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A study on Shine‑Muscat grape 
detection at maturity based 
on deep learning
Xinjie Wei 1,2, Fuxiang Xie 2*, Kai Wang 2, Jian Song 2 & Yang Bai 2

The efficient detection of grapes is a crucial technology for fruit‑picking robots. To better identify 
grapes from branch shading that is similar to the fruit color and improve the detection accuracy of 
green grapes due to cluster adhesion, this study proposes a Shine‑Muscat Grape Detection Model 
(S‑MGDM) based on improved YOLOv3 for the ripening stage. DenseNet is fused in the backbone 
feature extraction network to extract richer underlying grape information; depth‑separable 
convolution, CBAM, and SPPNet are added in the multi‑scale detection module to increase the 
perceptual field of grape targets and reduce the model computation; meanwhile, PANet is combined 
with FPN to promote inter‑network information flow and iteratively extract grape features. In 
addition, the CIOU regression loss function is used and the prior frame size is modified by the k‑means 
algorithm to improve the accuracy of detection. The improved detection model achieves an AP value 
of 96.73% and an F1 value of 91% on the test set, which are 3.87% and 3% higher than the original 
network model, respectively; the average detection speed under GPU reaches 26.95 frames/s, which 
is 6.49 frames/s higher than the original model. The comparison results with several mainstream 
detection algorithms such as SSD and YOLO series show that the method has excellent detection 
accuracy and good real‑time performance, which is an important reference value for the problem of 
accurate identification of Shine‑Muscat grapes at maturity.

Grapes are one of the major fruits in the world, while China is also a major country for growing grapefruit trees. 
Shine-Muscat grapes (Vitis labruscana Bailey × V. vinifera L.), also known as Xayin Muscat, Jinhua Rose, and 
Bright Rose, are European and American hybrids that ripen similarly to “Giant Peak”, with yellow-green skin, 
thin skin, and hard, crisp flesh, and are especially known for their rich rose It is known for its strong rose  flavor1. 
Currently, most of the Shine-Muscat grapes in China still need to be picked manually, which requires a lot of 
labor and leads to high production costs in orchards. To achieve automated harvesting of sun rose grapes, the 
primary problem to be solved is to identify and locate fruit targets quickly and accurately. Efficient detection of 
target fruits in natural environment is one of the key technologies for fruit estimation, precision agriculture and 
mechanized automatic picking. Grape detection models based on traditional algorithms do not balance detection 
accuracy and real-time well, and cannot meet the needs of picking robots for rapid identification and localiza-
tion of grape fruits in orchards. Therefore, using deep learning to quickly and accurately detect Shine-Muscat 
grapes in orchards has significant application value and important practical significance for the development 
of grape picking  robots2.

In recent years, many domestic and foreign researchers have proposed different target detection and identi-
fication algorithms for detecting orchard  grapes2–8. Ping Liu et al.9 used the H component in HSV color space 
to obtain the overlapping grape bunch region, used the slope between the inflection point and the center point 
to determine the exact location of the grape bunches, and then used the Chan_Vese model to identify the grape 
bunches, and finally fused the overlapping boundary contours and image contours to identify the grape bunches, 
and the average accuracy of this method was 89.71%, and the recognition success rate reached 90.91%. Cha 
et al.10 compared five transfer learning models to recognize grape clusters with different light intensities and 
different maturity levels, and found by comparison that the VGG16 transfer learning network model had the 
best recognition results compared to the network structures of Resnet50, GoogleNet, VGG19 and AlexNet, and 
the average accuracy of model recognition The average accuracy of the model recognition reached 99.07% and 
the average detection time was 26 ms, which achieved better recognition of grape clusters in the orchard envi-
ronment, but failed to meet the requirement of real-time detection. Thiago et al.11 detected grape clusters in the 
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publicly available dataset WGISD by using the Mask R-CNN algorithm and achieved an F1 score of 0.840 with 
IOU equal to 0.5, but the algorithm was tedious and time-consuming to label the dataset and had an average 
real-time detection performance. Xiang-Yu Cui et al.12 used trainable transformers and multiscale feature map 
fusion for YOLO algorithm improvement to achieve the task of detecting grapes, and by self-designed feature 
extraction network and loss function made the F1 score of this network model reach 92.58% on the test set, 
which achieved a better detection effect, but training this network cannot use migration learning and the train-
ing consumes a long time. Reis et al.13 developed a visual detection recognition grape system that was able to 
automatically distinguish between white and red grapes and achieved a better classification task for both grapes, 
achieving 97% and 91% correct classification results, respectively. Liu et al.6 used support vector machines to 
accelerate grape bunch detection by combining color and texture information to process images, with detection 
accuracy and recall of 88% and 91.6% for two red grape varieties (Shiraz and Cabernet Sauvignon), but red grape 
varieties interfered less with detection and were not tested for grapes with similar background color varieties were 
tested. Lu et al.14 proposed a wine grape bunch detection model by combining YOLOv5 with Swin-transformer 
to detect both Chardonnay and Merlot grapes, and the experimental results were able to achieve good detec-
tion results for Chardonnay grapes, but poor performance for Merlot grapes. In addition, with the continuous 
development of deep learning, deep learning-based target detection algorithms have been applied to other fruit 
 detection15–17. Long sheng Fu et al.18 used depth features to filter background objects to improve the accuracy 
of apple detection by first using a depth filter to remove background trees and then using the Faster R-CNN 
algorithm to detect apples, and the method improved the recognition accuracy by 2.5%.Dandan Wang et al.19 
used the channel pruning algorithm to modify the YOLOv5 model, and the accuracy, recall, F1 score, and false 
detection rate of the modified model were 95.8%, 87.6%, 91.5%, and 4.2%, respectively, to achieve fast detec-
tion of target apples. Gai et al.20 added DenseNet to the YOLOv4 backbone feature extraction network to detect 
cherry fruit, increasing the feature extraction capability, and the F1 score of this model reached 0.856 on the 
test set, but the long-range detection was poor. Chen et al.21 improved the YOLOv3 model for detecting cherry 
tomatoes using a dual-path  network22 for feature extraction and achieved multi-scale detection by creating four 
feature layers at different scales, with a model detection accuracy of 94.29%.

To balance the high accuracy and detection speed of the grape detection algorithm, as well as to achieve 
efficient automated machine picking of the Shine-Muscat grapes, the use of YOLO family models in orchards 
has also become a current research hotspot, so this study proposes a grape detection model based on improved 
 YOLOv323, which improves the backbone feature extraction network (Backbone), a multiscale detection module, 
and loss function of YOLOv3 algorithm, making this target detection algorithm with high detection accuracy 
and detection speed, which can be applied to fast visual detection of machine picking of the Shine-Muscat grapes 
in orchards.

Related works
Shine‑Muscat grape dataset. This subsection describes the grape dataset used for the study and the data 
enhancement of the images. The address of the image dataset collected for this study was located at Xiang Yun 
Grape Horticulture Farm, Shou guang City, Shandong Province (Cooperative of Institute of Botany, Chinese 
Academy of Agricultural Sciences), and the collection time was from 10:00 a.m. to 12:00 p.m. on January 7, 
2022 (sunny day), and the grape variety was Shine-Muscat, and the Shine-Muscat grape berries were collected 
at maturity. Photographs were taken using a Redmi k30 Ultra type smartphone at a distance of 0.5–1.5 m from 
the grapes to collect fruit under a branch and leaf shading, overlapping fruit, down light and backlight to ensure 
sample diversity. After flipping, scaling and other data enhancement means to obtain a total of 1200 images, 
including 302 unobscured fruit, 216 branches and leaves obscured, 245 fruit overlapping, 123 large scene images, 
148 smooth light, and 166 backlight, divided into a training set and test set according to the ratio of 8:2, includ-
ing 960 training set and 240 validation set. The images were labeled using LabelImg software and the image 
information was saved in PASCAL VOC dataset format with original image resolution sizes of 3472 × 4624 pixels 
and 4624 × 3472 pixels. The information of the training dataset is shown in Table 1. Some of the grape dataset 
images are shown in Fig. 1, which contains grape images under different environmental conditions.

Data enhancement. The  Mosaic24 data enhancement method is used in the image input network model 
for training, i.e., each training reads 4 images for a series of operations such as random scaling, flipping, crop-
ping, and optical transformation, then, these 4 images are stitched together and the adjusted labels are passed 
into the network, which is equivalent to passing 4 images into the network for learning at the same time, largely 
enriching the detection object’s The background information of the detected objects is largely enriched and the 
number of targets is increased, and the data of the four images will be calculated simultaneously in the normal-
ized  BN25 (Batch Normalization) calculation, which is equivalent to increasing the Batch size, making the mean 

Table 1.  Information on the shine-muscat grape dataset.

Different 
environment Unsheltered fruits Branches shade

Fruit of 
overlapping Light Backlight Large-scale Total number

Number of 
training set

Number of test 
set

Number of images 302 216 245 148 166 123 1200 960 240

Number of labeled 
grapes 1426 869 578 543 601 594 4611 3689 922
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and variance calculated in the BN layer more consistent with the distribution of the overall dataset and making 
the robustness of the model enhanced. Some of the images after Mosaic enhancement are shown in Fig. 2.

Improvement based on yolov3 shine‑muscat grape detection network. This subsection details 
the optimization and improvement of the YOLOv3 model, including three parts: the backbone feature extrac-
tion network, the multiscale detection module, and the localization loss function, and introduces the testbed 
and model hyperparameter settings. For the algorithm of fruit detection, the accuracy and real-time of the target 
detection algorithm should be considered to meet the needs of picking robots for efficient picking operations. 
To efficiently and accurately detect Shine-Muscat grapes in orchards, achieve efficient machine-picked grapes, 
and reduce the high cost caused by manual picking, this study proposes the S-MGDM (Shine-Muscat Grape 
Detection Model) grape detection model. The model first uses CSDenseNet, a network structure combining 
 CSPNet26 and  DenseNet27, as the backbone network for feature extraction, which makes the network detection 
speed increase significantly without basically affecting the detection accuracy, while reducing the network model 
and floating point operations, and combines the depth separable  convolution28,  SPPNet29, attention mechanism, 
and  CIOU30 loss function to improve the multiscale detection module and loss function, respectively, to further 
improve the accuracy of grape fruit detection.

Improvement of backbone feature extraction network. In this study, the improved YOLOv3 back-
bone feature extraction network CSDenseNet is used as the backbone network to accomplish the task of fast 

Figure 1.  Images of shine-muscat grape under different environmental conditions.

Figure 2.  Mosaic data enhancement image.
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extraction of target features from grape images. The CSDenseNet network is based on the improvement of the 
 DarkNet5323 network, and the CSPNet module and DenseNet module are introduced for the problem of cluster 
adhesion and green branch occlusion with a similar color to the fruit in Shine-Muscat grapes so that more use-
ful underlying grape information can be extracted to improve the accuracy of identifying grape fruit, and the 
number of floating point operations (FLOPs) of the model is effectively reduced to ensure both the speed and 
accuracy of inference and to reduce the computational effort of the model.

CSPNet (Cross Stage Partial Network) is a method to solve the problem of duplication of gradient information 
in network optimization by separating the gradient streams and making them propagate on different network 
paths, avoiding the reuse of gradient information and drastically reducing the number of floating-point opera-
tions (FLOPs) of the network model. (FLOPs) of the network model, which ensures the speed and accuracy 
of inference while also reducing the computational effort of the model. Therefore, in this paper, the residual 
blocks in DarkNet53 are combined with CSPNet as the Resblock structure, as shown in Fig. 3. The module first 
compresses the input feature map in height and width through the first DBM module, which is shown in Fig. 4 
and consists of Conv2D, BN and Mish activation functions. The main part continues the stacking of the original 
residual blocks, and the other part builds a large residual edge, which bypasses multiple residual structures, and 
then Concatenate splices these two parts, and finally integrates the number of channels through a DBM module.

The module first compresses the input feature map in height and width through the first DBM module, which 
is shown in Fig. 5 and consists of Conv2D, BN, and Mish activation functions. The main part continues the 
stacking of the original residual blocks, and the other part builds a large residual edge, which bypasses multiple 
residual structures, and then Concatenates splices these two parts, and finally integrates the number of channels 
through a DBM module. The DenseNet backbone network establishes connections between the layers, making 
full use of the image feature information and ensuring efficient use of the feature maps used by the target detec-
tion branch network.

Figure 3.  Structure of Resblock.

Figure 4.  DBM module.

Figure 5.  DenseNet network structure.
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Figure 6.  Diagram of DenseBlock.
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As shown in Fig. 6, in DenseBlock, the feature maps of each layer are of the same size and can be stitched 
together in the channel dimension. The non-linear combinatorial function in the DenseBlock module adopts 
the BN + ReLU + Conv structure. First, a 1 × 1 convolution is performed on the input feature layer to adjust the 
number of channels to obtain c feature maps in order to reduce the number of features and thus improve com-
putational efficiency; The feature map of k channels is then obtained using 3 × 3 convolution, at which point, a 
feature layer with shape (h,w, k) is obtained. Note that, unlike the  ResNet31 structure, all layers in the DenseBlock 
output c feature maps after convolution, i.e., the number of channels of the resulting feature maps is c, and c is a 
hyperparameter. The c = 32 used in this study gave better performance in the experiment. Assuming that the num-
ber of channels in the input feature map is k0 , then the number of channels in the c-layer input is k0 + k(l − 1) . 
Thus, as the number of layers increases, although k is set smaller, the DenseBlock will have more inputs as a result 
of feature reuse, and each layer has k features unique to itself. After repeated splicing operations in the channel 
dimension, the original features are always preserved, as are the features, after convolutional processing. As the 
network gets deeper, a dense concatenation of all preceding and following layers can be achieved.

For the Transition Block module, its main function is to connect two adjacent Dense Block modules before 
and after each other, while reducing the size of the feature map. The Transition structure consists of a 1 × 1 
convolution and a 2 × 2  AveragePooling2D32 structure to reduce the size of the feature map. If the DenseBlock 
connected in front of the Transition Block layer gets a feature map with channel number m , the Transition Block 
structure will have αm features, where c is the compression rate. When α = 1, the number of feature maps does not 
change through the Transaction Block layer, and α = 0.5 is used in this paper, i.e., the number of output channels 
is equal to half the number of feature map channels obtained from the previous DenseBlock.

The structure of the backbone feature extraction network used in this study is shown in Table 2. First, the input 
image goes through a DBM operation to obtain a 416 × 416 × 32 feature map, and then the obtained feature map 
goes through two Resblock modules to obtain a 104 × 104 × 128 feature map, and then three Denseblock modules 
and Transition Block The three Denseblock modules and the Transition Block module are used to obtain three 
feature maps of size 52 × 52 × 256, 26 × 26 × 512, and 13 × 13 × 1024, respectively, and the three feature maps are 
then passed into the enhanced feature extraction section for enhanced feature extraction.

Multi‑scale detection module improvements. To extract more high-level information of grapes, iso-
late significant target features as well as reduce the amount of parameter computation. This study draws on 
the ideas of SPPNet,  PANet33, and depth-separable convolution, adding each of these modules to the part of 
enhanced feature extraction, and replacing the original structure with a modified multiscale detection module, 
making it possible to greatly reduce the number of parametric calculations based on accurate target detection. 
SPPNet, PANet, and depth-separable convolution modules are shown in Fig. 7a–c, respectively. In the improved 
multiscale detection module, the attention mechanism  CBAM34 is added to the backbone feature extraction part 
after obtaining three feature maps of sizes 52 × 52 × 256, 26 × 26 × 512, and 13 × 13 × 1024, respectively, so that the 
network pays more attention to the channel and spatial information of grape The 13 × 13 × 1024 feature maps 
after adding the attention mechanism were first subjected to the five_conv operation for feature fusion, and then 
passed through the SPPNet structure to be processed using maximum pooling at four different scales, respec-
tively, with maximum pooling kernel sizes of 13 × 13, 9 × 9, 5 × 5, and 1 × 1 (i.e., no operation), which can greatly 
increase the perceptual field and isolate the most significant contextual features of the grape target, and then 
pass the obtained output into the PANet module together with the two previous effective feature maps to achieve 
bottom-up and top-down operations as a way to iteratively extract grape features. The five_conv structure and 
the attention mechanism CBAM module are shown in Fig. 8a,b, where five_conv indicates that it consists of 
CBS(Conv + BN + SiLU) and Depthwise_block alternately repeated five times.

Localization loss function improvement. The localization loss part of YOLOv3 still uses the sum-of-
squares loss calculation method. Although this function takes into account the influence of different scales on 
the regression loss, using the sum-of-squares calculation method to calculate the x, y, w, and h directions sepa-
rately will produce errors and does not take into account the correlation of location coordinates, and this calcula-
tion does not reflect well the degree of overlap between the network prediction frame and the actual real frame. 
Therefore, this study uses the CIOU loss function as an improved localization loss function. CIOU integrates 

Table 2.  Backbone feature extraction network structure parameters.

Size of input Operators Size of output Times

416 × 416 × 3 DBM 416 × 416 × 32 1

416 × 416 × 32 Resblock 208 × 208 × 64 1

208 × 208 × 64 Resblock 104 × 104 × 128 2

104 × 104 × 128 Denseblock 104 × 104 × 256 4

104 × 104 × 256 Transition Block 52 × 52 × 256 1

52 × 52 × 256 Denseblock 52 × 52 × 512 8

52 × 52 × 512 Transition Block 26 × 26 × 512 1

26 × 26 × 512 Denseblock 26 × 26 × 1024 16

26 × 26 × 1024 Transition Block 13 × 13 × 1024 1
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the center distance between the target and anchor, overlap rate, scale, and penalty term, which makes the target 
frame regression become more stable, and the grape fruit target frame predicted by the network model is closer 
to the location and size of the real target frame, and does not, like IOU and  GIOU35 problems such as divergence 
in the training process. And the penalty factor integrates the predicted frame aspect ratio to fit the target frame 
aspect ratio. The calculation formula is as follows.

(1)CIOUloss = 1− IOU +
ρ2(bpred , bgt)

c2
+ αν

(2)α =
ν

(1− IOU)+ ν

Figure 7.  Structure of SPPNet, PANet and depth separable modules. Note CBS denotes the Conv + BN + SiLu 
structure, where SiLU is the combined Sigmoid and ReLU activation function; UpSampling means up-sampling 
operation, which increases the scale of the feature map by nearest interpolation in the width and height 
directions; DownSampling means down-sampling operation, which compresses the height and width of the 
feature map by depth-wise convolution with stride = 2; Depthwise Conv (3 × 3) means depth-wise convolution 
operation. Conv (1 × 1) indicates the number of channels adjusted by ordinary convolution, Same as below.

Figure 8.  Attention mechanism and five_conv structure. Note A 3 × 3 depth separable convolution is used in 
the five_conv module to reduce the number of parameters.
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where α is the weighting factor, and by definition the loss function is optimized in the direction of the larger over-
lap area, and ν measures the similarity of the network output prediction frame to the actual target frame aspect 
ratio. As shown in Fig. 9, c is the length of the diagonal of the outer rectangle of the two boxes, and d represents 
the Euclidean distance ρ2(bpred , bgt) between the centers of the predicted and real boxes.

Improved S‑MGDM network architecture. The S-MGDM network replaces the DarkNet53 network in 
the YOLOv3 algorithm with the CSDenseNet network, adds the SPPNet, PANet and channel attention mecha-
nism CBAM structures in the multiscale detection module, and replaces the ordinary 3 × 3 convolution with 
3 × 3 depth separable convolution. the YOLOv3 network structure and the S-MGDM network structure pro-
posed in this study are shown in Fig. 10a,b. MGDM network structure is shown in Fig. 10a,b. In the S-MGDM 
network, after the input image is feature extracted by the CSDenseNet network, three scale feature maps with 256 
resolutions of 52 × 52 pixels, 512 resolutions of 26 × 26 pixels and 1024 resolutions of 13 × 13 pixels are output; 
after the three feature maps obtained in the backbone feature extraction network, CBAM is added respectively, 
and the added The 13 × 13 × 1024 feature maps of CBAM have connected to SPPNet afterward, and finally these 
three feature maps are passed into PANet for enhanced feature extraction, and finally three feature maps feat1, 
feat2, and feat3 are obtained to output the prediction results.

The detection of the YOLO series consists of two phases, training and testing. In the training phase, the 
S-MGDM network model takes the information between the prediction frame and the true marker frame to 
create a loss function and is trained to minimise the loss functions. In the testing phase, the model predicts each 
input image of the test set, and the output, includes both target class and confidential information to complete 
the task of detecting the Shine-Muscat Grape target.

Experimental platform and model parameter settings. The computer configuration used in this 
experiment is Intel(R) Core (TM) i5-7300HQ CPU @2.50 GHz, NVIDIA GeForce GTX1050, 8G running mem-
ory. The operating system used is windows 10, programming language Python 3.7, and deep learning framework 
Tensorflow 2.2, NVIDIA 472.12 driver, CUDA and CUDNN versions 10.1 and 7.6.5 respectively.

In the model training phase, nine anchor frames were reselected using the k-means clustering algorithm 
based on this dataset, with anchor frame sizes of 17 × 51, 32 × 71, 39 × 103, 53 × 143, 68 × 77, 91 × 111, 116 × 212, 
133 × 134 and 243 × 331, and the model training parameters were consistent with yolov3, using the momentum 
The model is trained using the stochastic gradient (SGD + Momentum) optimizer with a momentum size of 0.9 
and a decay coefficient of 0.0005 and a Batch Size of 4. The first two Resblock structures in the network model 
are modified according to the yolov3 pre-training weights for weight initialization, and 500 epochs of training 
iterations are trained using migration learning. The first 50 epochs were first frozen for fine-tuning the network, 
and their learning rate was set to 0.001; then the remaining 450 epochs were unfrozen for training, and their 
learning rate was set to 0.0001, and the learning rate was updated using cosine  annealing36 decay, with the number 
of target categories being 1 and the labels being clusters, using Mosaic data augmentation, batch normalization, 
all the standard stuff, and multiscale training, the size of the input image is selected randomly from the multiscale 
set [320, 352,…,608] for multiscale training. In the test phase, the resolution size of the input image is 416 × 416 
and the threshold of IoU is set to 0.5.

Model evaluation indicators. The evaluation metrics used in this experiment are the F1  score37, which 
is commonly used in target detection, the Average Precision (AP), the number of floating-point operations 
(FLOPs)38, the speed metric FPS for evaluating target detection, and the network structure size as the evaluation 
metrics of the model. Among them, the F1 score, also known as the balanced F score, has a value size related 
to the accuracy P (Precision) and the recall R (Recall), which are considered in combination and are a kind of 
weighted average of the model accuracy and recall. The formulae for calculating the accuracy P, recall R, and F1 
score are shown below.

(3)ν =
4

π2

((

arctan
wgt

hgt

)

− arctan
w

h

)2

(4)P =
TP

TP + FP

c

d

Figure 9.  Diagram of CIOU.
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where TP (True Positive) indicates the number of target frames for which the model predicts a positive sample 
and is positive; FP (False Positive) indicates the number of target frames for which the model predicts a posi-
tive sample and is negative, and FN (False Negative) indicates the number of target frames for which the model 
predicts a negative sample and is positive.

(5)R =
TP

TP + FN

(6)F1 = 2×
P × R

P + R

Figure 10.  YOLOv3 and S-MGDM network architecture. Note Depthwise separable convolution means 
depthwise separable convolution operation, and fat1, fat2 and fat3 indicate the final output of the network 
respectively.
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The results of AP calculation are related to the accuracy P and recall R. The P–R curve can be drawn based on 
the multiple P and R values obtained when the threshold is equal to a certain value, and then the area contained 
under the P-R curve, i.e., the AP value, can be calculated by the formula. The calculation formula is as follows.

where n denotes the number of recalls; Ri denotes the i-th ( i ∈ [1, n] ) recall.

Involving plant research. Study on plant complies with relevant institutional, national, and international 
guidelines and legislation.

Results and analysis
Analysis of ablation experimental results of S‑MGDM model. Ablation  experiments39 refer to a 
series of experiments to verify the effectiveness of each improvement strategy on the target detection model. To 
verify the improvement of the effectiveness of each improvement method used in this model, this study tested 
240 images from the test set incrementally in terms of the backbone feature extraction network, the multiscale 
detection module, and the loss function, respectively, and the results are shown in Table 3. Model A represents 
the original YOLOv3 detection algorithm; model B represents the addition of CSPNet structure as the backbone 
feature extraction structure of the network on top of the original YOLOv3; model C represents the fusion of 
DenseNet as the backbone network on top of model B; model D represents the addition of SPPNet structure to 
the output part of the backbone network on top of model C. Model E indicates that based on model D, the atten-
tion mechanism CBAM is added before the feature map is passed into the enhanced feature extraction network; 
model F indicates that based on model E, the PANet structure is added to the multiscale detection module and 
the ordinary convolution is replaced by the deep separable convolution; model G indicates that based on model 
F, the loss function in the original YOLOv3 is replaced by the CIOU loss function. According to Table 3, the 
floating point FLOPs of the S-MGDM network model proposed in this study are the smallest among all com-
pared models, which is 3.216× 1010 ; the network structure is also only 62.2 MB, and the F1 score is the same 
as model F (0.91), while the average accuracy reaches the highest 96.73%; each structure added to the network 
model has a significant effect on improving the accuracy of identifying grapes, and the experimental The results 
show that the network model proposed in this study better balances the average detection accuracy, F1 score, 
floating point operations FLOPs, network structure size, and detection speed.

Figure 11 shows the visualization results of the detection performance of the YOLOv3 model and the 
S-MGDM model proposed in this study, including the AP value and F1 score graphs. From Fig. 11, it can be 
found that the AP value and F1 score of the original YOLOv3 are 92.86% and 0.88, respectively, and the AP 
value and F1 score of the improved S-MGDM model are 96.73% and 0.91, respectively. They improved by 3.87 
percentage points and 0.03, respectively, and the model performance was improved with the reduced amount of 
model parameters. The training loss curves of YOLOv3 and S-MGDM are shown in Fig. 12, and the loss values 
are recorded every 5 epochs for a total of 100 times. From Fig. 12, we can see that the training and validation 
losses of the improved S-MGDM model are lower than those of the YOLOv3 model, and the loss curves are 
smoother, indicating that the model has stronger feature extraction ability and better robustness, and the model 
training performance is better than that of the original model.

Analysis of test results of different models. In the experimental stage, the improved S-MGDM net-
work model proposed in this study was used to test using pictures from the Sunshine Rose grape test set, in 
which the visualization process for detecting Sunshine Rose is shown in Fig. 13, and some of the detection results 
under different environmental conditions are shown in Fig. 14. As can be seen from Fig. 13, the S-MGDM net-
work performs initial feature extraction on the input sun rose grape image after the backbone feature extraction 
part, and it can be seen from the figure that the output three feature maps of different sizes contain only local fea-
ture information; then when these three feature maps are further feature extracted by the improved multi-scale 
detection module, the network will obtain global feature information (including the grape location information) 
at this time, and finally the prediction results containing target location, confidence and category are obtained 

(7)AP =

n
∑

i

(Ri − Ri−1)max [Pi , Pi+1]

Table 3.  Results of ablation experiments for each model.

Models Model abbreviation FPS F1 score AP/% FLOPs/×  1010 MB

YOLOv3 DarkNet53 A 10.46 0.88 92.86 6.529 235

YOLOv3 DarkNet53 + CSPNet B 15.78 0.90 93.52 5.960 213

B + DenseNet C 18.76 0.91 93.03 4.846 208

C + SPPNet D 18.21 0.89 94.26 4.943 210

D + CBAM E 18.06 0.90 94.53 5.006 211

E + PANet F 26.95 0.91 95.72 3.224 62.2

F +  CIOULoss G 26.95 0.91 96.73 3.216 62.2
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after the YOLO Head layer. It is demonstrated that the S-MGDM network model proposed in this study can 
detect the Shine-Muscat Grape target accurately and quickly.

In order to verify the validity and feasibility of the proposed S-MGDM network model, the mainstream detec-
tion network model with the same evaluation index was selected for experiments based on a large number of 
references to the detection grape literature and under consistent experimental conditions. Five different models 
such as  SSD40, YOLOv3, YOLOv4, and YOLOX-m41 were used to train and test the dataset, and the experimental 

Figure 11.  Performance visualization results of the original YOLOv3 model and the improved S-MGDM 
model.

Figure 12.  Loss curves of the original YOLOv3 model and the improved S-MGDM model.
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Figure 13.  Flow chart for visualisation of the Shine-Muscat Grape image detection process under the S-MGDM 
model.

Figure 14.  Partial detection results of the S-MGDM network model.
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results of their five detection models and the S-MGDM network model proposed in this study are shown in 
Table 4. As can be seen from Table 4, the S-MGDM model has the highest average detection accuracy of 96.73%, 
and the F1 score is second only to YOLOX-m with 91%, indicating that this model has a better balance of accu-
racy and recall; the YOLOX-m model has the highest recall and F1 score of 96.10% and 92%, respectively; the 
SSD model has the lowest accuracy of 82.14%, and the average detection accuracy is 87.78%, which is only higher 
than YOLOv4-tiny; YOLOv3 and YOLOv4 have higher detection accuracy with average detection accuracy of 
92.86% and 94.51%, but their network structures are too large, 235 MB and 244 MB, respectively; YOLOv4-tiny 
model has the smallest network structure with only 22.4 MB, but its average detection accuracy is the worst, only 
82.73%. Collectively, compared with several other models, the S-MGDM network model proposed in this study 
has a greater advantage in the performance of various evaluation indexes and can achieve the need for accurate 
and rapid detection of Shine-Muscat grapes in orchards.

The detection results of SSD, YOLOv3, YOLOv4, YOLOv4-tiny, YOLOX-m and S-MGDM network models 
experimentally compared in this study for the image with the file name test1.jpg (image 1) and the image with 
the file name test2.jpg (image 2) are shown in Table 5. As can be seen from Table 5, among the detection results of 
these two images, the YOLOv4-tiny model can correctly detect the least number of grapes, which is 18 bunches; 
the YOLOv4 detection model correctly detects more bunches, misses 2 bunches, and has better detection results, 
which is 22 bunches; although the S-MGDM detection model proposed in this study misses one bunch of grapes, 
it correctly detects the most number of grapes, which is as high as 23 bunches, and there is no false detection 
phenomenon in this detection model, which indicates that this model has better results in detecting grapes.

Conclusion and future direction

(1) We propose an S-MGDM network model (Shine-Muscat Grape Detection Model, S-MGDM) based on 
improved YOLOv3 for accurate and fast detection of Shine-Muscat Grapes. By using DarkNet53 to fuse 
CSPNet and DenseNet on the input images for initial extraction of richer underlying information of grapes. 
Add the attention mechanism CBAM in the multi-scale detection module to realize the network adaptive 
attention, which makes the neural network pay more attention to the channel and spatial information of 
grape pictures; then fuse the SPPNet structure and PANet structure, replace some of the convolution with 
depth separable convolution to realize the process of repeatedly extracting grape features to reduce the 
computation of network parameters and reduce the size of the network structure; finally The localization 
loss function is changed to CIOU loss function, which integrates the distance between the target and the 
bounding box, overlap rate and other factors to make the network prediction of grape target box regression 
become more stable and improve the fruit recognition accuracy.

(2) Our proposed S-MGDM network model obtained 96.73% average accuracy on the Sunshine Rose grape test 
set with an F1 score of 91%, a target detection speed FPS of 26.95 frames per second, FLOPs of 3.216× 1010 , 
a network structure size of 62.2 MB, a network structure smaller than SSD, YOLOv3, YOLOv4 and YOLOX-
m, and an F1 score and the average accuracy is higher than YOLOv4-tiny. comparing the results, our 
proposed S-MGDM network model structure indicates the best comprehensive detection performance.

Table 4.  Comparison of evaluation indicators for different detection models.

Models P/% R/% F1/% AP/% FLOPs/×  1010 MB FPS

SSD40 82.14 82.44 82 87.78 6.283 90.7 19.73

YOLOv323 91.22 85.66 88 92.86 6.529 235 20.46

YOLOv424 92.07 88.30 90 94.51 5.960 244 19.69

YOLOv4-tiny24 83.51 77.00 80 82.73 0.679 22.4 78.07

YOLOX-m41 88.04 96.10 92 93.20 7.337 97.3 23.20

S-MGDM 95.66 85.96 91 96.73 3.216 62.2 26.95

Table 5.  Comparison of detection results for different detection models.

Models

Grape detection results of image 1 Grape detection results of image 2 Grape detection results of image 1 and image 2

Number 
of correct 
detection

Number of 
incorrect 
detection

Number 
of missing 
detection

Number 
of correct 
detection

Number of 
incorrect 
detection

Number 
of missing 
detection

Number 
of correct 
detection

Number of 
incorrect 
detection

Number 
of missing 
detection

SSD40 10 0 2 9 1 2 19 1 4

YOLOv323 11 1 0 10 1 1 21 2 1

YOLOv424 12 0 0 10 0 2 22 0 2

YOLOv4-tiny24 9 1 2 9 2 1 18 2 4

YOLOX-m41 11 0 1 10 2 0 21 2 1

S-MGDM 12 0 0 11 0 1 23 0 1
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(3) Through the above experiments, it is shown that the S-MGDM network model proposed in this study has 
an excellent detection effect on ripe Shine-Muscat grapes, and can better identify and detect grape from 
branches and leaves with a similar color to the fruit, and the model is general and portable, and can also 
be used for other kinds of grape detection. There are some working ways to further improve our method 
as well, such as using image processing methods to remove distracting factors such as branches and leaves 
before inputting into the network, which in turn can improve the detection effect of the model.

(4) In this paper, the accurate identification of Shine-Muscat grapes was achieved. Future work will transplant 
the model to the detection of other kinds of grapes and advance the deployment of the model in a picking 
robot, which will acquire the 3D coordinates of the grapes through the ROS system combined with bin-
ocular vision cameras and then control the robot arm to pick the grapes, aiming to create a grape picking 
robot.

Data availability
The data supporting this study’s findings are available from the corresponding author upon reasonable request.

Received: 25 September 2022; Accepted: 14 March 2023

References
 1. Chen, X. L. Introduction performance and research progress of Shine-Muscat grape in China. Agric. Technol. 40(04), 153–156 

(2020).
 2. Li, G. J. et al. A wine grape detection model using the lightweight network MobileNetV2. J. Agric. Eng. 37(17), 168–176 (2021).
 3. Badeka, E., Kalabokas, T., Tziridis, K., et al. Grapes visual segmentation for harvesting robots using local texture descriptors[C]. 

In 12th International Conference on Computer Vision Systems (ICVS), 98–109 (2019).
 4. Dolezel, P., Skrabanek, P., Gago, L., et al. Detection of grapes in natural environment using feedforward neural network as a 

classifier[C]. In SAI Computing Conference (SAI), 1330–1334 (2016).
 5. Li, H. P. et al. A real-time table grape detection method based on improved YOLOv4-tiny network in complex background. Biosyst. 

Eng. 212, 347–359 (2021).
 6. Liu, S. & Whitty, M. Automatic grape bunch detection in vineyards with an SVM classifier. J. Appl. Log. 13(4), 643–653 (2015).
 7. Luo, J., Wang, Y., Wang, Q., et al. Automatic image segmentation of grape based on computer vision[C]. In International Conference 

on Intelligent and Interactive Systems and Applications (IISA), 365–370 (2016).
 8. Liu, Z. H., Yu, M. & Ren, H. E. Grape berry image segmentation based on improved K-means clustering. Jiangsu Agric. Sci. 46(24), 

239–244 (2018).
 9. Liu, P. et al. Identification and image segmentation algorithms for stacked grape bunches in natural environments. J. Agric. Eng. 

36(06), 161–169 (2020).
 10. Cha, C. H., Zhou, W. J. & Wu, J. Identification of red grape clusters in the field based on migration learning Faster R-CNN model. 

J. Shihezi Univ. 39(01), 26–31 (2021).
 11. Santos, T. T. et al. Grape detection, segmentation, and tracking using deep neural networks and three-dimensional association. 

Comput. Electron. Agric. 170, 17 (2020).
 12. Cui, X. Y. et al. Trainable transformers and RdNet in fruit recognition networks. J. Qingdao Univ. 36(01), 8–14 (2021).
 13. Reis, M. et al. Automatic detection of bunches of grapes in natural environment from color images. J. Appl. Log. 10(4), 285–290 

(2012).
 14. Lu, S. et al. Swin-Transformer-YOLOv5 for real-time wine grape bunch detection. Remote Sens. 14(22), 5853 (2022).
 15. Sa, I. et al. DeepFruits: A fruit detection system using deep neural networks. Sensors 16(8), 23 (2016).
 16. Xu, L. F. et al. Fruit small target detection based on improved DenseNet. J. Zhejiang Univ. 55(02), 377–385 (2021).
 17. Zhang, E. Y. et al. green apple identification under natural conditions based on SSD algorithm. Chin. Sci. Technol. Paper 15(03), 

274–281 (2020).
 18. Fu, L. et al. Faster R-CNN–based apple detection in dense-foliage fruiting-wall trees using RGB and depth features for robotic 

harvesting. Biosyst. Eng. 197, 245–256 (2020).
 19. Wang, D. & He, D. Channel pruned YOLO V5s-based deep learning approach for rapid and accurate apple fruitlet detection before 

fruit thinning. Biosys. Eng. 210, 271–281 (2021).
 20. Gai, R. L., Chen, N. & Yuan, H. A detection algorithm for cherry fruits based on the improved YOLO-v4 model. Neural Comput. 

Appl. https:// doi. org/ 10. 1007/ s00521- 021- 06029-z (2021).
 21. Chen, J. et al. An improved Yolov3 based on dual path network for cherry tomatoes detection. J. Food Process Eng. 44(10), e13803 

(2021).
 22. Chen, Y., Li, J., Xiao, H., et al. Dual path networks. Advances in neural Information Processing Systems. 30 (2017).
 23. Redmon, J., Farhadi, A. YOLOv3: An incremental improvement. arXiv e-prints, (2018).
 24. Bochkovskiy, A., Wang, C. Y., Liao, H. YOLOv4: Optimal speed and accuracy of object detection, (2020).
 25. Ioffe, S., Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]. In Interna-

tional conference on machine learning. 448–456 (2015).
 26. Wang, C. Y., Liao, H., Wu, Y. H. et al. CSPNet: A new backbone that can enhance learning capability of CNN[C]. In 2020 IEEE/

CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), (2020).
 27. Huang, G., Liu, Z., Laurens, V. et al. Densely connected convolutional networks. IEEE Comput. Soc. (2016).
 28. Howard, A. G., Zhu, M., Chen, B. et al. MobileNets: Efficient convolutional neural networks for mobile vision applications. (2017).
 29. He, K. et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 

37(9), 1904–1916 (2014).
 30. Zheng, Z. et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation. IEEE 

Trans. Cybern. 52, 8574 (2021).
 31. He, K., Zhang, X., Ren, S., et al. Deep residual learning for image recognition. IEEE, (2016).
 32. Lin, M., Chen, Q., Yan, S. Network in network. arXiv preprint arXiv: 1312. 4400, (2013).
 33. Liu, S., Qi, L., Qin, H., et al. Path aggregation network for instance segmentation. IEEE (2018).
 34. Woo, S. et al. CBAM: Convolutional Block Attention Module (Springer, Cham, 2018).
 35. Rezatofighi, H., Tsoi, N., Gwak, J., et al. Generalized intersection over union: A metric and a loss for bounding box regression. In 

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 658–666 (2019).
 36. Loshchilov, I., Hutter, F. SGDR: Stochastic gradient descent with warm restarts. (2016).

https://doi.org/10.1007/s00521-021-06029-z
http://arxiv.org/abs/1312.4400


14

Vol:.(1234567890)

Scientific Reports |         (2023) 13:4587  | https://doi.org/10.1038/s41598-023-31608-6

www.nature.com/scientificreports/

 37. Hripcsak, G. & Rothschild, A. S. Agreement, the F-measure, and reliability in information retrieval. J. Am. Med. Inform. Assoc. 
12(3), 296–298 (2005).

 38. Molchanov, P., Tyree, S., Karras, T., et al. Pruning convolutional neural networks for resource efficient transfer learning. (2016).
 39. Ren, S., He, K., Girshick, R., et al. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural 

Inf. Process. Syst. 28 (2015).
 40. Liu, W. et al. SSD: Single Shot MultiBox Detector (Springer, 2016).
 41. Ge, Z., Liu, S., Wang, F., et al. YOLOX: Exceeding YOLO Series in 2021, (2021).

Author contributions
X.W. wrote the main manuscript text and F.X., J.S. provided financial support, K.W. and Y.B. were responsible 
for data curation, visualization and drawing tables and pictures. All authors reviewed the manuscript.

Funding
This work was supported by the Natural Science Foundation of Shandong Province (No. ZR2020ME136); Shan-
dong Province Key R&D Program Project(2019GNC106144).

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to F.X.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A study on Shine-Muscat grape detection at maturity based on deep learning
	Related works
	Shine-Muscat grape dataset. 
	Data enhancement. 
	Improvement based on yolov3 shine-muscat grape detection network. 
	Improvement of backbone feature extraction network. 
	Multi-scale detection module improvements. 
	Localization loss function improvement. 
	Improved S-MGDM network architecture. 
	Experimental platform and model parameter settings. 
	Model evaluation indicators. 
	Involving plant research. 

	Results and analysis
	Analysis of ablation experimental results of S-MGDM model. 
	Analysis of test results of different models. 

	Conclusion and future direction
	References


