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Exploring the impact mechanism 
of low‑carbon multivariate coupling 
system in Chinese typical cities 
based on machine learning
Haonan Yang 1, Liang Chen 1,2,3*, Huan Huang 3, Panyu Tang 1, Hua Xie 1 & Chu Wang 1

Low‑carbon city construction is one of the key issues that must be addressed for China to achieve 
high‑quality economic development and meet the Sustainable Development Goals. This study creates 
a comprehensive evaluation index system of low‑carbon city multivariate system based on carbon 
emission data from 30 typical Chinese cities from 2006 to 2017 and evaluates and analyzes the trend of 
city low‑carbon levels using the CRITIC‑TOPSIS technique and MK method. Meanwhile, the influence 
mechanism of the multi‑coupled system is investigated using the coupling coordination degree model 
and random forest algorithm.The results show that there are 8 cities with a significant increasing 
trend of low‑carbon level, 19 cities with no significant monotonic change trend, and 3 cities with a 
decreasing trend of low‑carbon level. By analyzing the coupling coordination degree, we found that 
the coupling coordination degree between low‑carbon level and economic development in most cities 
tends to increase year by year, from the initial antagonistic effect to a good coordination development 
trend, which confirms the “inverted U‑shaped” relationship between economy and carbon emission. In 
addition, industrial pollutant emissions, foreign direct investment, and economic output are the core 
drivers of low‑carbon levels in cities.

Currently, the climate problem has had varying degrees of negative impacts on countries around the  world1, 
and natural disasters caused directly or indirectly through various means have hampered local economic and 
social development, as well as had significant impacts on residents’ livelihoods and health. Among these natural 
disasters caused by climate change, global warming caused by a significant increase in greenhouse gases and its 
subsequent natural disasters has received the most  attention2. Since the Kyoto Protocol in 1997, greenhouse gas 
emissions have become a hot topic of global concern, and many scholars have conducted studies on the  subject3,4, 
the most influential of which is the well-known Stern  Review5. One of the review’s central ideas is that humans 
should immediately and significantly reduce greenhouse gas emissions to address the threats to human survival 
posed by climate change. Although some of the review’s assumptions have been criticized in academic  circles6,7, 
the review’s positive advocacy and promotion of global greenhouse gas emission reduction cannot be overlooked. 
Carbon dioxide emission reduction has been a major concern as the most common greenhouse gas, and various 
studies related to carbon dioxide emissions have increased, for example, to reduce the level of green premium 
brought by low-carbon technologies, many researchers and scholars have put forward their views on carbon taxes 
and carbon emissions  trading8,9. Furthermore, to analyze the global greenhouse gas reduction problem, some 
studies have used carbon dioxide as a uniform standard for accounting for greenhouse  gases10.

For China, the international community and academia have been keeping a close eye on Chinese CO2 emis-
sions and when they will  peak11,12. China stated in the Sino-US Joint Statement on Climate Change released in 
2014 that its CO2 emissions would peak by  203013. The following year, China announced its post2020 emissions 
reduction targets, intending to reach a peak in CO2 emissions by 2030 or  earlier14. Based on the foregoing, it has 
become an urgent task for the Chinese government to implement effective climate policies to reduce domestic 
CO2 emissions. According to statistics, cities account for more than 70 % of global CO2  emissions15. Higher 
levels of urbanization have a two-fold effect on total urban carbon emissions, which is also consistent with the 
Environmental Kuznets Curve hypothesis (EKC)16. On the one hand, increased urbanization will result in more 
non-construction land being converted into construction land in cities, resulting in a corresponding change in 
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urban spatial structure. On the other hand, increased urbanization will promote scientific and technological 
progress, resulting in the transformation and upgrading of industries, as well as the corresponding adjustment 
and upgrading of urban industrial structures, and the emergence of industrial structures that match the spatial 
functions of cities and towns, thereby reducing energy consumption and further reducing carbon  emissions17,18.
This demonstrates that the achievement of carbon peaks by Chinese cities is central to achieving a national carbon 
peak. In the study of carbon emissions from various cities, megacities with higher economic and industrialization 
levels play an important role in the overall goal’s achievement.

In the process of exploring urban CO2 emission reduction pathways, how to balance economic development 
and ecological sustainability is an issue that must be considered in pathway design and implementation, in addi-
tion to solving the problem of high urban carbon emissions. The relationship between economic development 
and the ecological environment is commonly thought to follow the EKC  hypothesis19, which states that economic 
development only pollutes and degrades the environment at the beginning and that after a certain per capita 
income level is reached, economic development has a positive effect on the  environment20,21.Meanwhile, the 
EKC hypothesis also suggests a similar nonlinear inverted U-shaped relationship between economic develop-
ment and urban carbon dioxide emissions, i.e., urban carbon emissions are positively correlated with economic 
development at the initial stage of economic growth and then decline when economic development reaches a 
certain  level22. In addition, some scholars have obtained results through empirical analysis that do not support 
the EKC  hypothesis23, while others argue that there is an N-shaped relationship between economic growth and 
carbon  emissions24.

As mentioned above, China is one of the world’s largest emitter of carbon dioxide emissions, and urban 
carbon emissions are the most important source of national carbon emissions. Therefore, this study selects typi-
cal cities in China as the research object, and investigates the interactions and influence mechanisms of urban 
multi-systems, aiming to provide new references and inspirations for the construction of low-carbon cities in 
China and even globally. Most of the existing studies on low-carbon cities focus on the EKC hypothesis, and 
regression analysis is conducted on single or multiple variables related to CO2 emissions by constructing various 
econometric models. Most of the studies focus on macro mechanisms at the national or provincial level, but there 
are few studies on low-carbon level measurement and impact mechanisms based on prefecture-level cities. At 
the same time, the solutions to specific problems are relatively old, and it is difficult to conduct a complete and 
systematic search for the core drivers that influence the trend of low-carbon levels in cities. Because of this, to 
analyze the coupling coordination and mechanism between urban carbon emission, economy, and environment, 
and to explore the key driving factors affecting urban carbon emission, this research constructs a multifaceted 
indicator system consisting of a low-carbon subsystem, socio-economic subsystem, and ecological environmen-
tal subsystem, and combines statistics, machine learning, and other frontier sciences to study the coupling and 
coordinated development of low-carbon cities in typical Chinese cities. The research also explores and analyzes 
the core driving factors affecting the low-carbon level of cities, and analyzes the causes of the mechanism of 
action in the context of the actual situation of Chinese development. In addition, based on social reality, this 
research deconstructs the multi-system mechanism of low-carbon cities from the perspectives of the economy 
and government system, and expands the ideas of low-carbon city construction and development, to expect a 
breakthrough in measuring the status of low-carbon construction in cities, analyzing the trend of low-carbon 
level changes in cities, analyzing the multi-system coupling and coordination mechanism, and exploring the core 
drivers of sustainable urban development, etc. The specific research path is shown in the following figure. (Fig. 1 ).

Literature review
Since 2009, the term “low-carbon city” has gradually gained traction in a variety of fields such as academic 
research, policy formulation, and urban  planning25. At the moment, academic research for low-carbon city 
construction can be roughly divided into three categories: policy assessment, comprehensive evaluation, and 
mechanism analysis. Most established studies on policy evaluation in Chinese cities have used the Differences-
in-Differences method (DID) of econometric models, primarily to empirically examine changes in the variables 
of interest to the research before and after the implementation of the Low-Carbon City Pilot (LCCP)26 and the 
Carbon Emission Trading Scheme (CTS) policies in China.Carbon emission  reduction27,28, carbon emission 
 efficiency29, energy  efficiency30, and urban green total factor productivity (GTFP)31,32 are currently studied vari-
ables. According to the studies mentioned above, the DID approach has been widely used in China to evaluate 
policies related to low-carbon city construction for a variety of scenarios. This is because the DID series of 
methods’ principles are relatively simple to grasp and can alleviate the endogeneity problem to some extent, so 
the method has gained popularity among academics in recent years .

At present, many cities around the world are promoting low-carbon development, but due to the differ-
ence in resource-carrying capacity in different regions, there are certain differences in the development status 
between different  regions33. Establishing a scientific and effective comprehensive indicator system, can help 
decision-makers to better quantify the low-carbon levels in different regions, and facilitate the overall control 
of urban low-carbon levels. In the study of a comprehensive evaluation of low-carbon cities, it is first necessary 
to consider how to construct a scientific and reasonable low-carbon city index system. Social, economic, cul-
tural, and other factors must be fully considered to establish an index evaluation system that matches the local 
development  conditions34. The current research mainly starts from the dimensions of urban economy, society, 
energy, carbon emissions, ecological environment, and urban transportation when constructing a low-carbon city 
comprehensive evaluation  system35,36, and completes the framework construction of the index system. To sum 
up, the framework construction of the index system by the predecessors has been relatively mature. Therefore, in 
the process of constructing the evaluation index system, this research refers to the research of the predecessors 
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and starts from the three dimensions of urban carbon emissions, economic development, and environment to 
construct a typical Chinese model. Urban multi-system evaluation index system.

At the same time, the method of a comprehensive evaluation is commonly used for relevant research in the 
current process of measuring and analyzing urban low-carbon levels. The current mainstream index weight dis-
tribution methods can be roughly divided into three categories in terms of weighting method selection: subjective 
weighting, objective weighting, and subjective-objective combination weighting. Although combined weighting 
can reduce information loss and bring the weight value closer to reality, it has stringent requirements for the 
rationality and dependability of subjective weight distribution results. In many studies, the objective weight-
ing method is still used for weight distribution.For example, for objective weight distribution, use the entropy 
 method37, or for weight distribution, use the CRITIC  method38. The most common comprehensive evaluation 
models are the fuzzy comprehensive evaluation  method39 for the fuzzy index environment, and the TOPSIS 
 method40 and VIKOR  method41 for solving multi-criteria decision-making (MCDM)  problems42.The advantage 
of the TOPSIS method is that it can make full use of the properties of the evaluation objects and determine the 
distance between each evaluation object and the positive and negative ideal solutions as well as their correspond-
ing relative posting  schedule43. As a result, this method is widely used in evaluating various index systems. In a 
thorough examination. Existing studies typically use the entropy-TOPSIS method for comprehensive evaluation 
and analysis to avoid subjective factors weakening the objectivity of index  weights44. Given this, this research 
combines the objective weighting method CRITIC with the comprehensive evaluation method TOPSIS to con-
duct a comprehensive evaluation and comparative analysis of 30 typical Chinese urban multi-systems, providing 
a reference for the subsequent comprehensive evaluation of low-carbon cities..

Existing studies on the impact mechanism of low-carbon cities have mostly borrowed the environmental 
Kuznets curve to investigate the economy-environment, economy-low-carbon, and environment-low-carbon 
subsystems. To investigate the mechanism between the subsystems, determine whether the inverted U-shaped 
hypothesis is satisfied. Simultaneously, some scholars established an evaluation index system for the city and 
used a comprehensive evaluation model to evaluate each subsystem thoroughly. The coordination degree model 
investigates the mechanisms that exist between various  subsystems45,46. Furthermore, a significant number of 
researchers use spatial econometric models to investigate the factors influencing urban low-carbon levels and 
the degree of spatial  aggregation47,48.

In relevant academic research on the core driving factors of urban carbon emissions, the Kaya identity was 
first used to describe the relationship between carbon emissions and energy efficiency, energy structure, eco-
nomic level, and population  size49.In the subsequent analysis of the driving factors of carbon emissions, an index 
decomposition method based on the Laspeyres method and the Divisia method was  developed50,51 to decompose 
the variable of carbon dioxide emissions into population, economy, energy, technology, etc. A range of variables 
was analyzed to explore the core drivers of CO2  emissions52.With the popularity of cutting-edge subject methods 
such as machine learning in recent years, some scholars have proposed using random forest and other methods 
to analyze the core driving factors of carbon emissions, providing new methods and research ideas for deter-
mining the core driving factors of carbon  emissions53.Therefore, in the selection of the exploration and analysis 
method for the core driving factors, this research draws on the random forest algorithm adopted by the existing 
research, takes the total carbon dioxide emission of the city as the dependent variable, and takes the indicators 
of the economic subsystem and the environmental subsystem as the dependent variable. Independent variables, 

Figure 1.  Research path.
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using the random forest algorithm (RF), construct multiple regression decision tree models and explore and 
study the core driving factors of carbon emissions in typical Chinese cities.

To summarize, the coupling coordination degree model is mostly used for the mechanism analysis of urban 
multivariate systems, but there have been few studies on its combination with machine learning algorithms. 
As a result, based on the comprehensive evaluation results of typical Chinese cities, this research combines the 
coupling coordination model with the machine learning algorithm model to further investigate the coupling 
coordination and core driving factors between urban multi-systems and provides a reference for subsequent 
analysis of urban multivariate systems.

Materials and methods
Study area. This study focuses on the measurement of carbon emission levels and the influence mecha-
nism of quintessential Chinese cities. 30 representative large cities in seven regions of China are selected as the 
study area, specifically Shenyang, Harbin, and Changchun in Northeast China, Beijing, Tianjin, Shijiazhuang, 
Taiyuan, and Hohhot in North China, Shanghai, Nanjing, Hangzhou, Hefei and Fuzhou in East China, Guang-
zhou, Nanning, Shenzhen, and Haikou in South China, Zhengzhou, Wuhan, and Changsha in Central China, 
Chengdu, Chongqing and Fuzhou in Southwest China. In the south of China, Guangzhou, Nanning, Shenzhen, 
Haikou, Zhengzhou, Wuhan, and Changsha in central China, Chengdu, Chongqing, Kunming, and Guiyang in 
southwest China, and Xi’an, Lanzhou, Yinchuan, and Urumqi in northwest China (Fig. 2). The evaluation index 
system is constructed by analyzing and screening the indicators related to the carbon emission status, ecological 
and environmental quality, and economic development of cities, and realizing the comprehensive measurement 
of low-carbon level of 30 quintessential cities in the past 15 years as well as the analysis of the subsequent influ-
ence mechanism.

Data sources. The raw data of CO2 emissions from Chinese prefecture-level cities in this study were 
obtained from ground-based observations of CO2 emissions at the county level in China, which using satellite 
remote sensing data were estimated by Chen et al.54, and published on  Figshare55. By aggregating county-level 
data, this research obtains data at the prefecture-level city level. The original data for other environmental and 
economic subsystem-related indicators come from the “China City Statistical Yearbook” and “China Urban and 
Rural Construction Statistical Yearbook.” Per capita carbon dioxide emissions, and per GDP carbon dioxide 
emissions are calculated.

Construction of evaluation indicator system. Using previous research foundations, this study will 
begin with the three dimensions of urban carbon emissions, economy, and environment, and will then construct 
a multi-system comprehensive evaluation index system for typical Chinese cities, selecting 30 typical Chinese 
cities. A comprehensive evaluation and analysis of the city’s urban multi-system is carried out using relevant data 
from 2006 to 2017.

Figure 2.  Study area.
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Among them, in terms of urban carbon emissions, in addition to the total carbon dioxide emissions indica-
tors, this research also selects the total carbon dioxide emissions per capita and carbon dioxide emissions per unit 
of GDP as the evaluation indicators of urban carbon emissions, so that population size and economic conditions 
are also included in the evaluation of carbon emissions The range of indicators considered. In the comprehensive 
evaluation of low-carbon cities, in addition to considering the emission of greenhouse gases, urban economic 
development, and people’s living conditions also need to be included in the evaluation index  system56. In the 
selection of urban economic development indicators, GDP is the most commonly used indicator to measure 
the level of urban economic  development57. Foreign direct investment (FDI) is also a hot issue in analyzing the 
impact of economic development on total carbon dioxide emissions. For developed countries, under normal 
circumstances, FDI can promote technology spillover effects, improve local production capacity, and relieve 
local employment pressure to a certain  extent58, but for developing countries, since there is no right to choose 
a foreign investment, Therefore, the pollution produced by developed countries are forced to be transferred to 
some developing  countries59. Furthermore, fiscal taxation of local governments is a relatively effective tool for 
local governments to regulate the macroeconomic environment, and it plays an important role in local finance, 
so it should be considered in the urban economy. The index system is generally constructed in three dimen-
sions for the index selection of the urban environmental subsystem: solid, liquid, and gas. In this research, the 
annual average concentration of PM2.5, industrial smoke and dust emissions, industrial wastewater emissions, 
and industrial sulfur dioxide emissions are chosen as environmental subsystem evaluation indicators based on 
existing  research60 (Table 1).

Method. CRTIC method. The CRITIC method is an objective weighting method, compared to the general 
entropy weighting method, which introduces a comprehensive consideration of the variability between elements 
and the conflict between elements while considering the information size of the indicators, and uses the form 
of product to reflect the information size within the data, and determines the objective weights of the indicators 
on this basis, as follows.

First, the standard deviation as well as the correlation coefficients of each element are calculated, thus reflect-
ing the variability and correlation of each element of the comprehensive measure of low-carbon level in cities.

Then, the weights of the elements are determined based on the calculation results (where n represents the number 
of research objects and m represents the number of indicators).

TOPSIS comprehensive evaluation model. The sorting principle of the TOPSIS comprehensive evaluation 
method is to determine the positive and negative ideal solutions, and then calculate the distance between each 
evaluation object and the positive and negative ideal solutions and the corresponding relative progress, which 
are used as the basis for evaluating the degree of pros and cons. The specific formula is as follows.

(1)Sj =

√

∑n
i=1 (xij − x̄j)

2

n− 1

(2)Rj =
∑n

i=1
(1− rij)

(3)wj =
SjRj

∑m
j=1 SjRj

(4)xij =
tij −min tij

max tij −min tij

(

If tij is a positive indicator
)

Table 1.  Low-carbon city multi-system comprehensive evaluation indicator system.

Subsystem Indicator Unit Type Weight

Carbon subsystem (A)

Total CO2 emission(A1) Million ton − 0.446

Per capita CO2 emission (A2) Tons/person − 0.232

Per GDP CO2 emission (A3) Tons/million yuan − 0.321

Economic subsystem (B)

GDP (B1) Million yuan + 0.342

Foreign direct investment (B2) Million yuan + 0.374

Local fiscal general budget revenue (B3) Million yuan + 0.284

Environmental subsystem (C)

PM2.5 annual concentrations (C1) µg/m3 − 0.257

Total industrial smoke(dust) emission (C2) Million tons − 0.348

Total industrial wastewater discharge (C3) Million tons − 0.182

Total industrial SO2 emission (C4) Million tons − 0.213
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tij represents the jth indicator in the ith year, tij represents the data value corresponding to the jth index in the 
ith year of the original data, xij represents the data after standardization process.

After completing the standardization of the indicators by Eqs. (4) and (5), determine its positive and nega-
tive ideal solutions Sd+j  and Sd−j  , and the relative closeness ηj . Among them, p+j  represents the maximum value 
of the jth index, p−j  represents the minimum value of the jth index, and wj represents the weight value of the jth 
index after the combined weighting.

Coupling coordination degree model. The coupling coordination degree model is a quantitative calculation 
model used to analyze the level of development of coupling coordination between systems of  things61. The cou-
pling coordination degree model involves the calculation of a total of several index values, which are the coupling 
degree value coupling coordination degree value. Where the coupling degree refers to the dynamic correlation 
between two or more systems that interact and influence each other to achieve coordinated development and 
can reflect the degree of interdependence and mutual constraints between  systems62. Where the coupling degree 
is the indicator that evaluates the synergy of the indicators of the study, and if the coupling degree is larger, 
the stronger the synergy, which is expressed in the smaller size of the difference in the evaluation coefficients 
between the  systems63. The coupling coordination degree refers to the size of the degree of benign coupling in 
the coupled interaction relationship, which can reflect the good or bad coordination status and is used to find out 
the positive development of the relationship between the  systems64. The coupling coordination degree value and 
the coordination level classification criteria can be combined to finally arrive at the coupling coordination level 
degree of each item. The coupling coordination degree model is calculated as follows.

where C denotes the coupling degree, Ui denotes the index of the ith subsystem, T denotes the coordination 
degree, αi denotes the weight coefficient of the ith subsystem, and this research assumes that αi = 1

n , while D 
denotes the coupling coordination degree.

Random forest algorithm. The random forest algorithm is a bagging algorithm in the ensemble learning that is 
commonly used to solve classification and regression  problems65.The Bootstrap method is used to generate multi-
ple training subsets, and then a decision tree is created for each training subset for training, and finally, the results 
of each decision tree are combined to obtain the overall result. In terms of decision tree type, there are two options: 
classification decision tree and regression decision tree.Because the urban low-carbon index is characterized as a 
continuous variable rather than a discrete variable representing a category, this research chooses to build a regres-
sion-type decision tree and selects features and branches based on the MSE value (Eq. 12), which in order to com-
plete the ranking of the importance of indicators. Among them, a denotes an arbitrary division feature, s denotes 
an arbitrary division point, and the original dataset is divided into two datasets, D1 and D2, by dividing the point s. 
c1 and c2 denote the mean values of the datasets D1 and D2, respectively, and yi represents the feature values.

Results
Analysis of low‑carbon subsystem measurement results. In general, the low-carbon index of most 
cities has shown a clear upward trend over the last 12 years. Figure 3 depicts the results of low-carbon level meas-
urements in typical Chinese cities from 2006 to 2017. Cities with different trends are distinguished by different 

(5)xij =
max tij − tij

max tij −min tij

(

If tij is a negative indicator
)

(6)Sd+i =
√

∑m

j=1

(

p+j − xij

)2

(7)Sd−i =
√

∑m

j=1

(

p−j − xij

)2

(8)ηj =
Sd−j

Sd+j + Sd−j

(9)C =n×
[

U1U2 · · ·Un

(U1 + U2 + · · ·Un)
n

]
1
n

(10)T =
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αiUi
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C · T
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colors following the Mann-Kendall test. In particular, the low-carbon index of 8 cities has shown a clear upward 
trend, 19 cities have shown no significant monotonous change trend, and the low-carbon level of 3 cities has 
dropped significantly, namely Shenyang, Tianjin, and Guangzhou City. Affected by the financial crisis in 2008, 
global economic growth slowed down, resulting in a sharp drop in external demand. Since before this, Chinese 
economy was highly dependent on foreign investment, Chinese export economy has been negatively affected to 
a large extent. To stabilize the growth of the domestic economy, the low-carbon indices of most cities in the study 
area have declined or stagnated to varying degrees. Therefore, the Chinese government uses financial investment 
to expand domestic demand, implements a package  plan66, and uses the multiplier effect and stimulate economic 
recovery. Among these financial investments, about 37.5% are used for major infrastructure construction such 
as road network transportation and water conservancy  projects67.However, many of these industries are carbon-
intensive68, and some cities have issues with carbon emission efficiency and industrial structure  rationalization69, 
which leads to an increase in the overall energy consumption level of cities. The total amount of urban carbon 
emissions continued to rise, resulting in varying degrees of decline or stagnation in typical city low-carbon 
indices during this period.

According to the different types of fluctuation trends, for these cities whose low-carbon index is on the rise, 
the rising trend can be divided into two types, namely: step-up type and oscillating-up type. Among them, 
the step-up cities include Taiyuan, Jinan, Zhengzhou, Guiyang, and Lanzhou, and the oscillating cities include 
Beijing, Hefei, and Kunming. For step-up cities, it shows that the industrial transformation effect of such cit-
ies is relatively obvious, and the carbon emission efficiency is relatively high, so they are not affected by some 
carbon-intensive industries during this period. As for the oscillating-up cities, it can be seen that after entering 
the new normal state of economic development, these cities have been constantly adjusting and optimizing 

Figure 3.  Trend of the low-carbon index in typical cities in China.
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their investment structure, striving to reduce the intensity of urban carbon  emissions70, making their urban 
low-carbon index in the There is a certain degree of volatility in the short term, but the long-term upward trend 
remains unchanged.

For cities with no obvious trend in the MK test, the fluctuation of their low-carbon index can be roughly 
regarded as a trend of “rising first, then falling, then rising,” that is, the city’s low-carbon index rose slightly 
before 2008, but there was a relatively obvious decline after 2008. Following a series of new governance con-
cepts and policies such as green innovation and high-quality economic development proposed by the Chinese 
 government71, the Low-Carbon City Pilot (LCCP) was  implemented72 and the Carbon Emissions Trading Scheme 
(CTS)73 and other specific policies, resulting in a significant increase in the city’s low-carbon index after 2012. 
Furthermore, cities whose low-carbon index change test results show a downward trend must urgently improve 
their urban carbon emission efficiency. Although such cities’ urban low-carbon index improved from 2013 to 
2014, it did not last. Because Tianjin’s average low-carbon index is lower than that of Guangzhou (0.824) and 
Shenyang (0.759), such cities should make appropriate adjustments to their high-energy-consuming industries, 
strengthen screening and supervision of foreign investment, and avoid becoming “pollution paradises”74.

Analysis of economic subsystem measurement results. Overall, the economic development of Chi-
nese 30 typical cities is improving year after year. As of 2017, the four first-tier cities of “Shanghai, Beijing, Shen-
zhen, and Guangzhou” maintained strong economic development, while Chengdu, Chongqing, and Wuhan in 
the inland areas gradually formed new highlands for Chinese urban economic growth (Fig. 4 )

According to the findings in Table 2, the economic development of typical cities across the country has 
improved significantly between 2006 and 2017. In terms of average economic development, the top five cities 
are Shanghai (0.533), Beijing (0.436), Tianjin (0.352), Shenzhen (0.282), and Guangzhou (0.254). According to 
the results, there is no doubt that Shanghai, as Chinese economic center and a window for foreign trade, ranks 
first in terms of economic level. As the core cities of the Beijing-Tianjin-Hebei urban agglomeration, Beijing 
and Tianjin are also municipalities directly under the central government’s jurisdiction, and there is a degree 
of big city siphon effect in the development process. According to economic geography research, the siphoning 
effect of large cities has both positive and negative externalities. Its positive externality lies in the fact that by 
absorbing the production factors of the cities in the surrounding areas to flow into the core cities, the develop-
ment of the core cities will be promoted, and then the development of the surrounding areas will be promoted 
through the spillover effect, the pressure on resources in the surrounding areas will be relieved, and it will help 
to improve the ecological environment of the surrounding areas. The negative externality occurs because the 
core city absorbs a large number of production factors from the surrounding cities, inhibiting their development 
and forming the core city’s centripetal  force75, resulting in a relatively high average level of the urban economic 
index. As far as Guangzhou and Shenzhen are concerned, since China’s accession to the WTO in 2001, due to 
their geographical advantages and the rapid development of infrastructure such as transportation and road 
networks, they have become new platforms for China’s opening up to the outside world, enhancing the global 
differences. The circulation of capital, technology, labor population, knowledge, etc. between  cities76. In the 
context of globalization and regional integration, its ability to attract foreign investment has been continuously 

Figure 4.  Trend of the economic index in typical cities in China.
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enhanced, attracting many high-tech professionals and enterprises from all over the world, improving the city’s 
technological innovation level and total factor productivity, and driving The development of many high value-
added and knowledge-intensive industries has promoted the continuous upgrading of the industrial  structure77, 
and the urban economy has also been fully developed. In 2016, Chinese “Thirteenth Five-Year Plan” proposed 
the construction of the Guangdong-Hong Kong-Macao Greater Bay Area, forming a core triangular structure 
consisting of Guangzhou, Shenzhen, and Hong Kong, seeking new drivers of economic growth through new 
functional divisions, to further promote the economic development of Guangzhou and Shenzhen, and gradually 
narrow the gap with Shanghai and Beijing..

In addition, typical cities in Northwest China represented by Lanzhou (0.021), Yinchuan (0.010), and Urumqi 
(0.033) have average growth rates of 12.4%, 32.3%, and 14.7%, respectively. However, compared with other cit-
ies, there is still a certain gap in the absolute value of its economic index. This phenomenon is mainly due to the 
relatively poor carrying capacity of resources and the environment in western China.The carrying capacity of 
resources and environment determines the population density of a region to a certain extent, and also determines 
the adequacy of production factors in a  region78. As far as Northwest China is concerned, its resource-carrying 
capacity is relatively weak, resulting in insufficient production factors compared with the eastern coastal areas, 
so the upper limit of its economic development is lower, which also explains why the economic indexes of these 
cities are relatively low. There is a good growth rate, but the absolute value level is lower than the reasons behind 
the results of the cities in the eastern coastal areas.

Analysis of environmental subsystem measurement results. Before 2013, the ecological environ-
ment quality of each city did not change significantly. The state of the environment has improved. The environ-
mental conditions of typical southern Chinese coastal cities are generally better than those of other regions, 
whereas the environmental quality of cities in central China is relatively poor, forming a spatial development 
trend of “central subsidence” (Fig. 5), for example, Wuhan and Zhengzhou City.The main reason for this result 
is that the transformation of traditional industries in Central China has not yet been completed, resulting in a 
relatively low level of rationalization and upgrading of the industrial structure in this  region79, which leads to the 

Table 2.  Economic subsystem measure results.

City 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 AVG.

Shenyang 0.082 0.124 0.137 0.129 0.131 0.144 0.156 0.164 0.128 0.118 0.102 0.108 0.127

Harbin 0.025 0.031 0.038 0.043 0.050 0.058 0.069 0.077 0.085 0.099 0.107 0.113 0.066

Changchun 0.039 0.046 0.053 0.038 0.045 0.056 0.092 0.107 0.118 0.127 0.156 0.141 0.085

Beijing 0.200 0.237 0.272 0.300 0.340 0.396 0.435 0.469 0.506 0.595 0.640 0.838 0.436

Tianjin 0.125 0.152 0.193 0.231 0.280 0.335 0.382 0.426 0.472 0.536 0.647 0.439 0.352

Shijiazhuang 0.016 0.017 0.021 0.021 0.023 0.029 0.036 0.041 0.057 0.062 0.069 0.075 0.039

Taiyuan 0.022 0.018 0.022 0.024 0.029 0.036 0.042 0.045 0.049 0.051 0.053 0.060 0.038

Hohhot 0.014 0.017 0.020 0.025 0.026 0.032 0.033 0.039 0.041 0.044 0.048 0.040 0.032

Shanghai 0.284 0.332 0.379 0.405 0.449 0.505 0.555 0.600 0.653 0.707 0.769 0.762 0.533

Nanjing 0.060 0.074 0.084 0.090 0.107 0.132 0.153 0.177 0.185 0.203 0.222 0.245 0.144

Hangzhou 0.075 0.091 0.103 0.117 0.134 0.150 0.162 0.173 0.204 0.231 0.257 0.281 0.165

Hefei 0.021 0.030 0.035 0.034 0.047 0.060 0.064 0.073 0.083 0.093 0.106 0.118 0.064

Jinan 0.033 0.037 0.045 0.050 0.061 0.069 0.074 0.083 0.092 0.099 0.121 0.133 0.075

Nanchang 0.027 0.031 0.034 0.038 0.048 0.055 0.063 0.070 0.077 0.079 0.090 0.106 0.060

Fuzhou 0.020 0.023 0.029 0.033 0.039 0.046 0.052 0.059 0.066 0.073 0.081 0.100 0.052

Guangzhou 0.128 0.147 0.164 0.180 0.208 0.236 0.257 0.282 0.322 0.346 0.370 0.403 0.254

Nanning 0.009 0.012 0.020 0.019 0.024 0.030 0.034 0.040 0.045 0.049 0.054 0.065 0.033

Shenzhen 0.137 0.158 0.177 0.186 0.214 0.251 0.280 0.311 0.346 0.395 0.440 0.486 0.282

Haikou 0.011 0.012 0.012 0.014 0.016 0.012 0.015 0.017 0.018 0.020 0.021 0.023 0.016

Zhengzhou 0.023 0.032 0.040 0.046 0.056 0.081 0.094 0.102 0.115 0.126 0.141 0.153 0.084

Wuhan 0.062 0.071 0.083 0.095 0.110 0.135 0.159 0.215 0.207 0.235 0.267 0.332 0.164

Changsha 0.034 0.041 0.050 0.059 0.068 0.087 0.099 0.111 0.125 0.140 0.155 0.170 0.095

Chengdu 0.056 0.049 0.072 0.085 0.127 0.161 0.200 0.245 0.224 0.229 0.234 0.303 0.166

Chongqing 0.052 0.066 0.097 0.132 0.185 0.274 0.290 0.298 0.328 0.361 0.409 0.411 0.242

Kunming 0.015 0.019 0.025 0.030 0.037 0.047 0.057 0.067 0.074 0.079 0.073 0.083 0.051

Guiyang 0.006 0.007 0.009 0.012 0.015 0.021 0.028 0.035 0.042 0.050 0.055 0.061 0.028

Xi’an 0.030 0.034 0.043 0.049 0.060 0.074 0.086 0.101 0.116 0.130 0.144 0.177 0.087

Lanzhou 0.007 0.008 0.010 0.011 0.013 0.017 0.022 0.025 0.029 0.032 0.036 0.039 0.021

Yinchuan 0.001 0.001 0.003 0.004 0.006 0.010 0.012 0.014 0.016 0.018 0.019 0.021 0.010

Urumqi 0.008 0.012 0.016 0.018 0.023 0.032 0.038 0.043 0.049 0.053 0.050 0.056 0.033
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impact of energy-intensive industries on cities. The level of environmental pollution has increased, affecting the 
city’s overall environmental quality.

According to the results in Table 3, it is found that the typical urban environment across the country has 
improved to a certain extent between 2006 and 2017. As of 2017, the top five cities with the average environ-
mental index are Haikou (0.978), Kunming (0.886), Shenzhen (0.885), Fuzhou (0.876), and Guiyang (0.853). It 
shows that the ecological environment of these five cities has significantly improved in the past 15 years. When 
combined with the evaluation results of the city’s comprehensive level of economic development in Sect. 5.2, 
Shenzhen’s ranking in both economic and environmental aspects is very high, and this result is also consistent 
with Shenzhen’s policies and the city’s reasonableness. The planning and the adjustment of the industrial structure 
are inextricably linked. The Shenzhen Municipal Government worked hard to increase the proportion of tertiary 
industry in the municipal area from 47.42% in 2006 to 2017.

Analysis of coupling coordination degree results. To further explore the impact mechanism among 
urban low-carbon level, urban economic development, and urban ecological environment, this research estab-
lishes a low-carbon-economic-environment multi-coupling coordination model for 30 typical cities. By measur-
ing the low-carbon-economic-environment index coupling coordination degree, low-carbon-economic index 
coupling coordination degree, and low-carbon-environment index coupling coordination degree, and referring 
to previous  studies80, the coupling coordination degree is divided into five The intervals are poor coordination 
(0 ≤ D ≤ 0.2), weak coordination (0.2≤ D ≤0.4), basic coordination (0.4 ≤ D ≤ 0.6), good coordination (0.6 ≤ D 
≤ 0.8), excellent coordination (0.8 ≤ D ≤ 1.0), to conduct in-depth exploration and analysis on the mechanism 
of urban low-carbon level impact.

Except for Haikou City, most cities’ low-carbon-economic-environment index coupling coordination shows 
an upward trend at different levels. Table 4 shows the calculation results of the low-carbon-economic-environ-
ment index coupling coordination degree of 30 typical cities in China from 2006 to 2017. From the standpoint 
of spatial change characteristics, cities with high coupling and coordination of low-carbon-economic-envi-
ronment indexes are primarily concentrated in four urban agglomerations, namely the Beijing-Tianjin-Hebei 
urban agglomeration, the Yangtze River Delta urban agglomeration, the Pearl River Delta urban agglomeration, 
and the Chengdu-Chongqing urban agglomeration (see Fig. 6). In terms of time characteristics, only the typi-
cal city coupling coordination degree of the Beijing-Tianjin-Hebei urban agglomeration, Yangtze River Delta 
urban agglomeration, and Pearl River Delta urban agglomeration were at the stage of good coupling in 2006, 
while the remaining regions were essentially between weak coupling and basic coupling. By 2010, the coupling 
coordination between Chengdu and Chongqing had reached a positive coupling, indicating that the economic 
development of Chengdu and Chongqing has gradually decreased its reliance on carbon-intensive industries, 
and the economic focus has gradually shifted to the tertiary industry, primarily the service industry, resulting in 
a decrease in total emissions of carbon dioxide and other industrial pollutants in the cities. As a result, the urban 
environment has significantly improved.In addition, from the results of coupling coordination in 2013 and 2017, 
the Beijing-Tianjin-Hebei urban agglomeration has driven the coordinated development of typical cities in the 
northeast region to the north, while the Yangtze River Delta urban agglomeration and the Chengdu-Chongqing 

Figure 5.  Trend of the environmental index in typical cities in China.
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urban agglomeration have positively influenced the typical cities in central China, which are in the middle of 
the Yangtze River economic belt, through the Yangtze River. And the Pearl River Delta region is driving the 
coordinated development of Guangxi province.The main reason for this phenomenon is that, with the change of 
the Chinese government’s goal of economic growth from high growth rate to high quality, some industries with 
high energy consumption and low efficiency have been eliminated one after another, and the transformation and 
upgrading of industries through technological innovation have changed the industrial structure, optimized the 
allocation and efficiency of factor markets, and produced technological spillover effects on cities in the surround-
ing areas while developing itself, driving the technological progress and industrial structure upgrading in other 
surrounding areas, thus also making the coupling and coordination of the low-carbon-economic-environment 
multiple systems in the surrounding areas tend to be good .

Based on the results of the coupling coordination degree, combined with the evaluation results of the low-
carbon subsystem and economic subsystem, this research makes a judgment on the role mechanism between 
urban carbon emission and economic development. On the one hand, the southeast region is generally better 
than the northwest region in terms of spatial distribution, and this result is primarily because the economies of 
most cities in the southeast region are better than those of the northwest region. On the other hand, the eco-
nomic development of coastal cities in East China has gradually shifted away from the dependence on energy-
consuming industries, which is because many high-tech industries have gradually moved to the coastal cities in 
East China, and these enterprises are characterized by high output value, low pollution, and high technological 
innovation capacity, etc. More and more urban real enterprises will transform in this direction in the future, 
which is an inevitable trend (Fig. 7). As for the three cities in Northeast China, they still rely on the heavy indus-
trial development of the old Northeast industrial zone in the past 15 years, and the coupling coordination of their 
low-carbon-economic indexes has been at the basic coupling level, which needs to be highly emphasized by the 
authorities concerned in this regard. The industrial structure of the Northeast has been one of the core issues 
of concern and discussion in academia and society, and its internal relationships are intricate and complex. In 
terms of results alone, the core driver of economic development in the Northeast is still a carbon-intensive heavy 
industry, and it will take some time to achieve high-quality development. It is worth noting that in the early part 
of this century, Chinese economic growth model relied heavily on investment, and local governments often used 

Table 3.  environmental subsystem measure results.

City 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 AVG.

Shenyang 0.718 0.721 0.703 0.750 0.766 0.728 0.754 0.731 0.654 0.678 0.795 0.807 0.734

Harbin 0.813 0.826 0.805 0.852 0.855 0.780 0.798 0.731 0.671 0.757 0.856 0.829 0.798

Changchun 0.784 0.772 0.756 0.797 0.750 0.673 0.768 0.718 0.710 0.692 0.837 0.817 0.756

Beijing 0.691 0.696 0.709 0.689 0.679 0.678 0.708 0.683 0.687 0.733 0.775 0.824 0.713

Tianjin 0.538 0.551 0.565 0.569 0.588 0.560 0.592 0.555 0.506 0.595 0.650 0.700 0.581

Shijiazhuang 0.487 0.499 0.582 0.590 0.573 0.489 0.491 0.441 0.466 0.563 0.610 0.667 0.538

Taiyuan 0.720 0.749 0.779 0.796 0.768 0.711 0.765 0.778 0.774 0.817 0.836 0.823 0.776

Hohhot 0.827 0.881 0.882 0.876 0.865 0.848 0.863 0.841 0.812 0.862 0.816 0.767 0.845

Shanghai 0.591 0.591 0.618 0.641 0.681 0.639 0.655 0.607 0.568 0.590 0.696 0.776 0.638

Nanjing 0.630 0.626 0.634 0.647 0.660 0.682 0.713 0.652 0.608 0.659 0.742 0.781 0.670

Hangzhou 0.585 0.578 0.576 0.571 0.582 0.669 0.710 0.707 0.676 0.734 0.801 0.825 0.668

Hefei 0.761 0.731 0.741 0.737 0.744 0.728 0.755 0.714 0.639 0.705 0.798 0.793 0.737

Jinan 0.642 0.654 0.673 0.669 0.681 0.606 0.645 0.642 0.657 0.594 0.670 0.718 0.654

Nanchang 0.802 0.794 0.797 0.810 0.817 0.779 0.804 0.802 0.800 0.842 0.835 0.845 0.811

Fuzhou 0.892 0.896 0.901 0.911 0.921 0.880 0.887 0.882 0.781 0.811 0.858 0.890 0.876

Guangzhou 0.772 0.773 0.775 0.771 0.790 0.769 0.797 0.818 0.848 0.896 0.918 0.908 0.820

Nanning 0.759 0.774 0.777 0.829 0.830 0.787 0.795 0.793 0.819 0.859 0.903 0.893 0.818

Shenzhen 0.860 0.852 0.859 0.865 0.898 0.848 0.861 0.862 0.899 0.931 0.946 0.936 0.885

Haikou 0.964 0.959 0.949 0.983 1.000 0.946 0.994 0.975 0.984 0.993 0.997 0.993 0.978

Zhengzhou 0.530 0.549 0.620 0.632 0.638 0.549 0.588 0.594 0.612 0.587 0.701 0.727 0.611

Wuhan 0.670 0.658 0.642 0.654 0.658 0.634 0.680 0.644 0.660 0.700 0.747 0.767 0.676

Changsha 0.769 0.766 0.735 0.761 0.768 0.746 0.757 0.763 0.751 0.811 0.846 0.843 0.776

Chengdu 0.670 0.695 0.686 0.686 0.700 0.736 0.747 0.710 0.775 0.802 0.803 0.829 0.737

Chongqing 0.359 0.406 0.418 0.430 0.485 0.455 0.479 0.471 0.461 0.496 0.710 0.770 0.495

Kunming 0.897 0.901 0.903 0.914 0.912 0.727 0.845 0.886 0.906 0.920 0.916 0.910 0.886

Guiyang 0.828 0.838 0.838 0.859 0.856 0.839 0.840 0.840 0.825 0.873 0.891 0.910 0.853

Xi’an 0.732 0.737 0.770 0.771 0.758 0.677 0.738 0.769 0.801 0.836 0.802 0.808 0.767

Lanzhou 0.812 0.820 0.823 0.829 0.826 0.783 0.805 0.789 0.763 0.817 0.864 0.870 0.817

Yinchuan 0.809 0.835 0.854 0.860 0.821 0.809 0.809 0.824 0.843 0.843 0.857 0.866 0.836

Urumqi 0.800 0.794 0.802 0.804 0.813 0.761 0.769 0.777 0.766 0.807 0.781 0.772 0.787
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land finance to attract investment to further increase economic growth, thus investing large amounts of capital 
in infrastructure construction, creating a “multiplier effect” that, although it had a significant short-term impact 
on Chinese economic Although this had a significant impact on Chinese economic growth rate in the short term, 
the infrastructure boom exacerbated overcapacity and led to the so-called “sloppy” economic growth, which led 
to the coordination of economic development and low levels of urban carbon emissions in most Chinese cities 
during that period. After the 12th Five-Year Plan, Chinese economic development began to shift gears and speed, 
eliminating backward production capacity, gradually focusing on consumption-driven economic development, 
and further optimizing the industrial structure, which led to a gradual shift of the low-carbon-economic index 
coupling coordination to a high level of coordination in most cities from 2013 onwards (Table 5 ).

Furthermore, the improvement of urban low-carbon levels cannot be separated from the management of 
the urban ecological environment; urban low-carbon development can promote the improvement of the urban 
ecological environment, while the quality improvement of the ecological environment will counteract the urban 
low-carbon level, and the two affect and interact with each other. Most cities’ average low-carbon-environment 
index coupling coordination level is generally high (Fig. 8). The average level of each city is calculated based on 
the results in Table 6, and it is discovered that Haikou (0.982) and Shenzhen (0.945) have the highest coupling 
coordination level of low-carbon-environment index, indicating that the ecological environment of these two 

Figure 6.  CCD of low-carbon-economic-environment index.
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cities is at a better level while achieving low-carbon development in the cities. During the 2013–2015 period, 
Shenzhen actively responded to the national 12th Five-Year Plan by releasing activities such as “Pengcheng Waste 
Reduction,” optimizing and adjusting the industrial structure, vigorously developing a clean energy structure 
strategy, and gradually guiding the change of market investment direction. The market investment direction has 
shifted so that the city of Shenzhen can ensure effective carbon emission control while also considering enterprise 
development. In Haikou, forested areas account for approximately 42% of the total land area, the tertiary industry 
is dominant, and there are few large heavy industrial enterprises. For a long time, Haikou has had a high level 
of coupling coordination of low-carbon and environmental indices.

Analysis of core driver results. Total industrial sulfur dioxide emissions, foreign direct investment (FDI), 
and gross regional product (GDP) are the three factors with the greatest influence on the low-carbon level of 
cities in the economic and environmental subsystems, respectively, according to the overall results, with total 
industrial sulfur dioxide emissions being more important to total urban carbon emissions than the other two 
factors, indicating a strong correlation between the two (Fig. 9). On the one hand, industrial sulfur dioxide, 
a major air pollutant, is produced by the industrial  sector81, particularly by some energy-intensive secondary 
industries; on the other hand, due to factor endowments, the current energy consumption structure in China is 

Figure 7.  CCD of low-carbon-economic index.
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still dominated by traditional fossil energy. However, due to factor endowments, the current energy consump-
tion structure in China is still dominated by traditional fossil energy, and traditional fossil energy fuels are the 
main contributors to total urban CO2  emissions82, so energy-consuming intensive industries are also one of the 
important sources of urban CO2 emissions. In summary, traditional energy-intensive industries emit carbon 
dioxide into the atmosphere as well as sulfur dioxide gas during the mass production process, so there is a strong 
direct correlation between the two. For urban environmental conditions, an increase in total emissions of air 
pollutants such as sulfur dioxide will have a direct negative impact on the ecological quality of  cities83, so the pro-
portion of energy-intensive industries should be appropriately adjusted in tandem with economic development, 
and environmental regulations should be strengthened to help reduce pollutant emissions and thus improve 
ecological quality. Furthermore, foreign direct investment and regional economic output level are the primary 
drivers of total urban CO2 emissions, indicating that foreign investment and regional economic output level 
have a significant impact on cities’ low-carbon levels (the details will be discussed in the next section).

Discussion
According to the calculation results of the coupling coordination between the low-carbon level and the economic 
development level of 30 typical cities in China, as of 2017, the coupling and coordination level of the typical cities 
along the Yangtze River Economic Belt and the core cities of major urban agglomerations tends to be good. Most 

Figure 8.  CCD of low-carbon-environment index.



15

Vol.:(0123456789)

Scientific Reports |         (2023) 13:4533  | https://doi.org/10.1038/s41598-023-31590-z

www.nature.com/scientificreports/

typical cities’ low-carbon-economic coupling coordination level has increased since 2006. Due to the “extensive” 
development of the national economy in 2006, the low-carbon level of most typical cities in the country was still 
in conflict with the economy, and economic development would impede the city’s low-carbon level’s rise. But 
in the follow-up, with the transformation of national policies and the development of the urban economy to a 
certain scale, the low-carbon level and economic development of these typical cities gradually tend to be in good 
harmony, indicating that both are growing at the same high level. The relationship between the two shows a trend 
of rising first and then falling, which to some extent supports the “inverted U-shaped” relationship proposed by 
many scholars and the environmental Kuznets curve  hypothesis84,85.

The specific reasons for this phenomenon, in addition to the theoretical basis provided by the EKC hypoth-
esis, this research explains the inverted U-shaped relationship between the economy and carbon emissions of 
typical Chinese cities based on the “promotion tournament” theory. From the perspective of Chinese economy 
and government system, objectively, compared with other industries, carbon emission-intensive industries can 
rapidly increase regional economic output in a short period; subjectively, some local officials may be affected by “ 
Influenced by the “promoting tournament governance model”86,87, setting higher economic growth  indicators88, 
and investing a large number of production materials in industries that are used to increase the speed of economic 
development, so in terms of urban construction and economic development, The high degree of dependence 
on carbon emission-intensive industries will lead to an increase in the city’s total carbon emissions and reduce 
the city’s low-carbon level while the economic level is growing. In the later period, with the further expansion of 
the level of economic development and the government’s macro-control, the growth target of the local economy 
has shifted from high growth to high quality, which has eased the local enthusiasm for economic growth to a 
certain extent, and through technological innovation and other means Accelerate industrial innovation, eliminate 
outdated industries with high energy consumption and low production efficiency, optimize industrial structure 
and factor allocation methods, and improve the distribution efficiency of production materials, to gradually 
decouple economic growth from carbon emissions, and finally achieve a low-carbon-economic benign develop. 
It should be noted that the “promotion tournament” theory, the hypothesis that there is a relationship between 
economic growth and promotion, is currently controversial in Chinese academic circles, and some empirical 
studies have shown that there is no significant relationship between the  two89,90.

Table 4.  CCD of low-carbon-economic-environment index from 2006 to 2017.

City 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 AVG.

Shenyang 0.598 0.642 0.650 0.649 0.652 0.655 0.667 0.669 0.630 0.626 0.626 0.633 0.641

Harbin 0.504 0.528 0.544 0.558 0.573 0.582 0.601 0.599 0.599 0.629 0.649 0.656 0.585

Changchun 0.531 0.547 0.560 0.533 0.540 0.550 0.611 0.623 0.630 0.640 0.683 0.666 0.593

Beijing 0.692 0.712 0.730 0.736 0.748 0.772 0.788 0.801 0.812 0.845 0.861 0.914 0.784

Tianjin 0.601 0.623 0.651 0.666 0.689 0.700 0.721 0.722 0.726 0.768 0.803 0.758 0.702

Shijiazhuang 0.397 0.400 0.427 0.425 0.425 0.430 0.447 0.448 0.502 0.529 0.548 0.565 0.462

Taiyuan 0.480 0.473 0.492 0.501 0.511 0.526 0.546 0.555 0.562 0.574 0.579 0.589 0.532

Hohhot 0.433 0.455 0.466 0.487 0.485 0.488 0.509 0.508 0.525 0.539 0.541 0.517 0.496

Shanghai 0.667 0.684 0.704 0.710 0.727 0.738 0.751 0.757 0.763 0.784 0.815 0.831 0.744

Nanjing 0.561 0.580 0.593 0.601 0.620 0.643 0.665 0.671 0.669 0.690 0.713 0.732 0.645

Hangzhou 0.574 0.591 0.601 0.613 0.629 0.656 0.671 0.678 0.694 0.720 0.743 0.759 0.661

Hefei 0.483 0.510 0.526 0.525 0.554 0.573 0.588 0.592 0.597 0.620 0.646 0.658 0.573

Jinan 0.502 0.513 0.534 0.543 0.562 0.565 0.578 0.588 0.602 0.601 0.635 0.652 0.573

Nanchang 0.513 0.526 0.533 0.544 0.568 0.574 0.592 0.600 0.611 0.623 0.635 0.653 0.581

Fuzhou 0.494 0.507 0.527 0.539 0.555 0.565 0.578 0.584 0.589 0.605 0.621 0.650 0.568

Guangzhou 0.662 0.677 0.689 0.698 0.716 0.727 0.741 0.755 0.778 0.796 0.807 0.818 0.739

Nanning 0.416 0.440 0.483 0.486 0.505 0.517 0.530 0.544 0.557 0.574 0.588 0.605 0.520

Shenzhen 0.690 0.706 0.720 0.726 0.747 0.759 0.775 0.784 0.809 0.833 0.850 0.863 0.772

Haikou 0.462 0.470 0.471 0.486 0.499 0.472 0.490 0.499 0.509 0.515 0.520 0.529 0.493

Zhengzhou 0.445 0.474 0.505 0.520 0.540 0.559 0.582 0.595 0.610 0.619 0.648 0.662 0.563

Wuhan 0.561 0.573 0.586 0.599 0.614 0.630 0.655 0.681 0.682 0.706 0.728 0.760 0.648

Changsha 0.520 0.539 0.555 0.574 0.587 0.607 0.622 0.630 0.644 0.668 0.683 0.692 0.610

Chengdu 0.549 0.541 0.578 0.592 0.631 0.663 0.690 0.706 0.709 0.720 0.722 0.758 0.655

Chongqing 0.472 0.504 0.542 0.571 0.615 0.650 0.661 0.664 0.672 0.697 0.754 0.762 0.630

Kunming 0.472 0.492 0.513 0.530 0.551 0.550 0.585 0.603 0.618 0.628 0.619 0.631 0.566

Guiyang 0.368 0.390 0.408 0.426 0.444 0.474 0.503 0.521 0.541 0.568 0.577 0.590 0.484

Xi’an 0.517 0.525 0.553 0.565 0.584 0.590 0.614 0.636 0.655 0.675 0.682 0.707 0.609

Lanzhou 0.394 0.411 0.423 0.433 0.442 0.461 0.488 0.497 0.508 0.524 0.540 0.550 0.473

Yinchuan 0.257 0.288 0.326 0.360 0.379 0.397 0.412 0.414 0.429 0.445 0.452 0.453 0.384

Urumqi 0.424 0.450 0.476 0.483 0.506 0.526 0.544 0.553 0.567 0.581 0.574 0.582 0.522
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Furthermore, foreign direct investment is an important factor for typical cities in other regions of China, 
except for the western region, in the result analysis of the core driving factors of low-carbon levels in typical cities 
in China. As can be seen, foreign investment plays a significant role in improving the low-carbon level of typical 
Chinese cities. Foreign direct investment’s impact on carbon emissions has long been a hot topic in international 
academic circles. It is widely assumed that the impact of foreign direct investment on the host country’s environ-
ment has two sides. On the positive side, according to the pollution halo  hypothesis91, foreign direct investment 
can promote the improvement of local green total factor productivity through the host country’s spillover effect 
of technology and  knowledge92, thereby assisting the host country in improving its ecological environment. On 
the negative side, it is based on the Pollution Paradise  Hypothesis93, which holds that some developed countries 
transfer high energy consumption and high pollution industries to some developing countries with relatively 
low environmental regulations through foreign direct investment, thereby reducing their pollution  emissions94. 
According to the above hypotheses, the direction of foreign direct investment’s impact on the environment is 
primarily determined by the source and inflow channel of foreign direct investment. If the source of foreign 
direct investment is primarily knowledge-intensive industries based on advanced technology, the foreign direct 
investment will benefit the host country’s environmental conditions, and vice versa.

Regarding the influence mechanism between carbon emissions and foreign investment in typical Chinese 
cities, the results show that foreign direct investment has a higher degree of influence on the low-carbon level of 
cities, in addition to the indicators related to industrial pollutant emissions. Although Chinese typical cities are 
more likely to attract foreign investment because of their high-quality infrastructure conditions, stable and good 
market environment, and sufficient production materials. However, since China was still a developing country in 
this period, it reduced its investment in urban environmental regulation and relaxed the environmental regula-
tion of overseas investment in the early stage of opening up to the outside world, which led to a certain degree 
of increase in total urban carbon emissions and environmental pollution. Therefore, FDI is still an important 
driver for the low-carbon level of typical cities in the eastern region. In addition, from the results, GDP is still the 
core driver of low-carbon levels in cities during this period, indicating that the dependence of cities’ economic 
growth on carbon-intensive industries is still high and the decoupling between their cities’ carbon emission level 
and economic growth has not been achieved.

Table 5.  CCD of low-carbon-economic index from 2006 to 2017.

City 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 AVG.

Shenyang 0.503 0.558 0.573 0.562 0.562 0.574 0.585 0.592 0.556 0.546 0.524 0.532 0.555

Harbin 0.377 0.402 0.424 0.434 0.451 0.473 0.493 0.501 0.512 0.535 0.544 0.556 0.475

Changchun 0.411 0.431 0.449 0.411 0.426 0.450 0.510 0.534 0.544 0.561 0.590 0.571 0.491

Beijing 0.631 0.658 0.680 0.693 0.712 0.747 0.763 0.788 0.803 0.839 0.852 0.917 0.757

Tianjin 0.543 0.570 0.605 0.627 0.654 0.677 0.698 0.710 0.733 0.767 0.802 0.722 0.676

Shijiazhuang 0.300 0.301 0.320 0.316 0.318 0.337 0.357 0.368 0.430 0.444 0.458 0.470 0.368

Taiyuan 0.361 0.349 0.367 0.376 0.391 0.416 0.432 0.441 0.449 0.457 0.461 0.475 0.415

Hohhot 0.299 0.317 0.328 0.351 0.350 0.356 0.377 0.379 0.401 0.411 0.419 0.397 0.365

Shanghai 0.621 0.645 0.666 0.668 0.683 0.710 0.724 0.747 0.767 0.792 0.805 0.806 0.720

Nanjing 0.472 0.496 0.511 0.520 0.542 0.568 0.589 0.612 0.620 0.636 0.649 0.666 0.573

Hangzhou 0.497 0.521 0.535 0.553 0.571 0.587 0.598 0.608 0.638 0.661 0.677 0.694 0.595

Hefei 0.359 0.394 0.411 0.411 0.444 0.470 0.484 0.496 0.516 0.533 0.549 0.565 0.469

Jinan 0.397 0.409 0.430 0.443 0.464 0.481 0.490 0.504 0.519 0.530 0.559 0.572 0.483

Nanchang 0.388 0.404 0.412 0.423 0.450 0.463 0.482 0.491 0.505 0.513 0.529 0.550 0.467

Fuzhou 0.357 0.371 0.393 0.405 0.423 0.438 0.453 0.461 0.481 0.496 0.509 0.540 0.444

Guangzhou 0.575 0.593 0.610 0.622 0.643 0.662 0.675 0.690 0.715 0.730 0.741 0.758 0.668

Nanning 0.287 0.311 0.357 0.355 0.376 0.394 0.409 0.425 0.437 0.452 0.462 0.484 0.396

Shenzhen 0.595 0.617 0.634 0.641 0.663 0.689 0.708 0.720 0.747 0.774 0.794 0.816 0.700

Haikou 0.317 0.325 0.328 0.340 0.352 0.329 0.343 0.354 0.364 0.371 0.375 0.385 0.349

Zhengzhou 0.348 0.379 0.404 0.421 0.444 0.486 0.507 0.523 0.539 0.556 0.570 0.584 0.480

Wuhan 0.465 0.481 0.501 0.516 0.534 0.561 0.584 0.628 0.625 0.649 0.668 0.708 0.577

Changsha 0.401 0.423 0.447 0.466 0.481 0.509 0.525 0.535 0.555 0.575 0.589 0.600 0.509

Chengdu 0.450 0.436 0.482 0.501 0.549 0.583 0.617 0.647 0.637 0.646 0.649 0.692 0.574

Chongqing 0.419 0.449 0.496 0.534 0.578 0.637 0.645 0.653 0.668 0.693 0.713 0.710 0.600

Kunming 0.333 0.354 0.377 0.395 0.418 0.442 0.467 0.482 0.497 0.508 0.498 0.513 0.440

Guiyang 0.234 0.255 0.273 0.289 0.308 0.341 0.372 0.392 0.418 0.442 0.451 0.464 0.353

Xi’an 0.402 0.410 0.439 0.453 0.478 0.500 0.519 0.541 0.560 0.580 0.595 0.627 0.509

Lanzhou 0.261 0.277 0.288 0.299 0.308 0.332 0.359 0.372 0.387 0.399 0.412 0.422 0.343

Yinchuan 0.137 0.162 0.194 0.224 0.245 0.263 0.279 0.280 0.293 0.310 0.315 0.316 0.252

Urumqi 0.291 0.319 0.347 0.355 0.379 0.409 0.428 0.438 0.456 0.468 0.462 0.473 0.402
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Table 6.  CCD of low-carbon-environment index from 2006 to 2017.

City 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 AVG.

Shenyang 0.864 0.867 0.861 0.872 0.874 0.860 0.867 0.860 0.836 0.846 0.876 0.880 0.864

Harbin 0.902 0.910 0.907 0.917 0.917 0.904 0.908 0.878 0.859 0.890 0.916 0.915 0.902

Changchun 0.870 0.873 0.873 0.879 0.863 0.839 0.866 0.858 0.853 0.858 0.898 0.886 0.868

Beijing 0.860 0.861 0.865 0.853 0.847 0.855 0.862 0.865 0.867 0.884 0.894 0.913 0.869

Tianjin 0.782 0.787 0.792 0.785 0.787 0.770 0.779 0.759 0.746 0.787 0.802 0.811 0.782

Shijiazhuang 0.698 0.707 0.736 0.726 0.713 0.681 0.685 0.667 0.727 0.771 0.790 0.810 0.726

Taiyuan 0.868 0.883 0.893 0.898 0.889 0.875 0.893 0.896 0.897 0.914 0.918 0.915 0.895

Hohhot 0.834 0.849 0.845 0.856 0.839 0.808 0.850 0.817 0.845 0.864 0.848 0.829 0.840

Shanghai 0.745 0.745 0.752 0.749 0.758 0.752 0.755 0.749 0.741 0.757 0.785 0.810 0.758

Nanjing 0.849 0.847 0.848 0.850 0.854 0.856 0.866 0.847 0.834 0.853 0.878 0.889 0.856

Hangzhou 0.829 0.827 0.824 0.822 0.824 0.853 0.865 0.865 0.861 0.882 0.900 0.908 0.855

Hefei 0.884 0.878 0.882 0.888 0.884 0.878 0.895 0.877 0.861 0.884 0.911 0.910 0.886

Jinan 0.836 0.840 0.848 0.847 0.850 0.827 0.841 0.841 0.850 0.829 0.857 0.873 0.845

Nanchang 0.903 0.905 0.905 0.908 0.912 0.899 0.910 0.902 0.907 0.927 0.924 0.924 0.911

Fuzhou 0.919 0.925 0.927 0.930 0.931 0.916 0.919 0.907 0.892 0.906 0.918 0.932 0.919

Guangzhou 0.901 0.899 0.899 0.894 0.897 0.889 0.896 0.901 0.911 0.926 0.930 0.929 0.906

Nanning 0.881 0.890 0.896 0.911 0.911 0.895 0.899 0.896 0.904 0.923 0.936 0.932 0.906

Shenzhen 0.943 0.940 0.941 0.941 0.948 0.934 0.937 0.930 0.949 0.959 0.962 0.961 0.945

Haikou 0.977 0.977 0.975 0.985 0.990 0.973 0.988 0.980 0.984 0.986 0.986 0.982 0.982

Zhengzhou 0.763 0.774 0.802 0.809 0.815 0.784 0.802 0.811 0.819 0.817 0.852 0.862 0.809

Wuhan 0.842 0.839 0.836 0.836 0.836 0.826 0.840 0.826 0.835 0.853 0.864 0.872 0.842

Changsha 0.875 0.876 0.873 0.881 0.880 0.870 0.873 0.867 0.869 0.893 0.900 0.896 0.880

Chengdu 0.837 0.846 0.848 0.844 0.840 0.852 0.857 0.844 0.868 0.884 0.883 0.889 0.858

Chongqing 0.681 0.705 0.714 0.717 0.735 0.723 0.731 0.732 0.728 0.750 0.819 0.830 0.739

Kunming 0.923 0.927 0.927 0.931 0.930 0.878 0.914 0.919 0.930 0.939 0.937 0.933 0.924

Guiyang 0.816 0.829 0.836 0.846 0.849 0.855 0.868 0.869 0.878 0.902 0.907 0.911 0.864

Xi’an 0.889 0.889 0.905 0.905 0.900 0.870 0.889 0.898 0.909 0.924 0.914 0.916 0.901

Lanzhou 0.869 0.873 0.878 0.878 0.873 0.865 0.883 0.879 0.878 0.901 0.914 0.916 0.884

Yinchuan 0.806 0.814 0.832 0.847 0.830 0.792 0.805 0.773 0.795 0.815 0.822 0.803 0.811

Urumqi 0.913 0.916 0.922 0.920 0.922 0.901 0.907 0.901 0.905 0.923 0.917 0.913 0.913

Figure 9.  Importance of indicators.



18

Vol:.(1234567890)

Scientific Reports |         (2023) 13:4533  | https://doi.org/10.1038/s41598-023-31590-z

www.nature.com/scientificreports/

Conclusion
This study constructs a set of comprehensive evaluation index systems of low-carbon city multi-system from three 
dimensions of urban carbon emission, economy, and environment, measures and analyzes the trend of the low-
carbon level of cities, and studies the influence mechanism of the multi-coupled system, aiming to find the current 
deficiencies in the construction of low-carbon cities in China and make suggestions for the next construction 
of low-carbon cities in China. From the analysis results, the percentage of cities with the low-carbon level in an 
upward or downward trend is relatively small, and the current trend of low-carbon levels in nearly two-thirds of 
the cities is still not significant. At the same time, in terms of the coupling and coordination between low-carbon 
levels and economic development, the temporal trend shows an increasing trend year by year, and the relationship 
between the two is in line with the “inverted U-shaped” characteristics. Spatially, it shows that the core cities of 
large urban agglomerations are at a high level, while the surrounding cities are at a relatively low level, forming 
a siphon effect of large cities, which has a negative externality to the coordinated development of typical cities 
around urban agglomerations to a certain extent. In addition, based on the analysis of the core drivers of low-
carbon cities, we should continue to support the development of enterprises with high technological innovation 
capabilities, adjust the allocation of resources, give full play to the market regulation mechanism, and improve the 
regulatory system for foreign direct investment to guide more capital flows to low-carbon sustainable industries, 
to better accomplish the goal of low-carbon city construction and promote high-quality economic development.

Data availability
The datasets used and analysed during the current study available from the corresponding author on reasonable 
request.
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