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Nonreciprocal forces enable 
cold‑to‑hot heat transfer 
between nanoparticles
Sarah A. M. Loos 1,2*, Saeed Arabha 3,4, Ali Rajabpour 4,5, Ali Hassanali 2 & Édgar Roldán 2

We study the heat transfer between two nanoparticles held at different temperatures that interact 
through nonreciprocal forces, by combining molecular dynamics simulations with stochastic 
thermodynamics. Our simulations reveal that it is possible to construct nano refrigerators that 
generate a net heat transfer from a cold to a hot reservoir at the expense of power exerted by the 
nonreciprocal forces. Applying concepts from stochastic thermodynamics to a minimal underdamped 
Langevin model, we derive exact analytical expressions predictions for the fluctuations of work, 
heat, and efficiency, which reproduce thermodynamic quantities extracted from the molecular 
dynamics simulations. The theory only involves a single unknown parameter, namely an effective 
friction coefficient, which we estimate fitting the results of the molecular dynamics simulation to our 
theoretical predictions. Using this framework, we also establish design principles which identify the 
minimal amount of entropy production that is needed to achieve a certain amount of uncertainty 
in the power fluctuations of our nano refrigerator. Taken together, our results shed light on how the 
direction and fluctuations of heat flows in natural and artificial nano machines can be accurately 
quantified and controlled by using nonreciprocal forces.

Experimental techniques in single-molecule optical trapping and biophysics allow to extract real-time infor-
mation of the state of a nanosystem with exquisite  precision1–3. Such information is commonly used to infer 
both thermodynamical and dynamical properties through data-analysis techniques. Alongside, as inspired by 
Maxwell’s demon thought experiment, information acquired from a nanosystem can be delivered into work by 
executing feedback-control  protocols4–8. In parallel to experimental progress, the development of stochastic 
thermodynamics (ST) over the last two decades provides a robust theoretical framework to describe accurately 
information-to-work transduction that takes into account nanoscale  fluctuations9–13. Combining stochastic ther-
modynamics and feedback-cooling techniques has attracted attention towards refrigerating capabilities of small 
systems under nonequilibrium  conditions14,15.

An important step to optimize the design of microscopic refrigerators is to bridge the gap between theoretical 
proposals and experiments through the powerful method of all-atoms simulations. Nonequilibrium Molecu-
lar Dynamics (MD) studies provide a suitable platform for the study of heat transfer and fluctuations at the 
 nanoscale16–20. However, little is known yet about the design and performance of information demons at the 
atomic scale. In particular, are there generic principles that constrain the forces needed to ensure a prescribed 
value for the heat transfer between two thermal baths interacting through nanoscopic objects? Is it possible to 
accurately control the net heat transfer between nanoparticles and their respective fluctuations by only applying 
non-conservative forces, i.e. forces that do not derive from a potential?

Among the broad class of non-conservative forces, nonreciprocal interactions (i.e. forces that violate Newton’s 
third law “actio=reactio”) have recently emerged as a topic of lively interest in statistical  physics21–25, revealing 
nontrivial physical consequences for the dynamical, mechanical and thermodynamic properties of many-body 
systems. For example, they introduce ‘odd elasticity’ in solids and soft  crystals26,27 or lead to the formation of 
travelling waves in binary fluid  mixtures21–23. In stochastic thermodynamics, recent research has revealed the 
potential of nonreciprocal forces in the design of artificial nano machines with efficient energetic  performance28. 
Inspired by these recent findings, herein we design atomistic MD simulations of trapped nanoparticles immersed 
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in thermal baths at different temperatures that interact through non-conservative, linear forces and that are 
nonreciprocal. A similar setup was realized experimentally very recently using optical  fields29. Here, we use 
nonreciprocal interactions to construct a nano refrigerator which under certain conditions, achieves a steady, net 
heat flow from the cold to the hot bath. Interestingly, we show that although the value of this net cold-to-hot heat 
flow does not fulfill Fourier’s law for thermal conduction, it is nonetheless in agreement with recent theoretical 
predictions from ST. A key advantage of our nano refrigerator design, relies on its simplicity as it only requires 
the usage of nonreciprocal forces acting on each of the nanoparticles. This represents a simplification with respect 
to previous approaches where heat flows from hot to cold could be achieved using velocity-dependent  feedback30 
or memory  registers31,32 as in Maxwell’s demons, or using nonlinear forces in athermal  environments33.

Our work establishes theoretical design principles that ensure a prescribed net heat flux in our MD simula-
tions that could be exported to realistic experimental scenarios with trapped  nanoparticles4,34–37. We also test 
fundamental principles governing the fluctuations of work and the coefficient of performance (COP), some of 
which follow from recently-established thermodynamic uncertainty relations tested here with realistic atomistic 
simulations of  nanoparticles38,39. These results push forward the synergistic combination of ST and MD beyond 
the application of fluctuation theorems in e.g. estimating free energies 40,41. In particular, our simulations made 
with parameters for realistic materials are a first step towards the engineered design of nanoparticle-based 
refrigerators powered by thermal fluctuations.

Results
Nano demon setup and MD simulations. Constructing an atomistic MD simulation that allows us to 
violate Newton’s third law and furthermore realize a nonreciprocal nano refrigerator, requires a highly uncon-
ventional setup in nonequilibrium MD studies. Specifically, we simulate two independent Argon baths that 
are kept thermostatted at different temperatures ( TC = 100 K and TH = 120 K). The cold and hot bath are in 
turn separated by a hard wall made of immobile copper particles (see Fig. 1). Within each bath, we immerse a 
copper-based spherical nanoparticle of radius 1.4nm . External nonreciprocal forces (sketched as a green demon 
in Fig. 1) are applied on the center of each nanoparticle through two forces, κC(XH−XC) and κH(XC−XH) on 
the nanoparticles immersed in the cold and hot baths respectively. Here XH and XC denote respectively the 
center-of-mass position of the particle in the hot and the particle in the cold bath, respectively. Such a setup 
could, in principle, be realized with the help of an external control scheme (e.g., using optical feedback) similar 
to previous  studies24,42. When κC  = κH , the introduced force is nonreciprocal, since the actio=reactio principle: 
κC(XH−XC)=− κH(XC−XH) is satisfied only when κC = κH . As we will see shortly, this nonreciprocal cou-
pling can lead for specific values κC/κH to a heat flow from the cold to the hot bath. We have further constrained 
the particle positions by introducing harmonic potentials (with stiffness κ ). The traps prevent the particles 
from hitting the walls, but are, in principle, not needed to construct the nano refrigerator, (i.e., we could also set 
κ = 0 ), as is evident from our analytical results introduced in the following. In all our MD simulations, we set 
the stiffness of the traps to the value κ = 1 eV/(nm)2 = 1.16kBTC/Å2 . We further fix κC = 10κ and vary κH.

Heat transfer from MD simulations. Our MD setup gives us direct access to thermodynamic quanti-
ties allowing for quantitative measurements of the heat transfer between the nanoparticles and their respective 
solvent baths. Specifically, we determined the total amount of energy change by extracting both the potential 
and kinetic energy of all bath molecules as a function of time which gives the total heat transferred by the cop-

Figure 1.  Sketch of the molecular dynamics (MD) simulation setup. Two copper nanoparticles (black and 
yellow spheres) each consisting of 186 atoms, are immersed in two Argon baths at different temperatures 
TC = 100K and TH = 120K . The nanoparticles are trapped with two static three-dimensional harmonic 
potentials (see black line for an illustration). A demon-like controller (green) exerts additional nonreciprocal 
forces to the two nanoparticles as follows. The demon measures the nanoparticles’ positions XC,XH and exerts 
the forces κC(XH − XC) to the nanoparticle in the cold bath and κH(XC − XH) to the nanoparticle in the hot 
bath, where in general κH  = κC rendering the demon forces nonreciprocal.
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per nanoparticles to both the cold and hot baths, denoted by dQC and dQH respectively. Integrating over the 
course of the MD simulation yields the QC and QH , which directly encodes the stochastic heat dissipated by the 
nanoparticle into the cold and hot bath respectively. Note that we use the sign convention that Q > 0 when net 
energy is dissipated from the nanoparticle to the bath and Q < 0 when it is absorbed by the nanoparticle from 
the bath. We estimate the heat dissipation rate Q̇C and Q̇H from the slope of a linear regression on the cumulative 
QC and QH over time.

With this protocol in hand, we begin by demonstrating how tuning the relative strength of κC and κH provides 
a microscopic mechanism to alter the direction of heat flow. Figure 2a illustrates QC and QH a situation where the 
effective coupling force on the hot particle is reduced as κH ≪ κC . In this case, we observe the canonical situation, 
where the nanoparticle-duet behaves as a heater, i.e. heat flows from the hot to the cold bath. On the other hand, 
by introducing an effectively enhanced coupling force experienced by the nanoparticle in the hot bath, there is a 
striking effect where the direction of the heat flow changes as seen in Fig. 2b—heat is now pumped from the cold 
to the hot bath creating a molecular-scale refrigerator. The preceding results from the MD simulations provide 
a powerful proof-of-concept on how nonreciprocal forces applied on two nanoparticles embedded in a solvent 
bath, can in principle be used to change both the rate and direction of heat flow.

Intuitively, by increasing κH , the demon tricks the hot particle into “seeing” that it was coupled to an even 
hotter particle, while the cold particle thinks it was coupled to an even colder particle, which results in a heat 
transfer from the cold to the hot bath. In the following, we will formulate and present a theory that rationalizes 
this intriguing phenomenon and makes a direct link between thermodynamic observables extracted from the 
MD simulations and stochastic thermodynamics.

Figure 2.  Heat flows Q measured in the MD simulations of the setup sketched in Fig. 1, for two different 
values of κH . (a) Heater Type-II: for κH = 0.17κC , heat flows from the hot bath to the nanoparticle in the right 
container and from the nanoparticle to the cold bath in the left container. (b) Refrigerator/Heat-pump: for 
κH = 4.80κC , heat flows from the cold bath to the nanoparticle in the left container and from the nanoparticle 
to the hot bath in the right container. Here, heat flows in the reverse direction to the temperature gradient, i.e., 
it is extracted from the cold bath and released into the hot bath through the two-nanoparticle system. Upper 
panels of (a, b) show sketches of the flows of heat and work, respectively. Middle panels show the cumulative heat 
as function of time from the MD simulations, dissipated into the cold bath ( QC , blue line) and from the hot bath 
( QH , red line). We use the convention Q > 0 when heat flows from the nanoparticle into the bath and Q < 0 
when heat flows from the bath to the nanoparticle. Black lines show linear fits used to obtain the heat rates. 
Lower panels display the stochastic work exerted on the nanoparticle in the cold bath ( WC , blue line), and on the 
nanoparticle in the hot bath ( WH , red line), and the total work given by their sum ( W = WC +WH , green line). 
The work is obtained from the MD simulations by measuring the center of mass positions of the nanoparticles, 
and evaluating the work using Eq. (8). Throughout, we used κC = 10κ = 11.6 kBTC/Å2 , TC = 100K and 
TH = 120K.
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Stochastic model. We employ a mesoscopic stochastic model to describe the nonequilibrium dynamics of 
the position and momentum fluctuations of the two-nanoparticle system in their thermal environments. To this 
aim, we describe at a coarse-grained level the dynamics of the x-components of the positions and velocities of the 
center of mass of the nanoparticles, XC and XH , by two coupled underdamped Langevin equations,

Here, m is the mass of each nanoparticle, and the coefficients κC , κH , κ have been defined before. Note that the 
dynamics is independent of the actual distance between both nanoparticles, which has therefore been excluded 
from the equations of motions (1). The stochastic forces ξC , ξH are independent Gaussian white noises with zero 
mean �ξC(t)� = �ξH(t)� = 0 modeling the thermal noise exerted by the Argon bath that surrounds each nano-
particle. Their autocorrelation functions are �ξj(t)ξl(t ′)� = 2kBTµγµ δjlδ(t − t ′) , where j, l ∈ {C,H} are indices 
denoting the hot or cold bath, δjl is Kroneckers’ delta, and kB is Boltzmann’s constant. Here and in the following, 
〈.〉 denote averages over many realizations of the noise. The averages obtained from the MD simulations are 
extracted from single trajectories of 15ns long, i.e. exceeding by three orders of magnitude the relaxation times 
of our system (see below). Furthermore, γC and γH are effective coefficients of the friction that each nanoparticle 
experiences in its respective environment. Despite its simplicity, the model (1) allows us to infer dynamical and 
thermodynamic properties of our molecular dynamics simulations, as we describe below.

An important ingredient for the theory are the effective friction coefficients γC and γH , which emerge from 
the interaction of the nanoparticles with the baths’  particles43. To estimate γC and γH , we run an equilibrium 
simulation in the absence of (nonreciprocal) interactions by taking κC = κH = 0 . In this limit, the position 
and velocity autocorrelation functions can be solved analytically (see Methods section). By fitting the auto-
correlation functions obtained from the MD simulations to the analytical formulas, we extract the estimates 
γC ≃ γH ∼ 3.5× 10−12kg/s. This value is consistent with an independent estimate obtained from a dragging 
experiment simulation where a nanoparticle is pulled with a constant force along the x axis (see the Supplemen-
tal for further details), which yields an estimate of γC ≈ γH ≈ 3× 10−12kg/s. In the following and for further 
analyses, we use the estimate γ = 3.5× 10−12kg/s for the friction of the two nanoparticles.

In the ensuing analysis, several timescales are relevant to characterize the dynamics of the particles at the 
mesoscopic level, following (1) and (2). Firstly, the momentum relaxation time extracted from our data m/γ ≈ 5 
ps is only one order of magnitude smaller than the relaxation time for the position in the trap γ /κ ≈ 25 ps. These 
results lend credence to the validity of the underdamped description used in our approach, as the data acquisition 
timescale �t ∼ 1 ps is below the momentum relaxation timescale.

Stochastic energetics. We now develop and put to the test a theory for the energetics of the nanoparticle 
system setup in the light of stochastic  thermodynamics9—a framework that enables to describe the fluctuations 
of heat and work of systems described by e.g. Langevin equations, such as Eq. (1). Applying the framework of 
stochastic thermodynamics to the model given by Eq. (1), and putting forward mathematical techniques intro-
duced  in44–46, we derive exact closed-form expressions for the expected value of the rate of heat dissipated into 
the cold and hot baths’ in the steady state, reading as,

To ensure that the dynamics of the nanoparticles is stable, we further find the necessary condition 
κH + κC > −κ (see the Supplemental Material). Note that in the above formulas, the steady-state averages 
�Q̇C� = �dQC/dt� and �Q̇H� = �dQH/dt� are obtained using the definitions of stochastic heat used in stochastic 
thermodynamics (see Methods section), which are written in terms of the nanoparticles’ positions and velocities 
and thus not necessarily equal to the “direct” stochastic heat measured in the MD simulations from the energy 
fluctuations of the bath molecules.

Notably, Eqs.  (3)–(4) predict a net heat transfer between the two baths that obeys Fourier’s law 
�Q̇C,H� ∝ (TH − TC) only when the forces exerted by the demon are reciprocal. This result is consistent with the 
findings of experimental work with microparticles interacting solely through reciprocal forces. In particular, the 
Fourier law was tested using two optically-trapped microscopic particles held at different effective temperatures 
and coupled through hydrodynamic  forces35. Moreover, our theory predicts that a net heat flow can be induced 
by three mechanisms: first, the existence of a temperature gradient, second, nonreciprocal coupling, or, third, a 
combination of both. As we show below, such a net heat flow is a signature of entropy production, with the latter 
being also accessible from our theory. In particular, Eqs. (3) and (4) allow for the prediction of a closed-form 
theoretical expression for the steady-state average rate of entropy production �Ṡtot� = �Q̇H�/TH + �Q̇C�/TC

11, 
yielding

(1)mẌC + γCẊC = −κXC + κC(XH − XC)+ ξC

(2)mẌH + γHẊH = −κXH + κH(XC − XH)+ ξH.

(3)�Q̇C� = −kB
κC(κCTH − κHTC)

(m/γ )(κC + κH)
2/2+ γ (2κ + κC + κH)

,

(4)�Q̇H� = −kB
−κH(κCTH − κHTC)

(m/γ )(κC + κH)
2/2+ γ (2κ + κC + κH)

.

(5)�Ṡtot� =
kB(κCTH − κHTC)

2/(TCTH)

(m/γ )(κC + κH)2/2+ γ (κC + κH + 2κ)
.
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Note that �Ṡtot� ≥ 0 for any parameter values, in agreement with the second law of stochastic thermodynamics, 
with equality only for the choice κH/κC = TH/TC for the nonreciprocal coupling constants. Furthermore, from 
Eqs. (3) and (4) we can also extract the total power exerted by the demon on the nanoparticles, which is simply 
given by �Ẇ� = �Q̇C + Q̇H� , as shown below.

To gain further insights, we compare in Fig. 3a our theoretical predictions from stochastic thermodynamics 
[Eqs. (3)–(4), lines] for the heat transfer evaluated directly over a collection of MD simulations (symbols) ran 
over a wide range of values for the demon coupling constants κH and κC spanning three orders of magnitude 
in κH/κC . Figure  3a reveals an excellent semi-quantitative agreement between the direct heat measurement in 
MD simulations with the stochastic theory over the parameter regime that we explore. Notably, we remark that 
our predictions are done without using any fitting parameter, i.e. we use in Eqs. (3) and (4) the actual parameter 
values of the MD simulation and the friction coefficient estimated from the equilibrium fluctuations described 
above. Importantly, the MD simulation results reveal that the system acts as a heater whenever κH/κC < TH/TC 
and as a refrigerator (and heat-pump) when

a feature that is supported by our theory. This result rationalizes the findings in Fig. 2, which correspond to 
κH/κC = 0.17 (Fig. 2a) and κH/κC = 4.8 (Fig. 2b) which correspond respectively to the heater and refrigerator 
regimes as TH/TC = 1.2.

We also compare in Fig. 3b the theoretical prediction (5) for steady-state rate of entropy production (line) 
with its value estimated from the MD simulations (symbols), with the latter evaluated by plugging in to 
�Ṡtot� = �Q̇H�/TH + �Q̇C�/TC , the MD values of the heat flows in the thermostats divided by their respective 
temperatures.

The estimate for the rate of entropy production obtained from the MD measurements is in good agreement 
with the theoretical expression given by (5). Around the coupling values κCTH = κHTC the heat flow and entropy 
production vanish, which we will refer to as a “pseudo equilibrium” point in the following. In the Supplemental 
Material, we show that in this case, detailed balance holds, i.e., all probability currents vanish, despite the pres-
ence of a temperature gradient in the system together with a nonreciprocal coupling.

Power and performance. Performance of the nano refrigerator. In any refrigerator, getting the most heat from 
the temperature source is desirable by doing the least amount of work possible. Therefore, a suitable coefficient 
of performance (COP) is defined as the ratio of the heat taken from the low-temperature source to work done 
on the machine. A higher COP indicates a better economic performance of the system. In macroscopic systems, 
COP is usually in the range of 1− 447. To quantify the net energetic performance of the nano refrigerator, we 
evaluate its coefficient of performance, defined by the average rate of heat that is extracted from the cold bath 
divided by the average total power inputted into the system, COP= |�Q̇C�|/�Ẇ� . From this definition and upon 
using our theoretical predictions for the heat transfer given by Eqs. (3) and (4), we predict that the COP follows

In (7), the second equality follows from using the first law of thermodynamics for stationary states which in 
this case reads �Ẇ� − �Q̇C� − �Q̇H� = 0 , whereas the third equality follows from Eqs. (3) and (4). Remarkably, 
our theoretical prediction for the COP depends solely on the nonreciprocal coupling parameters κH and κC . 
Figure 4 reveals a good agreement between the value of the COP estimated from the MD simulations (symbols) 
and the prediction from our stochastic theory (7) (lines). Interestingly the agreement between simulation and 
theory is enhanced especially in far from equilibrium conditions, i.e. for large relative strengths of nonreciprocity 

(6)κH/κC > TH/TC,

(7)COP ≡
|�Q̇C�|
�Ẇ�

=
−�Q̇C�

�Q̇H� + �Q̇C�
=

κC

κH − κC
.

Figure 3.  Comparison between thermodynamic fluxes obtained from MD simulations (symbols) and 
theoretical predictions from stochastic thermodynamics (lines). (a) The average rate of heat dissipation rate in 
each bath, (b) the average entropy production rate, and (c) the total power applied by the demon to the system, 
as a function of the coupling constant κH . The heat rates in (a) are measured by accumulating the amount of 
energy extracted by the thermostats and linearly fitting the results to obtain the slope, see Fig. 2. The blue shaded 
area illustrates the parameter regime at which the system works as a refrigerator [given by the condition (6)]
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κH/κC ≫ 1 . Close to the pseudo equilibrium κH/κC = TH/TC point, the noise in the simulation results seems 
more pronounced. Towards this point, the theory predicts Carnot efficiency, which corresponds to a COP of 
TC/(TH − TC) = 5 in the present case.

Fluctuations of power and performance. We have shown so far that, when κH/κC > TH/TC , the nanoparticle 
system behaves like a refrigerator on average, i.e. its steady-state average fluxes obey �Q̇C� > 0 , �Q̇H� < 0 and 
�Ẇ� > 0 . Due to thermal fluctuations, the two-nanoparticle system can give rise to transient values of the fluxes 
that do not obey the refrigerator constraints (e.g. transient values Q̇C < 0 , Q̇H > 0 and Ẇ < 0 in a small time 
interval) as revealed in Langevin-dynamics  models48. In order to inspect such fluctuation phenomena it is man-
datory to evaluate quantities such as the power and performance of the nano machine along individual, short 
time intervals. As a first approach in this direction, we evaluate the fluctuations of the stochastic power from 
the MD simulations using the positional fluctuations of the center of mass of the nanoparticles. In particular, 
we evaluate the stochastic power exerted in a small time interval [t, t + dt] using the expression from stochastic 
 thermodynamics9 associated with the model given by (1)

Here, ◦ the Stratonovich product, whereas ẊC = [XC(t + dt)− XC(t)]/dt and ẊH = [XH(t + dt)− XH(t)]/dt 
are the time-averaged velocities estimated from the positions of the nanoparticles. We have also introduced ẆC 
and ẆH as the fluctuating power exerted on the cold (hot) nanoparticle in the interval [t, t + dt] respectively. 
Note that in (8) we take into account only the non-conservative forces exerted on each nanoparticle due to their 
nonreciprocal coupling.

We now evaluate the stochastic power (8) from our MD simulations over time intervals of duration dt = 1
ps. To this aim, we extract the empirical probability density for the stochastic power which reveals considerable 
fluctuations (gray bars in Fig. 5a). The distribution estimated from the MD simulations can be described with 
impressive accuracy using the closed-form expressions for the distribution of ẆC and ẆH

which we derive analytically using the definition of the stochastic power (8) and assuming the effective stochastic 
model (1). In (9), j ∈ {C,H} is the particle label, Zj is a normalization constant, and αj ,βj , ζj are functions of 
κC, κH,TC,TH, γ ,m (see Methods section for their explicit expressions). The power distributions have exponen-
tial tails and are slightly asymmetric. In the refrigerator mode, P(ẆC) leans towards positive values, consistent 
with the net negative work value, while P(ẆH) leans towards positive work values. Furthermore, we find a good 
agreement between the MD simulation results and (9) throughout the parameter regime that we explore. The 
theoretical predictions yield a systematic overestimation of the variance which we attribute to the finite timestep 
dt in the MD simulations, while in the theoretical calculations we assume it to be infinitesimal (see Supplemental 
Material for the values of the variance of the power for different values of κH/κC).

The previous analyses showing that the work and heat in a small time interval are highly fluctuating moti-
vates us to investigate the finite-time fluctuations of the coefficient of performance of the nano machine. To 

(8)
Ẇ = κCXH ◦ ẊC

︸ ︷︷ ︸

= ẆC

+ κHXC ◦ ẊH
︸ ︷︷ ︸

= ẆH

.

(9)P(Ẇj) =
1

Zj
exp

[

βj

κj
Ẇj − 2

√
ζjαj

|κj|
|Ẇj|

]

,

100 101
κH/κC

0

2

4

6

CO
P

Carnot COP

Figure 4.  Average coefficient of performance as a function of κH in the refrigeration mode: results from MD 
simulations (symbols) and theoretical prediction from stochastic thermodynamics [(7), line]. The horizontal 
line indicates the Carnot bound for the coefficient of performance, reached at κH = κCTH/TC , and given by 
COP = TC/(TH − TC) . The rest of the simulation parameters were set the same as in Fig. 2.
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quantify how much the efficiency fluctuates for individual trajectories, we consider the stochastic coefficient of 
performance defined  as49

Note that since in general �|Q̇C|�/�Ẇ� �= �|Q̇C|/Ẇ� , the ensemble average of εr does not coincide with 
the average COP given by (7). Figure 5b displays the empirical distribution of the stochastic COP obtained 
from the MD simulations, which develops a fat tail with values that can exceed significantly the Carnot 
value εC = TC/(TH − TC) = 5 . Such super-Carnot performance achieved in short time intervals have also 
been reported in experimental conditions and theoretical models of nanoscopic heat  engines50–53 and nano 
 refrigerators48; they result from rare events where the refrigerator works transiently as a heater reversing the 
work flux with respect to its average behaviour. Furthermore we find that the distribution of εr extracted from 
the MD simulations follows in good approximation a power law

See red line in Fig. 5b. The power-law behavior that we find reinforces the critical significance of thermal fluc-
tuations for our nano machine system setup. Remarkably, we find that the power law (11) is in good agreement 
with the numerical results for all values of κH and κC that we explored, suggesting a universal scaling behavior 
as predicted by previous theoretical work within the realm of stochastic  efficiency50.

Uncertainty relations. The results in previous sections revealed the instrumental role of stochastic thermody-
namics to establish design principles for the parameter values of the nano machine to achieve prescribed values 
of the net power and efficiency. In the following, we investigate how one can use principles from stochastic 
thermodynamics—namely the so-called thermodynamic uncertainty  relations38,39,54—to put fundamental con-
straints that regulate the trade-off between dissipation and precision of the nano machine.

A suitable measure to quantify the strength of the power fluctuations is the uncertainty of the power, defined 
by the variance over the squared mean. High values of uncertainty indicate that the dynamics is essentially 
dominated by fluctuations. We have measured the uncertainty of the total power Ẇ = ẆC + ẆH in the MD 
simulations from individual trajectories, by making a statistics over the extracted values of the work. Figure 6 
shows the results for the uncertainty of the total power (green symbols), as well as the power uncertainties of 
ẆC and ẆH separately (blue and the red symbols). Remarkably, the uncertainties reach extremely high values 
around the pseudo equilibrium point, and even seem to diverge at κH/κC = TH/TC . As we show below, this 
blow-up can be understood by making use of a recently-developed trade-off relation between the precision of 
thermodynamic currents and the rate of entropy production.

In the field of stochastic thermodynamics, recently a universally class of results—often called e thermody-
namic uncertainty relation—governing Markovian nonequilibrium stationary states were derived, see e.g.38,39,54. 
Such laws connect the uncertainty of a current, quantified by its signal-to-noise ratio, with the total thermody-
namic cost, measured by the steady-state rate of entropy production. In particular, the thermodynamic uncer-
tainty relation in Ref.55 implies that the uncertainty of the finite-time power fluctuations of stationary Markovian 
processes is always bounded from below by 2kB over the mean total entropy production during dt , i.e.,

(10)εr =
|Q̇C|
Ẇ

.

(11)P(εr) ≃ |εr |−2
,

Figure 5.  Fluctuations of stochastic power and efficiency. (a) Distribution of the power exerted on the cold 
nanoparticle: result from the MD simulations (bars) and analytical prediction given by (9) (solid blue line). 
Note that the lower panel in Fig. 2b displays the corresponding values of WC . (b) Distribution of the stochastic 
coefficient of performance defined by (10): empirical density obtained from the MD simulations (see Methods 
section) and theoretical prediction given by a power law with exponent −2 (red line). For the second panel we 
took κH/κC = 7.27 and fixed the rest of the parameter values the same as in Fig. 3.
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Equation (12) reveals that there exists a minimal thermodynamic cost associated with achieving a certain 
precision of the power exerted by the controller. Applying this law to the present case, we find from (5) that 
�Ṡtot� → 0 at κH/κC → TH/TC , thus, the power uncertainty indeed diverges at the pseudo equilibrium point. We 
have complemented the MD simulation results in Fig. 6 with a black line showing the lower bound 2kB/�Ṡtot�dt 
according to (12), which provides the first test of thermodynamic uncertainty relations in nonequilibrium MD 
setups.

From the simulation results shown in Fig. 6, we further detect a minimum in the total power uncertainty in 
the refrigerator regime. Interestingly, the position of this minimum (that is κH/κC ≈ 3.3 ) roughly coincides with 
the κH/κC value where the amount of extracted heat is maximal indicated by a vertical, dashed line in Fig. 6. For 
the chosen parameters, the theoretical value for the maximal heat extraction from the cold bath is κH/κC ≈ 3.79 , 
as obtained from differentiating (3). Thus, there is a regime where the refrigeration is maximal while at the same 
time, the power to sustain the refrigerator is as precise as possible.

Discussion
We have shown with molecular dynamics simulations that it is possible to attain a net heat flow from a cold to 
a hot bath by connecting two nanoparticles immersed in fluid containers through nonreciprocal forces. Such 
nonreciprocal forces could be realized in the laboratory upon using, e.g., feedback  traps56 which allow to exert 
in real time forces based on measurements of only the position of the center of mass of the nanoparticles. This 
represents an advantage with respect to traditional Maxwell-demon approaches where the measurement of 
position and velocities of the bath molecules is required to attain a heat flow from a cold to a hot thermal bath. 
Notably, our setup is also advantageous with respect to previous theoretical proposals that require the usage of 
athermal fluctuations together with nonlinear forces between the  nanoparticles57.

In our simulations we have studied the case of copper nanoparticles immersed in argon, however we expect 
this effect to be generic for a class of systems whose dynamics can be described by linear underdamped Lan-
gevin equations. For such class of systems, we have revealed by using stochastic thermodynamics the necessary 
conditions and therefore the design principles that ensure a reverse heat flow (from cold to hot) and provided 
predictions on key thermodynamic properties such as the net heat transfer and the coefficient of performance. 
Our theoretical results reveal that the refrigeration effect generated by the nonreciprocal coupling is robust. It 
can be achieved in a broad parameter range as long as the dynamics is stable (see the Supplemental Material for 
further information about the stability conditions).

This work demonstrates fruits of the bridge between molecular dynamics with stochastic thermodynam-
ics, namely the possibility to establish quantitative criteria to control the statistics of thermodynamic fluxes in 
nanoparticle-based thermal machines. We have developed analytical formulae that describe the average heat 
fluxes between the nanoparticles, the entropy production rate and the coefficient of performance. Moreover, we 
have tackled analytically the statistics of the power and the coefficient of performance of the nano machine over 
short time intervals within fluctuations play a prominent role. From the theoretical perspective, we expect that 

(12)
Var(Ẇ)

�Ẇ�2
≥

2kB

�Ṡtot�dt
.

10−1 100 101
κH/κC

102

104

Var(Ẇ )
〈Ẇ 〉2

2kB
〈Ṡtotdt〉

Figure 6.  Thermodynamic uncertainty relation for power fluctuations. Relative uncertainty Var(Ẇ)/�Ẇ�2 
of the stochastic power exerted on the cold ẆC (blue filled circles) and the hot ẆH (red filled squares) 
nanoparticles, computed using in Eq. (8) the output of our MD simulations. The uncertainty of the total power 
on the two-nanoparticle setup Ẇ = ẆC + ẆH is shown by green crosses. The blue and red lines are given by 
our theoretical predictions for the relative uncertainty of ẆC and ẆH , respectively (see Supplemental for the 
full derivation). The relative uncertainty of the stochastic power lies above 2 divided by the average entropy 
production during dt [black symbols, MD simulations; black line, theoretical prediction given by (5)], in 
agreement with the thermodynamic uncertainty relation (12). The dashed vertical line depicts the theoretical 
value of κH/κC = 3.78843 at which the heat extraction from the cold bath is maximal.
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stochastic-thermodynamic approaches could shed light in the future on optimal design of nano refrigerator 
devices taking into account e.g. the effect of delay and/or memory in the exertion of nonreciprocal forces that 
may play a key role in realistic experimental scenarios.

In the current era when efficient energy conversion is of paramount importance, optimizing thermal transport 
in both classical and quantum systems has become a topic of intense theoretical and experimental interest for 
 nanotechnology58,59. Furthermore, the possibility of realizing thermal conduits in various biological systems have 
been proposed to optimize thermal networks and information  transfer60,61. Transient reverse heat flow in these 
contexts may confer biological machinery with enhanced functionality for energy harvesting. In this regard, 
it would be interesting to theoretically investigate whether our theoretical and atomistic setup can be used to 
generate heat flows in particles immersed in more complex environments including viscoelastic fluids, or even 
active (e.g. bacterial) baths.

Methods
MD simulations. We employed the LAMMPS for performing all out MD  simulations62. The interatomic 
force between atoms was accounted by a Lennard–Jones (LJ) potential function,

where rij is the interatomic distance between atom i to atom j, ε is the depth of the potential well, and σ the 
distance at which the particle–particle potential energy vanishes. The LJ parameter values ε and σ of both 
argon–argon and copper–copper interactions are summarized in Table 1. The parameters have been chosen 
from earlier literature that compared the simulation outputs with experimental data or quantum calculations and 
were extensively utilized in many past  studies63–68. The selected LJ parameters for argon reproduce the density 
of liquid argon in good agreement with experimental measurements and also the phononic properties of solid 
argon at low  temperatures63. The LJ potential coefficients for copper correctly reproduce the crystalline state 
properties at various  temperatures64,65.

For the interatomic forces between argon and copper atoms, we employed the Lorentz–Berthelot mixing 
 rules69, i.e.

As shown in Fig. 1, our setup consists of two containers of cold and hot (defined by blue and red col-
ours respectively) argon–copper mixture, each with volume 11nm3 and containing 25280 Ar fluid atoms with 
total mass mAr = 1.67× 10−21kg . The nanoparticles are made each of 186 Cu atoms with nanoparticle mass 
m = 1.96× 10−23kg and radius r = 1.44nm . To prevent interactions between the two containers and separate 
cold and hot baths, one-atom-thick Cu walls are placed between the containers, in the edges and in the middle 
of the simulation box along the X direction. Ar atoms of one container do not interact with the Ar atoms inside 
the other container. Periodic boundary condition were applied in the Y and Z directions while the X direction 
is constrained by the walls. The simulations were carried out for 15− 30ns . Within this time the temperature of 
fluids at both hot and cold baths were controlled at TH = 120K and TC = 100K using Nosé–Hoover thermostats 
(NVT) with a coupling time-constant of 1ps . We have also checked that the reversed heat flow setup is not sensi-
tive to the choice of Nosé–Hoover as it is also reproduced using a Langevin-based thermostat as well (data not 
shown). A time step of 1fs was chosen for the MD simulations and the data was sampled every 1ps.

Estimation of the effective friction coefficient. The noise terms as well as the friction forces appearing 
in the Langevin equations are not explicitly present in the MD simulations, but they emerge implicitly from the 
interactions between nanoparticle and surrounding bath particles. In our stochastic model, we assume Stokes 
law, in particular, instantaneous effective friction force that is linearly proportional on the instantaneous veloc-
ity. We obtain estimates for the values of the corresponding friction coefficients γC,H from MD simulations in 
the case of no coupling, κC,H = 0 , via two distinct routes. First, we measure the velocity and positional autocor-
relation functions in an equilibrium MD simulation, and fit the corresponding analytical expression taken from 
Ref.70:

with ω2
µ = (κ/m)− (γµ/m)2 , and we recall µ = {C,H} . Equation (15) reproduce our numerical estimates for 

both the position and velocity autocorrelation functions in equilibrium conditions (see the Supplemental for 

(13)φ(rij) = 4ε[(σ/rij)2 − (σ/rij)
6],

(14)ε12 =
√
ε1 ε2, σ12 = (σ2 + σ1)/2.

(15)

�Xµ(t)Xµ(t + τ)�
�X2

µ(t)�
=exp

(

−
γµτ

2m

)[

cos(ωµτ)+
γ sin(ωµτ)

2mωµ

]

�Ẋµ(t)Ẋµ(t + τ)�
�Ẋ2

µ(t)�
=exp

(

−
γµτ

2m

)[

cos(ωµτ)−
γ sin(ωµτ)

2mωµ

]

,

Table 1.  LJ interaction parameters.

ε(eV) σ(Å)

Ar–Ar 0.0104 3.405

Cu–Cu 0.4093 2.338
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further details). Fitting (15) to our numerical results by setting m, κ to their input values in the simulations, we 
extract the estimates γC ≃ γH ∼ 3.5× 10−12 kg/s for the effective friction coefficient. We use this estimate for 
γ and set γC = γH . Second, we have performed a dragging experiment, pulling the nanoparticle through the 
bath and measure the resulting velocity (see the Supplemental Material for further details), which yields an esti-
mate of γC ≈ γH ≈ 3× 10−12kg/s . Both routes yield consistent results. We use γ = γC = γH = 3.5× 10−12kg/s 
throughout the paper.

Definition of heat and work in stochastic thermodynamics. We address the thermodynamics of the 
nanoparticle system by applying the framework of stochastic  thermodynamics9,11 to our stochastic model. For 
convenience, we first rewrite Eqs. (1) and (2) as a two-dimensional Langevin equation

where X = (XC,XH)
T , � = (ξC, ξH)

T , and ∇ = (∂XC , ∂XH)
T , with T denoting transposition. The term 

Fnr = (κCXH, κHXC)
T is the nonreciprocal part of the total force acting on the system, which is non-conservative. 

On the other hand, the energy E of the nanoparticles

is a function of the instantaneous values of the particles’ positions and velocities, and thus a quantity that fluctu-
ates during a simulation, i.e. a stochastic process. Following  Sekimoto9, the energy change in a small time interval 
[t, t + dt] can be written as

where ◦ denotes the Stratonovich product. Here, dX = (dXC, dXH)
T is the stochastic increment of the nanopar-

ticles’ positions which follows from the Langevin dynamics (16). In [t, t + dt] the stochastic work done on the 
system is given by the non-conservative force times the displacement of the nanoparticles, which we can split as

where dWC ( dWH ) is the work done on the cold (hot) nanoparticle. Dividing the stochastic work dW applied to 
the particle along a trajectory of length dt yields the power Ẇ = dW/dt.

Similarly, the stochastic heat dissipated in the same time interval

which ensures that the first law is satisfied for every single trajectory traced by the system. Note that we use 
the thermodynamic sign convention: W > 0 ( W < 0 ) when work is exerted (extracted) from the system and 
Q > 0 ( Q < 0 ) when heat is dissipated from (absorbed by) the system to (from) its environment. Dividing the 
stochastic heat dissipated along a trajectory of length by the trajectory length dt yields the stochastic heat dis-
sipation rate Q̇ = dQ/dt.

Power fluctuations. The power fluctuations of each nanoparticle predicted by our stochastic model are 
given in Eq. (9) as closed-form expressions for P(Ẇj) with j ∈ {C,H} . The distributions P(Ẇj) explicitly depend 
on αj ,βj , ζj , which are in turn functions of the covariances of the positions and velocities of the j nanoparticle 
and the l  = j nanoparticle. Specifically,

with

and

From the power distributions P(Ẇj) , we can further deduce analytical expressions for the variance of the 
power:

(16)mẌ = −γ Ẋ −∇E + Fnr +�

(17)E =
m

2
(Ẋ2

C + Ẋ2
H)+

(
κ + κC

2

)

X2
C +

(
κ + κH

2

)

X2
H

(18)dE = ∇E(X) ◦ dX +mẌ ◦ dX,

(19)
dW = Fnr ◦ dX = κCXH ◦ dXC

︸ ︷︷ ︸

= dWC

+ κHXC ◦ dXH
︸ ︷︷ ︸

= dWH

,

(20)
dQ = dE − dW = (γµẊC − ξC) ◦ dXC

︸ ︷︷ ︸

= dQC

+ (γµẊH − ξH) ◦ dXH
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= dQH

,

(21)αj =
1

2�X2
l �(1− ψ2

j )
, βj =

ψj
√

�X2
l ��Ẋ2
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j )

, ζj =
1

2�Ẋ2
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j )
, ψj =

�XlẊj�
√

�X2
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j �
,

(22)

�X2
l � = kB

mTl[κ2j (κj + κl)+ κ(κ2j + κ2l )] + 2γ 2[κ2l Tj + Tl(κ + κj)(2κ + κj)+ κκlTl] +mTjκ
2
l [2κ + κj + κl]
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[
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,

(23)�Ẋ2
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κj(κjTl − κlTj)

(m/2)(κj + κl)
2 + γ 2(2κ + κj + κl)

+
kBTj

m
,
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See the Supplemental Material for further details and the explicit mathematical derivations.

Data availability
The datasets used and analysed during the current study available from the corresponding author on reasonable 
request.
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