis24; the increments of log price series are Gaussian white noise25. 
We first examine whether the VR test is suitable for testing the EMH for the Bitcoin market. Then, we propose 
an alternative analytical framework based on quantum mechanics, i.e., the quantum harmonic oscillator (QHO). 
This modeling framework considers the market forces affecting price changes from short-term fluctuations to 
long-term equilibrium26. In particular, the solution of the QHO model is a superposition of infinite eigenstates, 
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which form an orthogonal basis encompassing all distribution functions. As a result, our model nests the ran-
dom walk as a ground-state solution. Accordingly, we analyze the market efficiency of Bitcoin by estimating the 
probability allocated to the ground state of the QHO model, i.e., the Gaussian distribution.

When share prices fully reflect the information contained in historical prices, consistent alpha generation is 
impossible. So, does the Bitcoin market work efficiently? Put differently, does the log of Bitcoin prices follow a 
random walk? This study provides novel evidence to the extant debate on the efficiency of the Bitcoin market: 
(1) “What are the limitations of the VR test to examine the EMH?”; (2) “Can QHO overcome the limitations of 
the VR test?”; and (3) “How to economically interpret market efficiency evaluated through quantum mechan-
ics?” In a nutshell, we provide evidence supporting the efficient market characteristics of Bitcoin using annual 
fluctuations of the ground state probability, considering the Bitcoin price regimes. We also explain the rationale 
behind our findings using market measures such as the liquidity index. Finally, we provide implications for both 
investors and policymakers regarding the difficulty in exploiting profitable trading strategies and an index of the 
price distortion, respectively.

This paper is organized as follows: Section "Data and methodology" describes the data and methodology, 
Section "Results and discussion" discusses the results, and Section "Conclusions" concludes the paper.

Data and methodology
Data.  The daily price of Bitcoin is collected from Quandl.com. The data of the other assets, for compari-
son purposes, are taken from the World Gold Council (gold) and Federal Reserve Bank of St. Louis (USD/
EUR exchange rate and S&P 500 index). The period of data collection was from September 01, 2010, to March 
31, 2019 (3,134 days). To match the trading dates of Bitcoin and the other assets, we obtained a total of 2,134 
observations of daily data (While the Bitcoin market is constantly open (24 hours every day), data for the other 
comparative assets were available only on trading days.). Then, we took the first difference in log prices and 
annualized the return as

where xt and pt are the annualized log return and price at day t  , respectively.
Table 1 shows that the mean and standard deviation of Bitcoin’s log returns are quite large, compared to the 

other assets. The Bitcoin returns show positive skewness, implying investors’ risk-loving attitudes. Moreover, 
the distribution is extremely highly leptokurtic given that excess kurtosis is over 40, indicating that the data do 
not follow a normal distribution27–30.

VR test.  The VR test examines whether the log price series follows a random walk24,31,32. The key idea is that 
the variance of the increments in a random walk grows proportionally with the sampling interval q . If a time 
series follows a random walk process, the variance of its q th difference should be q times the variance of its first 
difference. Accordingly, the variance ratio VR(q) is

with

where Yt , µ , and εt are the log price, drift parameter, and error term. σ̂ 2 is the maximum likelihood estimator 
of variance.

Under the homoscedasticity assumption, the null hypothesis of the VR test is that the log price series follows 
a random walk: equivalently, VR

(
q
)
= 1 . If the variance ratio is too high VR

(
q
)
> 1 or too low VR

(
q
)
< 1 , then 

the log return has either positive or negative autocorrelation.

QHO.  A stochastic differential equation is widely used to describe various random behaviors in the finan-
cial market such as mean reversion33, stochastic volatility34, jump process35–38, controlled growth process39, and 
process evolving according to a size-independent proportional growth rate after an exponentially distributed 
period40. Here, we specifically implemented the method introduced by Ahn et al.26 and modeled the evolution of 
the log return distribution. We started with the following stochastic differential equation:

xt = 252.5ln

(
pt

pt−1

)
,

VR
(
q
)
=

σ̂ 2
(
Yt − Yt−q

)
/q

σ̂ 2(Yt − Yt−1)

Yt = µ+ Yt−1 + εt for εt ∼ i.i.d.N
(
0, σ 2

)

Table 1.   Summary statistics of the annualized log returns.

Obs Mean Std Skewness Excess kurtosis

Bitcoin

2,133

1.316 21.559 0.925 42.521

Gold 0.005 2.543 − 0.576 7.173

S&P 500 0.114 2.299 − 0.582 4.853

USD/EUR − 0.016 1.413 − 0.008 1.761
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where x represents an asset return, µ(x, t) denotes a drift, σ(x, t) represents volatility, and Wt is a standard 
Wiener process.

The Fokker–Planck (FP) equation is obtained from Eq. (1) by introducing the probability density function 
(PDF) ρ(x, t) of the random variable x at time t :

where D(x, t) ≡ σ 2(x, t)/2 is the diffusion coefficient and V(x, t) is the external potential determining the drift 
term according to µ(x, t) ≡ ∂V(x, t)/∂x . For constant D and time-independent potential V(x) , Eq. (2) can be 
expressed as the FP operator:

where L̂ = Vxx + Vx∂/∂x + D∂2/∂x2.
To solve Eq. (3), we examine the steady-state solution ρs(x) satisfying L̂ρs(x) = 041,42 and introduce the wave 

function �(x, t) with Hermitian operator Ĥ as

Then the FP operator in Eq. (3) leads to

which yields Ĥ = −Vxx/2+ V2
x /4D − D∂2/∂x2 and Eq. (3) can be rearranged into the Schrödinger equation 

with imaginary time τ ≡ −iℏt and mass m ≡ ℏ
2/2D

where the effective potential U(x) is given by26

with k ≡ d2U/dx2|0 . Near equilibrium, U(x), is approximated by a harmonic potential and the system reduces 
to a harmonic oscillator.

Accordingly, the general solution of Eq. (4) bears that of the FP equation and, in particular, the n th eigenfunc-
tion of the harmonic oscillator is

with the corresponding eigenenergy En = nℏω , and Hn is the n th Hermite polynomial43.
Finally, we obtain the general solution of the FP equation whose time-independent solution is a mixed χ 

distribution by transforming the solution of the Schrödinger equation into that of the FP equation, which leads 
to the PDF in the following form

where An is an amplitude parameter determined by the initial distribution, which remains to be estimated. The 
random variable x follows the Gaussian, Rayleigh, and Maxwell–Boltzmann distribution, etc. for n = 0, 1, 2, · · · . 
They all describe the displacement of a particle, that is, the first difference in log prices, in (n+ 1) dimensional 
Euclidean space spanning Hilbert space.

Results and discussion
VR Test.  Table 2 shows the VR test results for the daily log Bitcoin price series. The random walk hypothesis 
is partially rejected under the homoscedasticity assumption. Specifically, there is mixed evidence: the log of 
Bitcoin’s price series follows the EMH in the long-run ( VR(q) ≈ 1 ) in line with previous literature12,44,45, while 
it appears to have a mean-reverting property ( VR

(
q
)
< 1 ) in the short-run which is consistent with Corbet and 

Katsiampa46.
To ensure the adequacy of the VR test, it must hold that the innovations of log price series, that is, the log 

return series, are Gaussian white noise. However, several previous studies have shown that power law emerges 
in the tail distribution of Bitcoin’s return series47–50. Accordingly, we conduct normality tests on the residuals of 
random walk specification. Table 3 indicates that the null hypothesis, the innovations of the log price series are 
normally distributed, is rejected at the 1% significance level for the two test statistics such as Jarque–Bera and 
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ρs(x)Ĥ�(x, t)

(4)iℏ
∂

∂τ
�(x, τ) = Ĥ�(x, τ) ≡ −
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Shapiro–Wilk tests regardless of sampling intervals. This indicates that the VR test is limited, requiring another 
approach.

QHO.  Before testing the market efficiency through the QHO, we investigate whether the QHO clearly 
explains the log return distribution of Bitcoin. Here, we divide the overall sample period into two sub-periods, 
i.e., low and high price regimes, as the dynamics of Bitcoin price appear differently due to the significant dif-
ference in its price level51. The low price regime extends from September 1, 2010, to February 26, 2013, and the 
high price regime spans from February 27, 2013, to March 31, 2019. Figures 1 (a) and (c) show the histograms 
of log returns in the Bitcoin market and the PDFs estimated from (i) the QHO and (ii) the random walk model 
(RWM) in the two regimes. Figures 1 (b) and (d) display the quantile–quantile (Q–Q) plots for the residuals of 
each model. The PDFs estimated by the QHO fit well, while those by the RWM significantly underestimate the 
data at the zone near zero, regardless of the price regimes. This is confirmed through two goodness of fit tests, i.e., 
Kolmogorov–Smirnov and Cramer-von Mises tests (Table 4). Moreover, the likelihood-ratio (LR) test compares 
the goodness of fit of two competing models based on the ratio of their likelihoods and further elaborates that 
the QHO describes the data better (Table 5).

In Table 6, the mean squared error (MSE) and mean absolute error (MAE) show that the PDFs derived from 
the QHO (mixture χ distribution) have smaller errors than those from the RWM (Gaussian distribution) in both 
price regimes. This is because the solution of the QHO is a generalized solution of the RWM, capturing both 
Gaussian and non-Gaussian features together. Particularly, the QHO includes market uncertainty through the 
properties of superimposed wave functions and assumes that the resilience of the harmonic oscillator reflects 
the restoring force that drives market return to the long-run equilibrium26: market friction is reflected in the 
stochastic differential equation.

Table 7 summarizes the estimated probabilities assigned to the first three low-lying eigenstates ( n = 0, 1, 2) 
for Bitcoin in both regimes as well as in the overall sample period (Those for the benchmarks in the overall 
sample period are shown in the supplementary information). Each eigenstate of the QHO model is described 
as a χ distribution, and the probability Pn assigned to each represents a value of the probability assigned to each 
χ distribution26. The state of n = 3 and higher is neglected because the values assigned to Pn are less than 10−4 . 
The result is presented along with daily ( q = 1 ) and other different holding periods ( q = 2, 4, 8, 16 ). Particularly, 
since a market is efficient when the log return distribution is close to the Gaussian distribution, it can be said that 
the Bitcoin market follows the EMH based on the value of P0 : that is, the probability allocation in the Gaussian 
distribution that describes the ground state of the QHO model. Unlike the mixed evidence of the VR test, the 
result of QHO consistently supports the efficiency of the Bitcoin market: the log of Bitcoin price follows a random 
walk with a probability of 90% or more.

Discussion.  Our results are explained through market capitalization and the speed of information discovery. 
Table 8 shows that the mω value of Bitcoin is much smaller with the scale being about 1/19 to 1/47 than that of 
other assets (e.g., commodity, stock, and currency). According to Ahn et al.26, m can be interpreted as the market 
capitalization and ω as the angular velocity for log return fluctuations. The average market capitalization ( m ) of 
Bitcoin in 2010–2019 is about 1/321 and 1/648 of the gold and S&P 500, respectively. Thus, the oscillating veloc-

Table 2.   VR test results on the log price series of Bitcoin. Variance ratios for holding periods 2, 4, 8, and 16 
are tested under the homoscedasticity assumption. ** and *** indicate significance at the 1% and 0.1% levels, 
respectively.

q = 2 q = 4 q = 8 q = 16

VR(q) 0.721*** 0.715*** 0.798** 0.934

(p-value) (0.000) (0.000) (0.002) (0.491)

Table 3.   Normality test results on the log return distribution of Bitcoin. Jarque–Bera test is run by χ2 
statistic, and Shapiro–Wilk test is by W statistic. The cutoff values for W are calculated through Monte-Carlo 
simulations. *** indicates significance at the 0.1% level. The sampling interval q is applied differently to the 
same data.

H0 ∶ The data follow a normal distribution

Obs q Jarque–Bera Shapiro–Wilk

2,133 1 1.610× 10
5*** 0.676***

2,132 2 2.927× 10
4*** 0.786***

2,130 4 7.773× 10
3*** 0.856***

2,126 8 3.812× 10
3*** 0.882***

2,118 16 3.150× 10
3*** 0.879***
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Figure 1.   Model estimation results. Panels (a) and (c) plot the PDFs of each estimated model in the low and 
high price regimes, respectively. Panels (b) and (d) describe Q–Q plots for the residuals of each model by 
standardized normal order, plotted with a regression line, in both regimes. Both models are estimated using a 
daily sampling interval (q = 1). Outliers that deviate from the mean by more than 2.58× Std.Err. are excluded.

Table 4.   The goodness of fit test results on the log return distributions of Bitcoin derived from QHO and 
RWM. The Kolmogorov–Smirnov test is run by D and Cramer-von Mises test is by T statistics. The cutoff 
values for T statistics are calculated through Monte-Carlo simulations. In the test, outliers that deviate from 
the mean by more than 2.58× Std.Err. are excluded. The numbers in parentheses are p-values of the statistics, 
where *** represents significance at the 0.1% level.

H0 ∶ Assumed model fits the distribution of data

QHO RWM

Period D T D T

Low price regime 0.038
(0.354)

0.186
(0.299)

0.207***
(0.000)

12.051***
(0.000)

High price regime 0.031
(0.110)

0.429
(0.061)

0.144***
(0.000)

15.182***
(0.000)
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ity around the equilibrium ( ω ) for Bitcoin is estimated about 17 and 25 times larger than those for the gold and 
S&P 500, respectively. It implies that information circulation in the Bitcoin market is sufficiently fast compared 
to others, confirming the efficiency of the Bitcoin market together with the probability assigned to the ground 
state.

We estimate the probability assigned to the first three low-lying eigenstates for each year. Figure 2 shows that 
the yearly P0 value fluctuates over the 90% level. This further confirms the robustness of our results: there is no 
significant change in the pattern of probability allocation at the ground state by year. This implies that techni-
cal analysis of historical price series cannot provide a long-term advantage in the Bitcoin market; future price 
evolution will be based on new information rather than past price performance. However, the P0 values in 2013 
and 2017 fell to around 88% and 87%, respectively. On the one hand, the decrease in 2013 is regarded as the 
transition period, shifting the Bitcoin market from a low to a high price regime51. The Bitcoin price, which had 
been in the tens of US dollars, exceeded USD 1,000 per BTC and burst a market bubble52: in December 2013, 
the Bitcoin price surged to USD 1,147 per BTC, then plunged by up to 85% in the following year. Moreover, in 
2013, Bitcoin production (mined volume) drastically decreased due to increased mining difficulty. This signifi-
cantly affected the price of Bitcoin on the supply side53. Put differently, during the transition period of the price 
regime, the strong collective phenomenon together with supply shortage resulted in a decline in the efficiency 
of the Bitcoin market; the P0 value supports these arguments well.

However, in 2017, there was a large increase of public interest in cryptocurrencies, which caused higher levels 
of uncertainty and induced herding behavior in cryptocurrency markets54. Bouri et al.55 statistically confirmed 
this by showing that significant herding frequently occurred in 2017 in cryptocurrency markets. Accordingly, in 
line with Froot et al.56, the decreased P0 value in 2017 can be explained as follows: many short-term speculators 
who are new to cryptocurrency herd in the Bitcoin market based on information completely irrelevant to fun-
damentals. Meanwhile, this increase in irrational speculation was mainly derived from China’s cryptocurrency 
exchange market which at that time accounted for more than 90% of the global cryptocurrency trading volume. 
Accordingly, the People’s Bank of China banned domestic cryptocurrency trading and initial coin offerings in 
September 2017, followed by a drastic cryptocurrency price drop and resurgence a few days after57. Nonetheless, 
after these strict regulations were imposed, most of the trading volume of cryptocurrencies in China moved 
elsewhere (e.g., U.S., Japan, and South Korea) and their impact on cryptocurrency prices was ambiguous58. This 
implies that such strict regulations in cryptocurrencies would not be effective but just increase price uncertainty, 
affecting their market efficiency, which can also explain the low P0 value in 2017.

Liquidity increments in the Bitcoin market positively affect market efficiency; particularly, liquidity change 
plays a central role in the return predictability and, thus, informational efficiency of cryptocurrencies16,18. Gener-
ally, liquidity increase improves market efficiency through two channels59,60: first, it enables faster and cheaper 
transactions, thereby price promptly absorbs available information in the marketplace; second, it encourages 
investors to easily make tiny- or short-term massive transactions based on private information that barely impacts 
prices, approximating the market prices to fundamental asset value61–63. Therefore, we examine the Amihud 
illiquidity ratio64 and explain the market efficiency of Bitcoin with the changes in liquidity: Fig. 3 shows that 
the Bitcoin market’s liquidity keeps increasing gradually, even surpassing the USD/EUR and gold since 2014.

Unlike other assets, Bitcoin has a unique market structure where inelastic supply meets elastic demand since 
the total issuance (mining volume) is predetermined. Therefore, investors’ reaction to market information has a 
huge impact on Bitcoin prices. Additionally, year-round 24/7 trading, relatively low transaction costs, and low 
entry barriers to the market help investors participate freely and make decisions promptly, ultimately facilitating 
quick information dissemination in the market price. This explains how the Bitcoin market was able to oper-
ate close to an efficient market even with a low liquidity level in the early stage, especially during the low price 
regime in 2010–2012. However, since 2013, the market has stabilized with the birth of multiple exchanges and 
institutional investors’ interests. Accordingly, the liquidity of the Bitcoin market continued to expand, which has 
further contributed to market efficiency in the high price regime. Thus, negative factors that inhibit the efficient 
dissemination of information in the market, such as instability of the initial market system, early government 
regulations, externalities like hacking, and highly speculative transactions, appear to be offset by the develop-
ment of the Bitcoin market.

Table 5.   LR test results. The LR test assesses the adequacy of the QHO model over RWM where outliers 
that deviate from the mean by more than 2.58× Std.Err. are excluded. The result indicates that the QHO 
(unrestricted) model explains the data better than the RWM (restricted) model. The formula of the LR 
test statistic is LR = −2log(Lr/Lu) , where Lu and Lr denote the likelihood of the respective models such as 
QHO and RWM. The test statistic follows χ2 distribution with the degree of freedom (d.f.) 3, which refers to 
the number of constrained parameters. The p-value indicates that the unrestricted model outperforms the 
restricted model.

H0 ∶ There is no difference between both log-likelihood values

Period d.f
QHO
(logLu)

RWM
(logLr ) LR test stat. ( χ2) p-value

Low price regime
3

–2640 –2707 133 0.000

High price regime –5590 –5755 330 0.000
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Conclusions
This study examines the market efficiency of Bitcoin. As a first step, the VR test, which is widely used in literature, 
shows mixed evidence of the Bitcoin market efficiency. However, we confirm that the VR test is not suitable for 
testing the EMH because its basic assumption is not satisfied in the Bitcoin market: the increments of log price 
series are not Gaussian white noise. Consequently, we applied the QHO, which provides a general solution for 
the PDF of the log return. The probability assigned to the ground state indicates that the Bitcoin market is rather 
close to the efficient market, similar to other asset markets. We explain that the continual increase in the market’s 

Table 6.   Prediction errors of the log return distributions of Bitcoin derived from the QHO and RWM. Each 
estimated value is calculated based on the daily interval.

QHO RWM

Panel A. Low price regime

MSE 2.861× 10
−6 2.339× 10

−5

MAE 5.979× 10
−4

1.417× 10
−3

Panel B. High price regime

MSE 1.024× 10
−5

4.935× 10
−5

MAE 1.250× 10
−3

2.173× 10
−3

Table 7.   Probability assigned to each eigenstate in the Bitcoin market. The holding period ( q ) reflects the q th 
difference of the log price data as xt = 252.5/q

(
lnpt − lnpt−q

)
.

q P0 P1 P2

Panel A. Overall sample period

1 0.907 0.003 0.090

2 0.919 0.007 0.074

4 0.947 0.012 0.041

8 0.948 0.018 0.034

16 0.963 0.028 0.009

Panel B. Low price regime

1 0.901 0.006 0.093

2 0.903 0.010 0.087

4 0.925 0.024 0.051

8 0.938 0.034 0.028

16 0.928 0.061 0.011

Panel C. High price regime

1 0.908 0.003 0.089

2 0.924 0.006 0.070

4 0.948 0.009 0.043

8 0.938 0.010 0.052

16 0.981 0.013 0.006

Table 8.   Market capitalization and the speed of information discovery. The mω values are estimated through 
the QHO model. Market capitalization represents the average daily market capitalization during the sample 
period. The daily market capitalization of Bitcoin and S&P 500 is retrieved from Quandl.com and the 
Center for Research in Security Prices, respectively. The daily market capitalization of gold is estimated by 
multiplying daily gold prices with the yearly above-ground gold reserves provided by World Gold Council. As 
the definition of market capitalization of USD/EUR is ambiguous, we have not directly made a comparison 
with the ω of USD/EUR. The period of data collection was from September 10, 2010, to March 31, 2019. To 
match the sample period of Bitcoin and that of the other assets, we extract daily data excluding the holidays for 
Bitcoin.

Bitcoin Gold S&P 500 USD/EUR

mω 9.067× 10
−36

1.685× 10
−34

2.367× 10
−34

4.297× 10
−34

Market capitalization
(USD) 2.707× 10

10
8.679× 10

12
1.754× 10

13 –
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liquidity and the change in price regime (from low to high) contribute to our findings. Additionally, the year-
round 24-h trading system contributed to ensuring that market information is well reflected in the market price.

Our results show that the Bitcoin market is close to being weakly efficient, implying that developing a profit-
able trading strategy simply based on past trends of Bitcoin price is difficult for speculators. Moreover, consider-
ing the liquidity and market capitalization, Bitcoin and major altcoins are getting closer to other assets and thus, 
have a direct/indirect impact on the real economy both now and in the future. Therefore, policymakers should 
closely monitor Bitcoin’s market efficiency to avoid market failure when implementing policies and regulations 
that could affect its market size and liquidity or induce investors’ herding behavior.

Figure 2.   Yearly change of the probability allocation in each eigenstate in the Bitcoin market. The black dashed 
line shows the probability assigned to the ground state ( P0 ) while the blue dash-single dotted line and red dotted 
line describe the probabilities assigned to the first ( P1 ) and second excited state ( P2 ), respectively. Two shaded 
areas indicate the periods when P0 value is estimated below 0.9.
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