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Spectrochemical approach 
combined with symptoms 
data to diagnose fibromyalgia 
through paper spray ionization 
mass spectrometry (PSI‑MS) 
and multivariate classification
Marcelo V. S. Alves 1, Lanaia I. L. Maciel 2, João O. S. Passos 3, Camilo L. M. Morais 1, 
Marfran C. D. dos Santos 4, Leomir A. S. Lima 5, Boniek G. Vaz 2, Rodrigo Pegado 3 & 
Kássio M. G. Lima 1*

This study performs a chemical investigation of blood plasma samples from patients with and without 
fibromyalgia, combined with some of the symptoms and their levels of intensity used in the diagnosis 
of this disease. The symptoms evaluated were: visual analogue pain scale (VAS); fibromyalgia impact 
questionnaire (FIQ); Hamilton anxiety rating scale (HAM); Tampa Scale for Kinesiophobia (TAMPA); 
quality of life Questionnaire—physical and mental health (QL); and Pain Catastrophizing Scale (CAT). 
Plasma samples were analyzed by paper spray ionization mass spectrometry (PSI‑MS). Spectral data 
were organized into datasets and related to each of the symptoms measured. The datasets were 
submitted to multivariate classification using supervised models such as principal component analysis 
with linear discriminant analysis (PCA‑LDA), successive projections algorithm with linear discriminant 
analysis (SPA‑LDA), genetic algorithm with linear discriminant analysis (GA‑LDA) and their versions 
with quadratic discriminant analysis (PCA/SPA/GA‑QDA) and support vector machines (PCA/SPA/
GA‑SVM). These algorithm combinations were performed aiming the best class separation. Good 
discrimination between the controls and fibromyalgia samples were observed using PCA‑LDA, where 
the spectral data associated with the CAT symptom achieved 100% classification sensitivity, and 
associated with the VAS symptom achieved 100% classification specificity, with both symptoms at the 
moderate level of intensity. The spectral variable at 579 m/z was found to be substantially significant 
for classification according to the PCA loadings. According to the human metabolites database, this 
variable can be associated with a LysoPC compound, which comprises a class of metabolites already 
evidenced in other studies for fibromyalgia diagnosis. This study proposed an investigation of spectral 
data combined with clinical data to compare the classification ability of different datasets. The good 
classification results obtained confirm this technique is as a good analytical tool for the detection of 
fibromyalgia, and provides theoretical support for other studies about fibromyalgia diagnosis.

Fibromyalgia (FM) is a rheumatologic condition characterized by symptoms such as generalized pain, fatigue, 
memory problems and sleep  disorder1. It is the second most common rheumatic disorder after  osteoarthritis2. 
The prevalence rate of FM in the world population is 2 to 4%, with a proportion of approximately 90% of patients 
being women. FM may be present concomitantly with other diseases such as rheumatoid arthritis, osteoarthritis 
and systemic lupus  erythematosus3.
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In 1990, the American College of Rheumatology (ACR) published criteria for classifying fibromyalgia as a 
necessary diagnostic  procedure4, receiving academic and social recognition, where the presence of multiple pain 
points would be the central  criterion5. In 2010, the ACR published new diagnostic criteria for  FM6, eliminat-
ing tender point exams and promoting the Widespread Pain Index (WPI) with Symptom Severity score (SS), 
among other conditions. From this update, the ACR identified the need for modification, providing complete 
self-administration of the use of scales and questionnaires, allowing the administration of results in survey and 
environments where the presence of a clinical interviewer would be  difficult7. The most recent review of the 
criteria, carried out in 2016, proposes the existence of generalized pain in four specific regions of the body; the 
persistence of symptoms during the last 3 months; WPI index ≥ 7 and SS ≥ 5 or WPI between 4–6 and SS ≥ 9; as 
well as question the validity of the diagnosis independently of others  variables8.

Despite there are criteria used for FM diagnosis, their limits are not easy to discern, since FM is an arbitrary 
disease and disorder with broad definitions of pain and multiple symptoms that are heavily influenced by  culture9. 
Thus, although efforts have been made to improve the accuracy of FM diagnosis in recent decades, the disease 
remains underdiagnosed or  underrecognized10. The diagnosis of FM is  late11 and the non-definition of the disease 
can generate overuse of health resources, as well as the decline in visits to primary care sites for depression or 
fatigue after  diagnosis12.

The development of new methodologies that can help in the diagnosis of FM through instrumental analytical 
techniques is proposed in some studies. Among these studies, it is possible to mention investigations of potential 
biomarkers for the disease with proteomic analysis using MALDI-TOF mass spectrometry in saliva  sample13 and 
metabolomics studies with the analysis of urine samples in Gas Chromatography Mass Spectrometry (GC–MS)14 
and blood plasma samples with Liquid Chromatography Mass Spectrometry (LC–MS)15. Classification studies 
are also mentioned, such as using Raman and Fourier-Transform Infrared (FTIR) spectroscopy in differentiating 
blood samples from patients with FM and other rheumatic  diseases16; and, discrimination between samples from 
patients with and without FM based on blood plasmas through Attenuated Total Reflection Fourier Transform 
Infrared (ATR-FTIR)  spectroscopy17 and Paper Spray Ionization Mass Spectrometry (PSI-MS)18.

Among these instrumental techniques, we highlight mass spectrometry (MS) which plays a prominent role 
in the field of laboratory  medicine19. MS is one of the richest analytical techniques in terms of information and 
interpretation of the data obtained, especially with complex samples such as  blood20. Among the different modes 
of ionization in mass spectrometry, paper spray ionization (PSI) allows for a wide variety of applications, in which 
samples are analyzed directly, eliminating the need for extensive sample preparation steps or chromatographic 
 separation21. Paper spraying can be performed in an open laboratory, where a sample of dried blood or other 
biofluid is analyzed directly on the paper by applying a high voltage to the wet  paper22. PSI-MS has been widely 
explored in research with biological samples, providing rapid analysis of complex biological specimens such as 
blood, urine, saliva or even  tissue23. Another analytical tool present in several clinical studies is the multivariate 
analysis of spectral data, which allows the extraction of the most significant  features24 and provides as much 
chemical relevant  information25. Classification tools combine very well with the resolving power of MS analysis, 
providing the possibility of rapid, accurate and less invasive  diagnosis26.

This study comprises the use of PSI-MS in blood plasma samples from patients with and without fibromyalgia, 
who at the time of blood collection also participated in interviews about living, or not, with certain symptoms 
present on FM. Symptoms are characterized as clinical variables obtained from scales and questionnaires, such 
as visual analog scale of pain (VAS); the fibromyalgia impact questionnaire (FIQ); Hamilton anxiety rating scale 
(HAM); the quality of life index (QL); The Tampa Kinesiophobia Scale (TAMPA); and the pain catastrophizing 
scale (CAT). Based on the responses presented by the patients and the correlation with the respective blood 
plasma samples, the aim of this study was the formation of different sets of spectral data, according to the clinical 
variables and their levels of intensities (mild, moderate or severe), where each dataset was subjected to multivari-
ate classification in order to distinguish samples with and without the disease. The classification models were 
built by Principal Component Analysis (PCA), Successive Projections Algorithm (SPA) and Genetic Algorithm 
(GA) as techniques to reduce data dimensions; combined with Linear Discriminant Analysis (LDA), Quadratic 
Discriminant Analysis (QDA) and Support Vector Machines (SVM) for discrimination.

This approach using both the patients’ symptoms data and their blood plasma spectral signature can improve 
the reliability of FM diagnosis through appropriate combinations of algorithms with the clinical variables most 
pronounced by the patient. This method, together with the use of PSI-MS, shows the innovative nature of this 
study, solving uncertainty problems often found in fibromyalgia diagnosis. The proposal of a simpler, faster and 
more reliable diagnostic approach can play a significant role in the management of this disease by the patients 
and clinical professionals.

The use of PSI-MS and multivariate analysis in blood plasma samples from patients with and without fibro-
myalgia, separated in different datasets according to the main clinical symptom used for the diagnosis of the 
disease, was carried out aiming to show the potential of this methodology to discriminate fibromyalgia samples 
and to evaluate possible implications of the clinical variables used for the diagnosis of the disease.

Results
This study is characterized by case–control classifications, with blood plasma samples from patients with and 
without fibromyalgia (control group—CG and fibromyalgia group—FG), where they were organized by char-
acteristic symptoms of the disease and which are evaluated in their diagnosis. For each symptom, the samples 
were distributed from levels corresponding to the stratification of the clinical variable, according to the responses 
described by patients on scales and questionnaires at the time of blood collection. The arrangement of informa-
tion on clinical variables is not presented uniformly (see Table S1 of the Supplementary Information) due to the 
absence of some answers, or the non-correspondence of patients interviewed with the samples analyzed in the 
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different symptoms. In all, each symptom was analyzed: 161 samples in the VAS (78 controls and 83 cases), 167 
samples in the FIQ (81 controls and 86 cases), 163 samples in the HAM (78 controls and 85 cases), 163 samples 
in the QL (78 controls and 85 cases), 161 samples in TAMPA (78 controls and 83 cases) and 158 samples in CAT 
(78 controls and 80 cases).

The analyzed datasets involve the stratification of clinical variables, that is the levels of symptoms presented, 
considering the limitations of samples in control or cases groups. To carry out the classifications, analyzes were 
also carried out with the gathering of the symptoms levels, enabling comparisons and indications between the 
datasets. In the Supplementary Information (Table S2) from the worked data sets are observed, considering the 
non-feasibility of classifications in a dataset with reduced samples in any of the groups (CG or FG), which would 
not favor the models training and testing.

To obtain the best classification results, some initial tests were carried out to improve subsequent process-
ing. The data were pre-processed through the automatic weighted least squares (AWLS) baseline  correction27. 
After this first treatment of the raw data, it was necessary to identify information of low-intensity signals in the 
spectra, to verify if these were relevant for classification. For this, an algorithm to extract regions of interest 
(ROI) was applied, which consists on the strategy of extracting data included in certain regions and rejecting 
the remaining  data28. In this study, we sought to select matrices with m/z ratios with intensity above and below 
3% at the peak of highest intensity. The tests showed that the matrices with intensity higher than the stipulated 
percentage value are more favorable for classification. Figure 1 shows the appearance of the total spectra of the 
analyzed datasets, after application of ROI.

After this first treatment, the pre-processed spectral samples were divided into training (70%) and test (30%) 
sets using the Kennard–Stone sample selection algorithm. Due to the limited number of samples in some situ-
ations, it was decided not to use the validation group to prioritize model tests. Training samples were used to 
build the classification models, while test samples were used to predict the model performance.

The datasets were submitted to multivariate analysis to distinguish between the control (CG) and fibromyal-
gia (FG) groups. The classifications were performed with Principal Component Analysis (PCA), the Successive 
Projections Algorithm (SPA), and the Genetic Algorithm (GA), associated with supervised Linear Discriminant 
Analysis (LDA), Quadratic Discriminant Analysis (QDA), and Vector Support Machines (SVM), thus nine com-
binations of algorithms: PCA-LDA, SPA-LDA, GA-LDA, PCA-QDA, SPA-QDA, GA-QDA, PCA-SVM, SPA-SVM 
and GA-SVM, seeking to identify the combination with the best performance for each dataset.

Before starting the classifications, the PCA was used as an exploratory analysis, resulting in scores graphs 
for the first and second principal components (PCs). The scores on PC1 and PC2 are shown in Fig. 2. Although 
PCA can also be considered an unsupervised classification tool, it is observed in all the score charts the absence 
of patterns in the discrimination of the CG and FG groups. Thus, the use of supervised analyzes was necessary.

Figure 1.  Mass spectra for the moderate CAT symptom, with application of baseline and ROI correction, with 
samples from the control group (blue) and samples from the fibromyalgia group (red) obtained by PSI-MS. 
Spectra of the other symptoms can be found in the supplementary information (Fig. S1).
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The multivariate analyzes were performed following the application of nine different combinations of super-
vised techniques, seeking the best result in the discrimination of groups for each set of data. The spectral data 
that presented the best results were those of the mass positive ionization mode. For the PCA analyzes as an 
algorithm to reduce the dimensions of the data, the first five PCs were used. The SPA and GA algorithms were 
limited to ten variables as the upper bound in the selection of variables. In the GA, ten generations and ten for 
the population of individuals in each generation were used. For the SVM algorithms, the Polynomial Base Func-
tion (PBF) kernel was used for all spectral datasets. Regarding the results of efficacy in classifying the groups, 
in each dataset, sensitivity and specificity values were used for the control and fibromyalgia groups. The best 
results obtained, for each symptom level or sum of levels, are shown in Table 1. The models that best adapted to 
the spectral data were PCA-LDA, PCA-SVM, GA-LDA and GA-SVM.

Except for the QL symptom, moderate intensity was present in all symptoms analyzed with good numbers 
of samples for most datasets. The moderate level had indices of 100% classification in the control group of the 
clinical variable VAS (PCA-LDA) and 100% in the cases group (or fibromyalgia) of the clinical variable CAT 
(PCA-LDA). The moderate level of the TAMPA symptom also showed good distinction between the groups, 
with an accuracy of 68% and 79% in the CG and FG, respectively, using the GA-SVM model. The severe level of 
symptoms was analyzed in the variable FIQ, HAM and TAMPA, reaching 100% classification in the FIQ symptom 
for the control group (PCA-LDA). The mild level was present in the VAS and CAT symptoms and presented a 
good classification of the groups, where the VAS obtained the best result with the PCA-SVM model and accuracy 
of 90% and 60% for the CG and FG, respectively, while the CAT symptom reached the best classification index 
with the GA-LDA model, with accuracy of 60% and 80% in the control and cases groups, respectively.

The results of the sums of the levels were highlighted for most symptoms (FIQ, HAM and TAMPA). Note that 
for these datasets, all combinations involve the sum of the moderate and severe level: in the moderate + severe 
combination of the FIQ, the values of separation between CG and FG of the PCA-LDA model are equivalent in 
71 and 73% of accuracy, respectively; for the moderate + severe combination of the HAM symptom, the PCA-
SVM model has a prevalence in the choice of samples from the control group with 90% accuracy, compared to 
the cases group with 65% accuracy; the opposite effect is observed in the moderate + severe combination of the 
TAMPA symptom, with efficacy of 92% in the cases group and 72% in the control group, with the PCA-LDA 
model. For the other sums of symptom levels, despite not showing the best results within each clinical variable, 
they showed good classifications of the groups where the mild + moderate combination of VAS had an accuracy 
of 71% in the control group and 68% in the cases group, with the PCA-LDA, while the mild + moderate com-
bination of the CAT had an accuracy of 75% and 76% in the control and cases groups, with GA-SVM. In the 
clinical variable QL, the condition evaluated is an intermediate symptom level that achieved a good value in the 

Figure 2.  Graphs of PC1 versus PC2 scores for the moderate CAT symptom, with CG (yellow) and FG (blue) 
samples and confidence ellipses (dashed circles) for the analyzed datasets. The percentage of total variance 
for each PC is described in parentheses. Graphs of the other symptoms can be found in the supplementary 
information (Fig. S2).
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separation of samples from the cases group (77% accuracy) while the classification of the control group did not 
have the same success (42% accuracy), using the GA-SVM model.

For the study of the main m/z ratios in the differentiation of the groups, the variables selected by the GA 
models with the best performance in each data set were used, since the SPA models did not present satisfactory 
processing. This survey showed 261 different variables, considering the triplicate execution of the GA models 
due to its non-deterministic nature. We considered the values that doubled in amount, reducing the number of 
samples to 31. Table 2 describes this survey, with the respective m/z values. Another variable investigation was 
performed based on the PC1 loadings of each PCA execution in the data sets. For this, the difference between 
the averages of the spectra of the control group and the cases group was performed. The analysis focused on the 
resulting peak regions between these differences, which coincided with the PC1 loadings profiles. Considering 
the existence of relevant m/z ratios in the presence of the disease, negative signal peaks were selected, indicat-
ing greater intensity for samples from the cases group. Figure S3 (Supplementary Information) illustrates this 
operation in all data sets worked. Thus, for the analysis of all levels of symptoms, the variables 301, 311, 325, 338 
and 579 were selected. In this way, the selected values (31 by the GA models and 5 by the PCA) were searched 
on platforms with a database of human metabolomic data such as  HMDB29 and human lipidomic such as LIPID 
 MAPS30.

Based on the HMDB platform, for the variables selected by the GA models, the search for human metabolites 
followed the configuration established for compounds present in blood samples, with endogenous or exogenous 
origin, intra or extracellular location, and mean mass and monoisotopic mass values [M + H]+ matching the 
variable. The relationship of the findings is described in Table S3 of the Supplementary Information, where the 
following m/z ratios and their occurrence in the clinical variables were identified: 645 (mild VAS and severe 
TAMPA), 679 (moderate VAS and moderate CAT), 707 (mild VAS and moderate TAMPA), 797 (moderate VAS 
and regular QL), 827 (mild VAS and regular QL), 841 (mild VAS and severe FIQ) and 848 (severe TAMPA and 
moderate CAT). For this list of findings in the HMDB database, the main classes of metabolites correspond to 
glycerolipids, steroids and derivatives, glycerophospholipids and sphingolipids. For the variables selected by the 
PCA, the search followed the variables values and identified correspondence with the value m/z = 579 for the 
LysoPC(22:0/0:0) compound. In the PC1 loadings, this variable is presented by all symptoms, except for VAS 
(moderate) and CAT (mild).

Using the LIPID MAPS database, with ion configuration in positive mode [M + H] + and mass variation toler-
ance in m/z =  ± 0.1, the variables proposed by the GA model (m/z = 131, 133 and 225) corresponded to different 
types of fatty acids and fatty esters (Table S4). The association of variables with symptoms is described as: variable 
m/z = 131 with symptom QL (regular) and FIQ (moderate); variable m/z = 133 with EVA (moderate) and CAT 
(moderate); and variable m/z = 255 with QL (regular) and HAM (moderate). There was no correspondence in 
the LIPID MAPS database for the variables based on the PC1 loadings.

Discussion
The study carried out by Wolfe et al.8 which resulted in a review of fibromyalgia diagnostic criteria in 2016, 
demonstrated the comparison of studies using diagnostic criteria recommended by the American Committee on 
Rheumatology in  19904,  20106 and  20117, seeking to determine the validity, usefulness, potential problems, and 
necessary modifications to the criteria. Despite proposing some adjustments in the use of the criteria, the study 
concluded that the criteria had good sensitivity and specificity for all analyzed studies, with an average of 84% and 
83%,  respectively8. Recent studies have also demonstrated good sensitivity and specificity in classifying groups 

Table 1.  Models with the best performance in each data set, followed by the respective sensitivity (Sens.), 
specificity (Spec.) and accuracy values.

Clinical variable Symptom level Best model Sens. (%) Spec. (%) Classification accuracy (%)

VAS

Mild PCA-SVM 60 90 75

Moderate PCA-LDA 57 100 79

Mild + moderate PCA-LDA 68 71 70

FIQ

Moderate PCA-LDA 50 75 63

Severe PCA-LDA 50 100 75

Moderate + severe PCA-LDA 73 71 72

HAM

Moderate PCA-LDA 50 75 63

Severe GA-LDA 97 46 72

Moderate + severe PCA-SVM 65 90 78

QL Regular GA-SVM 77 42 60

TAMPA

Moderate GA-SVM 79 68 74

Grave GA-LDA 71 58 65

Moderate + severe PCA-LDA 92 72 82

CAT 

Mild GA-LDA 80 60 70

Moderate PCA-LDA 100 75 88

Mild + moderate GA-SVM 76 75 76
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of patients with and without fibromyalgia, using blood plasma samples, among which: Passos et al.17 used ATR-
FTIR spectroscopy, with results of 89.5% sensitivity and 79% specificity in the classification between controls and 
fibromyalgia patients using a GA-LDA model; while Alves et al.18 used PSI-MS mass spectrometry and reached 
values of 100% sensitivity and specificity using SPA-LDA and exploratory analyzes with PCA, with small groups 
of samples (10 controls and 10 fibromyalgia samples). The study presented herein obtained 100% sensitivity and 
75% specificity (88% accuracy), with a total number of samples equal to 64 (27 controls and 37 fibromyalgia 
samples) for the classification performed with the PCA-LDA model in the set of data regarding the moderate 
CAT symptom. Different sets of data were used, with samples from patients with and without fibromyalgia fol-
lowing the relationships of clinical variables obtained by questionnaires and scales. Blood plasma samples were 
analyzed by the PSI-MS technique and submitted to multivariate analyses. The distinction between the groups 
of cases and control samples demonstrated in this study indicates methodologies with different combinations of 
techniques and good potential in the diagnosis of fibromyalgia.

The use of different datasets, varying the amounts of the controls and cases according to the symptom, 
demonstrated the good adaptation of the spectral data in most of the developed models. In addition to the CAT 
symptom, the dataset related to the moderate + severe TAMPA symptom also presented a good classification, 
where the values of sensitivity and specificity were 92% and 72%, respectively, using the PCA-LDA model with a 
total number of samples equal to 90 (59 CG samples and 81 FG samples). Overall, these results expand the pos-
sibilities of using the PSI-MS methodology coupled with multivariate analysis in the diagnosis of fibromyalgia.

Table 2.  Variables selected by the GA models for the levels of symptoms studied. Symptoms: VAS Visual 
Analog Scale of Pain, FIQ Fibromyalgia Impact Questionnaire, HAM Hamilton Anxiety Rating Scale, QL 
Quality of Life index, TAMPA The Tampa Kinesiophobia Scale, CAT  Pain Catastrophizing Scale. Models: 
GA-LDA genetic algorithm with linear discriminant analysis, GA-SVM genetic algorithm with support vector 
machines. The values in bold represent the variables that occurred in more than one model, totaling 31 
different variables.

Symptom Model Selected variables (m/z)

VAS (mild) GA-LDA

22 37 143 180 563 575 645 827 844 850

365 448 659 681 707 726 778 841

113 160 161 189 336 413 794

VAS (moderate) GA-SVM

133 349 418 459 551 559 679 686

92 144 182 326 601 646 881

17 18 153 391 486 797 840 846 893

FIQ (moderate) GA-SVM

26 160 196 201 343 627 895

91 365 518 622 643 776

131 132 141 225 259 389 492 766 888

FIQ (severe) GA-LDA

261 407 449 598 722 732 784 841 849

5 8 259 267 389 397 434 779

200 204 334 375 444 599 838 888

HAM (moderate) GA-SVM

67 122 468 699 700 805

159 169 195 231 255 302 717 879 887

75 147 414 445 477 891

HAM (severe) GA-LDA

66 174 386 538 546 846 871

39 273 492 629 702 719 832

249 277 330 391 421 857

QL (regular) GA-SVM

31 72 155 361 614 708 797 886

57 263 404 530 570 741 823

131 225 366 385 485 533 636 729 780 827

TAMPA (moderate) GA-SVM

380 381 383 543 562 649 684 792 877

72 119 183 394 478 584 596 773 803

76 252 320 387 537 586 624 707 869

TAMPA (severe) GA-LDA

102 255 402 544 602 646 785

186 336 352 501 535 560 639 645

100 375 432 530 651 712 787 848 880

CAT (mild) GA-LDA

128 168 393 491 582 683 687 751

5 101 252 350 522 532 618 821

187 218 413 423 749 814 860

CAT (moderate) GA-SVM

55 199 366 478 597 679 786 866 889

31 69 80 133 428 449 455 553 872

95 121 637 673 695 824 848
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Other results obtained are related to the variables selected in the classifications. The outstanding m/z ratios 
accounted for 36, in a range of 900 different variables, using the GA selection models and an analysis of the load-
ings on the first PC component with the mean differences between the spectra of the control and cases groups. 
Among the highlighted variables, there was a correspondence of m/z = 10 values with the analyzed compound 
banks (metabolites and lipids). For the association of human metabolites present in blood plasma, the classes of 
glycerolipids, steroids and derivatives, glycerophospholipids, sphingolipids and lysophosphatidylcholine were 
identified. Regarding the classes of lipids, there were references to different fatty acids and their conjugates and 
fatty esters. Among these relationships, the most relevant is indicated by the association of the variable m/z = 579 
with the compound LysoPC(22:0/0:0). This m/z ratio value was indicated in the analysis of PC1 loadings, being 
present in most data sets. Another reason that highlights this finding is in a previous  study18 which also confirms 
the presence of compounds of the lysophosphatidylcholine class in the samples of the cases group, as well as in 
studies that present this class of metabolites as a possible biomarker or contributing factor to the fibromyalgia 
 phenotype31,32.

Despite associations with lysophosphatidylcholine, the fragmentation analyzes did not confirm this class of 
metabolites. For values below m/z = 100, the equipment used did not provide sufficient resolution for fragmen-
tation. Therefore, further investigations on this class of metabolites should be performed in higher resolution 
equipment in order to find accurate biomarkers.

Due to the efforts needed to improve the accuracy of fibromyalgia diagnosis through the updated  criteria33, 
the combinations of methods demonstrated in this study provides a simple and versatile analysis with minimum 
sample  preparation34,35. Future research about fibromyalgia diagnosis can benefit from this approach that uses 
spectral signatures to identify this disorder within a varied clinical  phenotype36.

In summary, this study demonstrated good ability to distinguish samples from patients with and without 
fibromyalgia, using PSI-MS spectrometry and multivariate analysis of blood plasma samples. The differences 
presented refer to the different sets of data used and the achievement of good classification results with differ-
ent supervised models and a good number of samples in the CG and FG groups. The use of clinical variables 
proposes the use of different methodologies in the screening of fibromyalgia, where a symptom more evident by 
the patient, can refer to a specific diagnostic test, using the models proposed in this study. Another proposition 
involving clinical variables comprises a combination of diagnostic tests based on the most expressive symptoms, 
confirming or indicating the presence of the disease. These tests may be viable as there is no need for large 
volumes of blood for analysis, requiring only a small aliquot of blood plasma equivalent to 10 µL. Despite the 
advantages and possibilities presented herein, it is important to consider that not all levels of symptoms obtained 
good accuracy values in the classifications, as well as it was not possible to perform processing in some clinical 
variables, due to the reduced number of samples. Implications on symptom level and the presence or absence 
of fibromyalgia were also not considered.

Thus, the methodology presented in this study presents itself as a useful tool in the diagnosis of fibromyalgia, 
proposing effectiveness, better response time, easy execution and good cost–benefit.

Experimental
Plasma samples. This case–control study was carried out following the ethical standards of the Declaration 
of Helsinki and was approved by the local institutional ethics committee of the University Hospital Onofre Lopes 
(Federal University of Rio Grande do Norte, Natal, Brazil) under the registration number 2,631,168. Informed 
consents were obtained from all subjects in this study; and all experimental protocols followed ethics guidelines. 
For this study, 180 plasma samples were selected, 90 samples from patients in the control group and 90 samples 
from patients with FM. Data were collected from July 2018 to March 2019 and recruitment was carried out 
during this period. The study was carried out at the Clinical Epidemiology Laboratory of the Federal University 
of Rio Grande do Norte, Natal, Brazil. Sociodemographic data (gender, age, education, occupation, status and 
ethnicity), clinical data (impact of fibromyalgia, anxiety, pain and quality of life) and 10 mL of blood were col-
lected from each patient on the same day.

Measurements of clinical variables. The anxiety symptom severity can be measured by psychometric 
tools such as the Hamilton Anxiety Rating Scale (HAM-A)37. In the diagnosis of fibromyalgia, the HAM-A scale 
is used to assess the patient’s psychological condition and is related to the HAM-D scale, which assesses depres-
sion in  individuals38. A study carried out by Matza et al.39 proposes cut-off points for the HAM-A scale scores, 
making the results more significant and interpretable for researchers, clinicians and patients, where the intervals 
are divided into: mild (score from 8 to 14); moderate (score 15 to 23); severe (score equal to 24); and score 7 
representing no or minimal presence of anxiety.

The Tampa Kinesiophobia Scale defined as excessive, irrational and debilitating fear of movement, is com-
monly found in patients with fibromyalgia due to the association between pain/fatigue and movement increas-
ing the patient’s  disability40. The Tampa kinesiophobia scoring scale follows a specific dynamic of the sum of 
responses present in a questionnaire with seventeen questions, where the final values can vary from 17 to 68 
points, with a mild classification (17 to 34 points), moderate (35 to 40 points) and severe (51 to 68 points)41.

General symptoms related to fibromyalgia are also evaluated using the Fibromyalgia Impact Questionnaire 
(FIQ), which is a self-administered questionnaire designed to assess the components of health status believed 
to be most affected by  FM42. The FIQ serves as an effective tool to assess symptoms that impact daily functions 
such as general well-being, work ability, fatigue, morning fatigue, depression, and  others43. The FIQ score ranges 
from 0 to 100, with severity analysis classified as mild effect (score less than 39), moderate effect (score between 
39 and 59), and severe effect (score above 59)44.
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The pain symptom represents one of the most important symptoms in disorders of the musculoskeletal 
system, being the result of the most common measure in rheumatological diseases such as  fibromyalgia45. The 
Visual Analog Scale of pain (VAS) is used to measure pain intensity, where the patient indicates their percep-
tion of pain on a 10 cm scale, with the left end labeled “No pain” (0 cm) and the right end “Very strong pain” 
(10 cm)46. Using measurements in millimeters, to improve precision, it is possible to classify pain intensity on 
the VAS scale as: no pain, with values from 0 to 4 mm; mild pain from 5 to 44 mm; moderate pain from 45 to 
74 mm; and severe pain above 75  mm47.

The Health Survey Summary Form (SF-36) is a generic instrument to assess health and quality of life (QL), 
with questions about physical function, bodily pain, general health, vitality, mental health and other percep-
tions related to  health42. The Pain Catastrophizing Scale (CAT) is associated with more severe symptoms and a 
worse adaptation to fibromyalgia, characterized by a pessimistic picture and exaggerated interpretations of pain 
 sensation48. Both for the SF-36 questionnaires that measure patients’ quality of life—QL, and for the pain cata-
strophizing scale—CAT, few studies suggest classifications of intensity in the scores. Considering the total score 
for QL and CAT and observing the trends in the intensities of the other symptoms, it is possible to propose: the 
classification of the SF-36 questionnaires, with scores between 0 and 100 and higher indices for better QL, low 
(0 to 25 points), regular (26 to 50 points), good (51 to 75 points) and excellent (76 to 100 points). For the CAT 
scale, the score ranges from 0 to 60 points, with the highest score indicating a worse perception of the symptom. 
Thus, the scale can be classified according to intensity: mild (0 to 20 points), moderate (21 to 40 points) and 
high (40 to 60 points).

Samples in the PSI‑MS spectrometer. For each selected plasma sample, a 10 µL aliquot was removed 
and applied to triangular paper (Whatman grade 1, GE Healthcare, USA, 1.5 cm side) and left at room tempera-
ture (25 °C) until dry. The triangular papers containing small aliquots of blood were positioned in front of the 
mass spectrometer (at 4 mm between the tip of the paper and the inlet of the mass spectrometer). The dry paper 
was held by a metal clip connected to the voltage source of the mass spectrometer, with the tip of the paper at 
approximately 5 mm. 10 µL of methanol (0.1% formic acid v/v) was applied to the paper to form the electrospray 
for MS analysis. The analyzes were performed in triplicate measures.

Instrument parameters. Mass spectra were obtained using a Termo Scientifc LTQ-XL Linear Ion Trap 
Spectrometer. The optimized parameters were the following: positive ionization mode; capillary temperature 
275 °C; capillary voltage of 15 V; 4 kV spray voltage; 50 V tube lens. Mass spectra were acquired using Termo 
Tune plus software and processed for chemometric analysis using the Xcalibur Analysis package software (ver-
sion 2.0, Service Version 2, Termo Electron Corporation).

Computer analysis. Spectral data were processed using the MATLAB R2014b software (MathWorks Inc., 
Natick, USA) with the PLS Toolbox version 7.8 (Eigenvector Research Inc., Wenatchee, USA). All sets of spectral 
samples were submitted to pre-processing with automatic weighted least squares (AWLS) baseline correction 
and application of the regions-of-interest (ROI) algorithm. Spectral samples were divided into training (70%) 
and test (30%) groups using the Kennard Stone sample selection algorithm. In this division, the training sample 
set is used to build the model, while the test sample set is used to predict the model performance.

Regarding model construction, Principal Component Analysis (PCA) is a powerful and versatile tool capable 
of providing an overview of complex multivariate  data49. With PCA it is possible to reduce a large volume of 
data in a few principal components (PC) that represent most of the original  information26. In the Successive 
Projections Algorithm (SPA), projection operations are used to choose subsets of variables with a small degree 
of multicollinearity, allowing the detection of specific spectral  bands25. The Genetic Algorithm (GA) is inspired 
by natural evolution to become a robust and efficient algorithm at the same time, providing selected variables at 
each execution of the model, which may indicate a good strategy to explore the features present in the analyzed 
 samples50.

PCA as feature selection method as well as SPA and GA as variable selection algorithms can be used in con-
junction with supervised classifiers such as: Linear Discriminant Analysis (LDA) and Quadratic Discriminant 
Analysis (QDA) that aim to find limits that separate groups or samples, with LDA getting linear limits where a 
straight line divides the variable space into regions, and QDA getting quadratic limits where a quadratic curve 
divides the variable  space51. LDA and QDA are based on the calculation of the Mahalanobis distance between the 
samples, demonstrated in Eqs. (1) and (2) for the classification scores of LDA ( Lik) and QDA (Qik) ,  respectively26:

where xi is the response vector for sample i, xk is the mean response vector for class k, Cpooled is the pooled covari-
ance matrix, Ck is the variance–covariance matrix of class k, and πk is the prior probability of class k.

The Support Vector Machines (SVM) algorithm is also combined with PCA, SPA and GA, considering the 
multidimensionality of data and non-linear  limits52. For classification with SVM, the calculation follows the 
 equation53:

(1)Lik = (xi − xk)
T
C
−1
pooled(xi − xk)− 2logeπk ,

(2)Qik = (xi − xk)
T
C
−1
k (xi − xk)+ loge|Ck| − 2logeπk ,
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where xi and zj are response vectors, NSV is the number of support vectors, αí is the Lagrange multiplier, yi is the 
class membership, K

(

xi , zj
)

 is the kernel function, and b is the bias parameter.
The classification performance of the algorithms used in this study is evaluated through the sensitivity (SENS) 

(4), specificity (SPEC) (5) and accuracy (AC) (6), using the set of test samples for each group (cases and controls):

where TP stands for true positive, TN stands for true negative, FP stands for false positive and FN stands for 
false negative.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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