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Simultaneous multimodal 
fNIRS‑EEG recordings reveal 
new insights in neural activity 
during motor execution, 
observation, and imagery
Wan‑Chun Su 1, Hadis Dashtestani 1, Helga O. Miguel 1, Emma Condy 1, Aaron Buckley 1, 
Soongho Park 1, John B. Perreault 1, Thien Nguyen 1, Selin Zeytinoglu 2, John Millerhagen 1, 
Nathan Fox 2 & Amir Gandjbakhche 1*

Motor execution, observation, and imagery are important skills used in motor learning and 
rehabilitation. The neural mechanisms underlying these cognitive‑motor processes are still poorly 
understood. We used a simultaneous recording of functional near‑infrared spectroscopy (fNIRS) and 
electroencephalogram (EEG) to elucidate the differences in neural activity across three conditions 
requiring these processes. Additionally, we used a new method called structured sparse multiset 
Canonical Correlation Analysis (ssmCCA) to fuse the fNIRS and EEG data and determine the brain 
regions of neural activity consistently detected by both modalities. Unimodal analyses revealed 
differentiated activation between conditions; however, the activated regions did not fully overlap 
across the two modalities (fNIRS: left angular gyrus, right supramarginal gyrus, as well as right 
superior and inferior parietal lobes; EEG: bilateral central, right frontal, and parietal). These 
discrepancies might be because fNIRS and EEG detect different signals. Using fused fNIRS‑EEG data, 
we consistently found activation over the left inferior parietal lobe, superior marginal gyrus, and 
post‑central gyrus during all three conditions, suggesting that our multimodal approach identifies a 
shared neural region associated with the Action Observation Network (AON). This study highlights the 
strengths of using the multimodal fNIRS‑EEG fusion technique for studying AON. Neural researchers 
should consider using the multimodal approach to validate their findings.

Motor Execution (ME), Observation (MO), and Imagery (MI) are basic cognitive and motor skills frequently used 
in rehabilitation and motor  learning1. ME and MO reflect performing an action and observing another person 
executing an action, respectively, whereas MI is the mental rehearsal of actions without corresponding motor 
 output1,2. The Simulation Hypotheses suggest that ME, MO, and MI rely on a shared neural network (i.e., Action 
Observation Network, AON), and therefore, could be used alternatively/together with each other to promote 
learning and  rehabilitation1,3,4. However, using unimodal neuroimaging tools, few studies have compared neural 
activity across all three conditions. Moreover, findings from different neuroimaging modalities are inconsistent 
in terms of regions showing differentiated neural activity between  conditions5,6. Given the strengths of elec-
troencephalography’s (EEG) temporal resolution and functional near-infrared spectroscopy’s (fNIRS) spatial 
resolution along with their tolerance of movement artifacts, our research group previously used a multimodal 
approach that includes simultaneous EEG-fNIRS recording and a fusion analytical method (i.e., structured sparse 
multiset canonical correlation analysis, ssmCCA) to examine neural activity over AON during ME and  MO7. In 
the current study, we further examined the neural activities during MI using this approach and compared both 
unimodal and multimodal neural activation among the three conditions.

MI involves motor planning while inhibiting overt  movements8. Since MI requires intense motor planning, 
it recruits similar neural networks (i.e., primary motor cortex, premotor cortex, supplementary motor area, 
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anterior cingulate cortex, parietal lobule, and cerebellum) to those activated when the actual movements are 
 executed4. Likewise, MO of an action elicits similar neural activity as performing that action (ME); it is posited 
that this helps the observer understand the goals and the intentions behind observed  actions9. The Simulation 
Hypothesis suggests that ME, MO, and MI share similar neural  mechanisms3,4. Because of these similarities 
in mechanisms, MI and MO are often used for motor learning and rehabilitation. For example, dancers view-
ing videos and mentally rehearsing their moves to learn their performance or stroke patients observing their 
therapists’ demonstrations and mentally rehearsing their skills during rehabilitation. Despite the similarities 
in mechanisms, the level of activation differs between ME, MO, and MI, and the learning trajectory might be 
different when using different types of  methods10,11. Investigating the simultaneous neural activity of ME, MO, 
and MI, provides an understanding of the neurological correlate indexing of overt and covert action processing 
(i.e., movement execution vs. movement perception and/or imagery)12, which can be relevant for application of 
strategies in the context of motor learning and rehabilitation. In the current study, we used a multimodal fNIRS 
and EEG system to further explore the similarities and differences in neural activity during ME, MO, and MI.

The AON is suggested to be the common neural network recruited during ME, MO, and  MI13–15. In humans, 
neuroimaging research has identified premotor cortex (PMC), supplementary and pre-supplementary motor 
areas (SMA, pre-SMA), the primary motor cortex (M1), and the inferior and superior parietal lobule (IPL, SPL) 
as part of the  AON16,17. M1 was reported to be important in generating movement  outputs18. It received processed 
sensory information from the parietal regions (IPS, SPL) and works in association with the PMC, SMA/pre-SMA 
to plan for voluntary  movements19,20. Moreover, the parietal regions are important in planning the kinematic 
aspects of the movements based on the internal movement  representations21,22. Studies investigating the AON 
activity have primarily used functional Magnetic Resonance Imaging (fMRI) and  EEG12,16,23,24. Although these 
fMRI and EEG studies provide insights into AON correlates, technical issues prevent them from assessing activa-
tion during real-time, face-to-face ME and MO, or from localizing the areas of cortical activation elicited by these 
 tasks17. For example, fMRI is constrained to a scanning bore and is sensitive to movement artifacts, making it 
difficult to perform naturalistic ME tasks. As a result, few fMRI studies included a real-time, ME  condition3,16,25. 
Because EEG is less sensitive to motion artifacts than fMRI, it can better accommodate execution conditions; 
however, this modality has poor spatial specificity necessary to target specific AON  regions14,25,26.fNIRS is a 
suitable alternative as it is less sensitive to motion artifacts than fMRI and has a better spatial resolution than 
 EEG25. fNIRS is an optical neuroimaging technique that assesses hemodynamic changes in the cortex, measur-
ing similar signals as fMRI (blood-oxygen dependent level, BOLD), but it is portable and fits on participants’ 
heads without constraint to a scanning  bore27. Due to its low sensitivity for motion artifact, fNIRS allows for a 
ME condition; previous fNIRS studies have also reported AON activity similar to that detected using  fMRI14. 
However, one of the disadvantages of fNIRS compared to EEG is its lower temporal resolution. Due to the tim-
ing of the hemodynamic response, fNIRS measures neural activation on the order of seconds, whereas EEG can 
measure electrical neural responses within milliseconds. Given the advantages of fNIRS and EEG respectively, 
simultaneous collection of these modalities would help characterize the AON.

Here, we propose using combined EEG-fNIRS to study ME, MO, and MI. These conditions were part of a 
live-action paradigm, where the participants and experimenters performed actions in front of one another. The 
multimodal method allows important facets of brain activity typically collected individually to be examined 
simultaneously. Canonical Correlation Analysis (CCA) is a classic way to evaluate the multivariate associations 
between two types of high-dimensional data using canonical vectors or matrices (e.g., different neuroimaging 
modalities)28. Here, we used structured sparse multiset CCA (ssmCCA) to investigate MI activity. ssmCCA is an 
analytic approach that was previously used on only the ME and MO conditions in this  dataset7. Using ssmCCA, 
neural electrical and hemodynamic responses were fused to pinpoint the brain regions that are consistently 
detected by fNIRS and EEG. The Simulation Hypothesis posits that the primary motor cortex is activated during 
ME but not MI, as imagery activates secondary/higher-order motor regions without activating the primary motor 
 cortex3,29. For this reason, we expect that the AON network will be active during MI, ME, and MO, but primary 
motor regions will show greater activity during ME. This study aims to elucidate the differences between ME, 
MO, and MI during an ecologically valid EEG-fNIRS paradigm, better characterizing “target neural mechanisms” 
that may benefit future therapies or  interventions30.

Methods
Participants. Sixty healthy adult participants between 18 to 65 years of age were recruited at the National 
Institute of Health (NIH, n = 40) and the University of Maryland (UMD, n = 20). Participants with a concussion 
history within 12 months were excluded from study participation. Moreover, we only included participants who 
had > 50% of data from both EEG and fNIRS available in our analyses. Due to the challenges of simultaneously 
collecting high-quality EEG and fNIRS data, only 21 participants (Age (mean ± SE) = 33.1 ± 2.8) were included 
in the analysis. Among the 21 participants, 16 of them were right-handed, while the other 5 participants were 
Ambidextrous. The study protocol was approved by the National Institutes of Health and University of Maryland 
Institutional Review Board (NIH-IRB and UMD-IRB). All experiments were performed according to the NIH 
IRB/UMD IRB-approved study protocol and according to the Declaration of Helsinki. All participants signed 
informed consent forms before the start of the experiment, including consent to use their pictures for publica-
tion.

Measures. A 24-channel continuous-wave functional NIRS system (Hitachi ETG-4100) was used to meas-
ure the changes in oxygenated hemoglobin (HbO) and deoxyhemoglobin (HbR) concentration. Two wave-
lengths in the near infrared region (695  nm and 830  nm) were measured at a sampling rate of 10  Hz. The 
bilateral fNIRS probe contained 8 sources and 10 detectors to form 24 channels. To index AON hemodynamic 
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activity, optodes were placed over sensorimotor and parietal  cortices31,32. The fNIRS probe was embedded within 
an elastic, 128-electrode EEG cap (Electrical Geodesic, Inc., Eugene, OR). EEG cap size was selected using each 
participant’s measured head circumference. As cap sizing varied by participant’s head circumference, variation 
in cap placement led to slight differences in inter-optode spacing (M = 2.88 ± 0.13 cm, range 2.16–3.26). Upon 
experiment completion, each participant’s fNIRS optodes were digitized to later account for any variance in cap 
positioning or inter-subject sizing differences. optode was digitized in reference to the nasion, inion, and preau-
ricular landmarks using a 3D-magnetic space digitizer (Fastrak, Polhemus). Additional information about these 
methods can be found in our prior  publication7,33.

Experimental paradigm. Once appropriately fitted with the fNIRS-EEG cap, the participant sat face-to-
face with an experimenter across a table. Before data collection, the experimenter explained the procedure, and 
the participant was allowed to practice for approximately 5  min. There were three experimental conditions: 
(i) During ME, a pre-recorded audio command (i.e., “Your turn”) prompted the participant to grasp, lift, and 
move the cup approximately two feet towards themselves using their right hand (Fig. 1A). (ii) During MO, the 
pre-recorded audio, “my turn”, prompted the participant to watch the experimenter lift and move the cup in an 
identical manner (Fig. 1B). (iii) During MI, the audio announced “imagine” and the participant viewed the cup 
and experimenter while imagining themselves picking up and moving the cup (Fig. 1C). Cups with varied colors 
(i.e., green, blue, red, and transparent), sizes (i.e., small, medium, and large), and materials (i.e., plastic, and 
glass) were used, and their appearance was randomized across trials. Each trial lasted approximately 5 s, follow-
ing a 20-s recovery period to allow for the hemodynamic response to return to baseline (Fig. 1C). Participants 
completed 15 trials of each condition (45 trials in total). Condition order was randomized, with no condition 
appearing more than three times in sequence. The experiment took approximately 45 min to complete.

Video coding and trial exclusions. Participants’ videos were coded offline using ELAN (version 5.9) 
to determine the start point and the quality of each trial. For ME and MO, start action was coded when the 
experimenter/participant began moving their shoulder or arm to reach the object. For MI, the end of the audio 
waveform announcing the condition “Imagine” was used. Participants were only included if they completed 
at least five valid trials of a condition, and did not have significant movement (i.e., obvious body movements 
according to the video coding) or verbal artifacts (i.e., talked to the experimenter). Additional detail can be 
found in Debnath et al.6.

Region assignments for fNIRS and EEG channels. For fNIRS channel ROI assignments, we recorded 
optode coordinates with the Polhemus digitizer and determined anatomical ROIs of each channel using 
 AtlasViewer34. Specifically, the Polhemus digitizer was used to record the coordination of head landmarks (i.e., 
nasion, inion, Cz, and the tragus points of the ears) and the optodes. AltasViewer then scale the Colin brain atlas 
to the coordinates collected from each participant and generated the region of interest (ROI) for each channel. 
An ROI is included in the analyses if it was covered by at least 50% of participants (please see details in Miguel 
et al.33). The ROIs covered by the fNIRS probe set were: Precentral Gyrus (PRCG), Postcentral Gyrus (POCG), 
Superior Parietal Lobe (SPL), Inferior Parietal Lobe (IPL), Supra Marginal Gyrus (SMF), and Angular Gyrus 
(AG), located in both left and right hemispheres (please see Fig. 2A,B for the probe placements and Fig. 2C,D for 
the ROI assignments). For the EEG channel assignments, data from E19, E20, E23, E24, E27, E28 were combined 
to represent left frontal; E3, E4, E117, E118, E123, E124 for right frontal; E29, E30, E35, E36, E37, E41, E42 for 
left central; E87, E93, E103, E104, E105, E110, E111 for right central; E47, E51, E52, E53, E59, E60 for left pari-
etal; E85, E86, E91, E92, E97, E98 for right parietal; E66, E69, E70, E71, E74 for left occipital; and E76, E82, E83, 
E84, E89 for right occipital (Supplementary Table S1).

fNIRS unimodal data analyses. HOMER3, an open-source MATLAB software package was used to cal-
culate the changes in the concentration of oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) measured in 
micromolar (µm) (HOMER2: MGH—Martinos Center for Biomedical Imaging, Boston, MA, USA; MATLAB: 
The MathWorks, Inc., Natick, MA, USA). Only valid trials as assessed by behavioral coding were retained in 
HOMER3 for data processing. The data processing pipeline was designed according to the “Best practices for 
fNIRS publications”35. Specifically, we (1) transformed the attenuated light intensities to optical density, (2) used 

Figure 1.  Experimental setup for each condition: (A) Execution, (B) observation, (C) imagination. Written 
permission has been taken for publication of participant pictures.
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Principal Component Analysis (PCA, threshold set at 0.9) to remove movement artifacts and reduce physi-
ological  noises33,36, (3) applied automated motion detection for each channel, (4) corrected the detected motion 
artifacts using the spline interpolation and Savitzky-Golay filtering  methods37, (5) low-pass filtered at 0.50 Hz to 
remove high frequency noise such as cardiac signal and high-pass filtered at 0.01 Hz to remove low-frequency 
noise such as data drift, (6) calculated the change in concentration of the hemoglobin chromophores according 
to the modified Beer-Lambert  Law38, using individual Differential Pathlength Factor (DPF) values calculated 
using Eq. (1)39, (7) estimated HRF using a General Linear Model (GLM) of ordinary least  squares40, and applied 
a sequence of consecutive Gaussian function to model the HRF  shape41. The HRF time ranges were determined 
based on the experimental design, that is − 5 s prior and 25 s after the stimulation onset (i.e., movement initia-
tions of the experimenter and the subjects during the Observation and Execution conditions and the end of 
verbal instruction during the Imagination condition). Lastly, traces were segmented into 30-s epochs, including 
5 s before and 25 s after the start action (for ME and MO conditions) or the end speak (for the MI condition). In 
the current study, we reported both HbO and HbR findings to reduce the likelihood of false  positives42. Z-scores 
were calculated for HbO and HbR separately using Eq. (2)43. Lastly, we conducted outlier analyses to exclude tri-
als with Z-scores greater or less than the averaged Z-score ± 2 standard deviations. Repeated-measures ANOVA 
was conducted with within-group factors of condition (ME, MO, MI), and region of interest (left and right 
PRCG, left and right POCG, left and right SPL, left and right IPL, left and right SMG, as well as left and right 
AG). T-tests were used for further post-hoc analyses.

where α = 223.3, β = 0.5624, A = the age of the subject, γ = 0.8493, δ = -5.723 *  10–7, λ = Wavelengths (695 and 
830), ε = 0.001245; ζ = − 0.9025

EEG unimodal analyses. EEG data were pre-processed via EEGLab software using the method proposed 
by Debnath and  colleagues6. EEG channels on the boundary of the electrode net (24 channels) were excluded 
from analyses since they were contaminated by eye, face, and head movements (E17, E38, E43, E44, E48, E49, 
E113, E114, E119, E120, E121, E125, E126, E127, E128, E56, E63, E68, E73, E81, E88, E94, E99, E107). Then, 
high pass and low pass filters with cut-off frequencies of 0.3 and 49 Hz were applied to the continuous data. 
Using EEGLAB plugin FASTER artifactual channels were identified and subsequently  removed44. In order to 
remove noises from eye blinks, respiration, and muscle movement, we applied extended infomax ICA to the 
data. Using the ADJUST plugin to EEGLAB, artifactual ICs were removed and the remaining data were epoched 
to − 1000 ms to 1000 ms relative to the “Start Action” marker in ME and MO conditions and “End Speak” in MI 
 condition45. We converted all the epoched data into current source density (CSD) using the CSD  toolbox46,47. 

(1)DPF (�,A) = α + βAγ
+ δ�3 + ε�2 + ζ�

(2)Z score = (Meanstim −Meanbaseline)/SDbaseline

Figure 2.  fNIRS probe placements and the ROI assignments. Written permission for publication of participant 
pictures has been taken.
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Then each epoch was convolved with Mortel wavelets to estimate its spectral power in the 8–13 Hz frequency 
range. Please refer to Debnath et al. for the exclusion criteria during EEG  preprocessing7. Lastly, we conducted 
repeated-measures ANOVA with within-group factors of condition (ME, MO, MI) and ROI (left and right fron-
tal, left and right central, left and right parietal, as well as left and right occipital). T-tests were used for further 
post-hoc analyses.

EEG‑fNIRS data fusion. We applied the ssmCCA technique to integrate EEG and fNIRS datasets for mul-
tiple  subjects7. To extract features within each dataset, we calculated the cross-modality covariations and decom-
pose each set into a set of components, corresponding to the ROIs identified for fNIRS. Our EEG matrix for 
each participant consisted of the changes in the power over the α frequency band in EEG channels. The fNIRS 
matrix includes changes in brain oxygenated hemoglobin captured from 24 channels. We fed multimodal multi-
participant data to ssmCCA with the goal of letting the modalities fully interact in a symmetric manner. Using 
ssmCCA, we found which brain regions given by fNIRS data have the highest correlation that is associated with 
the α desynchronization seen in EEG data. The proposed method is an unsupervised learning process that finds 
the canonical variates with or without prior information. The features are extracted by the model and predict 
the true covariation in different brain regions of various participants across the two modalities. As it has been 
 shown48,49, the LASSO penalty allowed us to impose the sparsity to the canonical variates for EEG datasets and 
fused LASSO to impose both sparsity and smoothness (therefore considering spatial information) in the case of 
fNIRS datasets. The reason behind it is that in EEG data we only need α desynchronization information while in 
fNIRS data we also use structural information as well as AON activities. We can get multiple (α desynchroniza-
tion, brain region) pairs; however, we only consider the first pair indicating the set with the highest correlation. 
These pairs were then averaged across individuals and compared between the ME, MO, and MI conditions to 
determine which regions were consistently active across the three conditions versus condition-specific using 
the ssmCCA approach. The EEG-fNIRS data combination pipeline was summarized in Supplementary Fig. S1.

Results
fNIRS unimodal results. The Mean and Standard Error (SE) of the Z-scores for HbO and HbR were sum-
marized in Supplementary Table S2. Figure 3 show the color-coded averaged Z-scores for HbO and HbR during 
ME, MO, and MI conditions. During ME, positive Z-scores for HbO and negative Z-scores for HbR were found 
in the left PRCG, SPL, AG, and right POCG, SPL, SMG (Fig. 3A,E). During MO, positive HbO and negative HbR 
were found over the left PRCG, POCG, and the right POCG, SPL (Fig. 3B,F). Lastly, during MI, positive HbO 
and negative HbR were found in the left and right POCG (Fig. 3C,G).

Figure 3.  Unimodal fNIRS results. This is a visual representation of the HbO and HbR Z-scores during 
Execution (ME), Observation (MO), and Imagination (MI). HbO values on Y-axis range from − 1.5 indicated by 
cooler color (blue) to 0.1 indicated by warmer color (red). Highlighted regions indicate an increase in HbO and 
a decrease in HbR Z-scores. During ME, positive Z-scores for HbO and negative Z-scores for HbR were found 
in left PRCG, SPL, AG, and right POCG, SPL, SMG (A,E). During MO, positive HbO and negative HbR were 
found over Left PRCG, POCG, and right POCG, SPL (B,F). During MI, positive HbO and negative HbR were 
found in left and right POCG (C,G).
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Conditional and hemispheric differences. For HbO Z-scores, repeated-measures ANOVA revealed a 
significant main effect of Region (F (11, 77) = 2.412, p = 0.412) and a 2-way interaction of Condition × Region 
(F (22, 154) = 1.744, p = 0.027). Post-hoc analyses showed significantly greater left AG activation during ME, 
compared to the MO and MI conditions (Left AG, ME vs MO: t (237) = − 2.138, p = 0.034; left AG, ME vs MI: 
t (243) = 2.243, p = 0.026), with no significant differences between MO and MI (p > 0.05; Fig. 3). On the other 
hand, greater right SMG activation was found during MO compared to ME and MI (left SMG, MO vs ME: t 
(221) = 1.746, p = 0.082; left SMG, MO vs MI: t (221) = 2.415, p = 0.017), and greater left POCG were found dur-
ing MO compared to ME (Left POCG, MO vs ME: t (247) = 2.044, p = 0.042). Lastly, lower left AG, right SPL, and 
right IPL activation was found during MI compared to ME (right SPL, ME vs MI: t (218) = 1.924, p = 0.056; right 
IPL, ME vs MI: t (263) = 2.125, p = 0.035, Fig. 3). Please see detailed t-statistics and effect sizes in Supplementary 
Table S3. For the HbR Z-scores, repeated-measures ANOVA revealed a significant main effect of Region (F (11, 
220) = 2.184, p = 0.016). No significant interaction was found for HHb Z scores.

EEG unimodal results. The repeated-measures ANOVA showed a significant main effect of Region (F (7.0, 
119.0) = 2.7, p < 0.05) and a 2-way interaction of Condition x Region (F (14.0, 238.0) = 4.8, p < 0.01). Figure 4 
shows the color-coded α desynchronization during ME, MO, and MI conditions. Post-hoc analyses showed 
the greatest desynchronization over left central region during ME compared to MO and MI (left central, ME vs 
MO: t (17) = − 2.50, p = 0.02; left central, ME vs MI: t (17) = − 2.66, p = 0.02). On the other hand, ME and MO 
elicited higher desynchronization over the right central and parietal regions compared to MI (right central, MI 
vs ME: t (18) = 2.40, p = 0.03; right central, MI vs MO: t (19) = 2.14, p = 0.05; right parietal, MI vs ME: t (18) = 2.14, 
p = 0.05; right parietal, MI vs MO: t (19) = 3.34, p = 0.03). Moreover, higher desynchronization was found over 
right frontal regions during MI compared to MO (t (19) = 2.68, p = 0.02). Please see detailed t-statistics and effect 
sizes in Supplementary Table S4.

EEG‑fNIRS fusion findings. Using ssmCCA analyses, we found a set of brain regions in the left hemi-
sphere that showed borderline significant (p < 0.10) correlations between the HbO changes and α desynchroni-
zation during the ME, MO, and MI conditions. Specifically, moderate correlations were found over the left IPL 
(r = 0.39; p = 0.059), left POCG (r = 0.38, p = 0.061), and left SMG (r = 0.29, p = 0.069) during ME; over the left IPL 
(r = 0.46; p = 0.053), left SMG (r = 0.38; p = 0.059), and left POCG (r = 0.32; p = 0.066) during MO; and over the left 
SMG (r = 0.50, p = 0.059), left POCG (r = 0.41; p = 0.061), and left IPL (r = 0.20, p = 0.063) during MI. Table 1 and 
Fig. 5 include cross-modality correlations and associated p-values, as well as the color-coded results.

Discussion
To our knowledge, this is the first study that investigates neural activity during live ME, MO, and MI using 
simultaneous recording of fNIRS and EEG. Moreover, in addition to the unimodal analyses of fNIRS and EEG 
data across these conditions, we performed novel data fusion analyses to integrate the complementary informa-
tion provided by the two modalities. The unimodal fNIRS analyses showed the greatest left AG activation during 
ME compared to MO and MI, the greatest right SMG activation during MO compared to ME and MI, as well as 
the lowest left AG, right SPL, and right IPL activation during MI compared to ME and MO. The unimodal EEG 

Figure 4.  Unimodal EEG results. This is a visual representation for power synchronization. Synchronization 
is indicated by warmer colors (red), while desynchronization is indicated by cooler colors (blue). Significantly 
greater left AG activation were found during ME, compared to the MO and MI conditions (ps < 0.05); Greater 
right SMG activation was found during MO compared to ME and MI (ps < 0.05), and greater left POCG were 
found during MO compared to ME (ps < 0.05); Lower left AG, right SPL, IPL activation was found during MI 
compared to ME (ps < 0.05).
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analyses showed the greatest α desynchronization in the left central region (i.e., μ desynchronization) during ME 
compared to MI and MO, while MI generated the lowest α desynchronization over the right frontal, central, and 
parietal regions compared to the other two conditions. The findings from the unimodal EEG and fNIRS analyses 
suggested similar neural mechanisms; however, the regions showing differentiated activation across the condi-
tions were not perfectly consistent across the neuroimaging modalities. Using integrated EEG-fNIRS analyses, 
we determined the regions associated with AON over the left IPL, POCG, and SMG as they showed significant 
correlations of neural activity between the two modalities (correlation = 0.20 to 0.50). The multimodal analyses 
could be used to explain the discrepancies between the unimodal findings.

Though fNIRS is likely the best method for measuring brain activity during real-time action-observation 
tasks, there are relatively few studies that have employed this method. Using fMRI, studies have found overlapping 
cortical activation during ME, MO, and MI, including PMC, SMA, pre-SMA, M1, as well as IPL, SPL as part of 
the  AON16,17. Our unimodal fNIRS findings are consistent with previous fMRI findings as we showed positive 
HbO and negative HbR Z-scores over left PRCG, SPL, AG, and right POCG, SPL, SMG during ME, over left 
PRCG, POCG, and right POCG, SPL during MO, and over left and right POCG during MI.

Only a few fNIRS studies compared the differences between  conditions50,51. For example, An et al. found that 
although the primary sensory-motor cortex, premotor cortex, and prefrontal cortex are consistently active dur-
ing ME, MO, and MI; MO elicits the lowest level of cortical activation compared to the other two  conditions50. 
Likewise, Balconi et al. found similar activations in the supplementary motor area during ME and MI, but lower 
activation over posterior parietal regions during MI compared to ME and  MO5,52. In our previous publication, 
we extensively discussed the different cortical activation between ME and  MO7. In the current study, we added 
the MI condition and compared its differences in cortical activation with the other two conditions. Specifically, 
we found the lowest left AG and right SPL and IPL activation during MI compared to the other two conditions. 
The AG and parietal regions (SPL, IPL) are part of the AON and are known to be active during MO and  ME53–55. 
The AG and parietal regions are important for processing sensory information and linking limb movements to 
internal movement  representations20,21. MI may involve motor planning for the kinematic components (leading 

Table 1.  Cross-modality correlations and associated p-values during ME, MO, and MI.

Execution Observation Imagination

Correlation
Corresponding fNIRS 
region P-value Correlation

Corresponding fNIRS 
region P-value Correlation

Corresponding fNIRS 
region P-value

Comp 1 0.391 Left IPL 0.059 0.455 Left IPL 0.053 0.4966 Left SMG 0.059

Comp 2 0.317 Left POCG 0.061 0.382 Left SMG 0.059 0.4070 Left POCG 0.061

Comp 3 0.294 Left SMG 0.069 0.316 Left POCG 0.066 0.2017 Left IPL 0.063

Figure 5.  Extracted brain regions associated with execution, observation, and imagination. The axial view 
is on the top right, while the sagittal view is on the bottom right. The color bar refers to the p-values of the 
correlations in the region. Moderate correlations were found over the left IPL (r = 0.39; p = 0.059), left POCG 
(r = 0.38, p = 0.061), and left SMG (r = 0.29, p = 0.069) during ME; over the left IPL (r = 0.46; p = 0.053), left SMG 
(r = 0.38; p = 0.059), and left POCG (r = 0.32; p = 0.066) during MO; and over the left SMG (r = 0.50, p = 0.059), 
left POCG (r = 0.41; p = 0.061), and left IPL (r = 0.20, p = 0.063) during MI.
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to high cortical activation over central regions) but less consistently rely on the AG parietal regions to refer to the 
sensory information and match with the internal movement representation (leading to lower cortical activation 
over the posterior parietal lobe).

The EEG unimodal findings suggested similar neural mechanisms; however, the regions showing conditional 
differences are slightly different from the fNIRS findings. For example, studies investigating the activation pat-
terns using EEG have found overlapping neural activity during the execution, observation, and imagination of 
motor  tasks56. However, a stronger α desynchronization over the central regions (also called μ desynchronization) 
is frequently reported during ME compared to MI and  MO57. For the differences between ME and MO, Eaves 
et al. found that during movements that combine observation and imagination, there was greater α desynchro-
nization in the sensorimotor cortex and posterior parietal regions compared to pure observation or pure imagi-
nation  conditions58. According to the authors, pure imagination results in enhanced α desynchronization than 
pure observation in the sensorimotor cortex, but not in the posterior parietal  regions58. In the current study, we 
also found the greatest α desynchronization over the left central region during ME compared to the other two 
conditions. Compared to ME and MO, we found the lowest α desynchronization over the right frontal, central, 
and parietal regions. The results are consistent with the previous EEG literature but are slightly different from 
our fNIRS unimodal findings. Specifically, we found more widespread MI-related reductions in cortical activa-
tion over the right hemisphere using EEG (i.e., right frontal, central, and parietal) compared to fNIRS (i.e., AG). 
These discrepancies might be because of the better coverage but lower spatial resolution in EEG than fNIRS, 
leading to less accurate regional findings.

Multimodal analysis of the brain gives us a more comprehensive view of brain functionality by considering 
relevant complementary information, potentially providing a more accurate picture when used in clinical settings. 
However, there are challenges associated with this goal. Not only is the nature of data from various modalities 
inherently different, but also their dimensionality and resolutions differ. We addressed both challenges by defin-
ing a set of multivariate features such that most of the variability in the data is still preserved. These features can 
establish a dimension of coherence that creates a link among the multimodal data through a common dimen-
sion. To extract features within the datasets, we calculated the cross-modality covariations and decompose each 
set into a set of components, corresponding to spatial areas for fNIRS. Using these components, we identified 
the differentially activated brain regions and the relationship between them. In simpler terms, this considers 
the spatial, hemodynamic, and electrical responses of the brain during our action execution, observation, and 
imagination paradigm. The resulting matrices from combined features of EEG and fNIRS datasets lead us to 
obtain brain regions that showed good correlations between EEG and fNIRS, considering a decrease of power in 
the EEG in the α frequency band and an increase of amplitude in the fNIRS signal. Our multimodal results sug-
gest that the left IPL, SMG, and POCG are commonly activated during all three conditions, confirming concise 
regions associated with AON. Unimodal findings outside of these areas might be related to noise or other neural 
activity (i.e., response inhibition, decision-making, etc.) and need to be validated.

Despite the strengths of the multimodal analysis, some drawbacks of this method are worth mentioning. We 
included healthy participants with a relatively wide age range (18–65 years of age). While the sample size limited 
our ability to conduct subgroup analyses for different age groups, future longitudinal/cross-sections studies 
should investigate how age might play a factor to influence neural activity. The integration of distinct imaging 
techniques is challenging during data collection and analyses and results in higher rates of data exclusion. For 
example, adding the fNIRS probe holder to the EEG cap might create gaping between the scalp of the fNIRS 
probes and EEG sensors, leading to greater noise. Future studies would benefit from including more participants 
and upgrading the probe holder to reduce the data exclusion rate. Building upon the current findings, future 
studies can explore the use of individual/combined neuroimaging techniques in different age groups and in 
populations with different neurodevelopmental disorders. The use of unimodal and multimodal neuroimaging 
tools can be used to study infants and toddlers with or without elevated risks for developing developmental 
disorders, with the aim to identify the typical/atypical developmental trajectories of the AON.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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