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Image analysis of cutaneous 
melanoma histology: a systematic 
review and meta‑analysis
Emily L. Clarke 1,2*, Ryckie G. Wade 3, Derek Magee 4, Julia Newton‑Bishop 2 & 
Darren Treanor 1,2,5,6

The current subjective histopathological assessment of cutaneous melanoma is challenging. The 
application of image analysis algorithms to histological images may facilitate improvements in 
workflow and prognostication. To date, several individual algorithms applied to melanoma histological 
images have been reported with variations in approach and reported accuracies. Histological digital 
images can be created using a camera mounted on a light microscope, or through whole slide image 
(WSI) generation using a whole slide scanner. Before any such tool could be integrated into clinical 
workflow, the accuracy of the technology should be carefully evaluated and summarised. Therefore, 
the objective of this review was to evaluate the accuracy of existing image analysis algorithms applied 
to digital histological images of cutaneous melanoma.Database searching of PubMed and Embase 
from inception to 11th March 2022 was conducted alongside citation checking and examining reports 
from organisations. All studies reporting accuracy of any image analysis applied to histological images 
of cutaneous melanoma, were included. The reference standard was any histological assessment 
of haematoxylin and eosin‑stained slides and/or immunohistochemical staining. Citations were 
independently deduplicated and screened by two review authors and disagreements were resolved 
through discussion. The data was extracted concerning study demographics; type of image analysis; 
type of reference standard; conditions included and test statistics to construct 2 × 2 tables. Data was 
extracted in accordance with our protocol and the Preferred Reporting Items for Systematic Reviews 
and Meta‑Analyses‑Diagnostic Test Accuracy (PRISMA‑DTA) Statement. A bivariate random‑effects 
meta‑analysis was used to estimate summary sensitivities and specificities with 95% confidence 
intervals (CI). Assessment of methodological quality was conducted using a tailored version of the 
Quality Assessment of Diagnostic Accuracy Studies (QUADAS‑2) tool. The primary outcome was 
the pooled sensitivity and specificity of image analysis applied to cutaneous melanoma histological 
images. Sixteen studies were included in the systematic review, representing 4,888 specimens. Six 
studies were included in the meta‑analysis. The mean sensitivity and specificity of automated image 
analysis algorithms applied to melanoma histological images was 90% (CI 82%, 95%) and 92% (CI 
79%, 97%), respectively. Based on limited and heterogeneous data, image analysis appears to offer 
high accuracy when applied to histological images of cutaneous melanoma. However, given the 
early exploratory nature of these studies, further development work is necessary to improve their 
performance.

Despite advances in therapy, the 5-year survival of patients with metastatic melanoma is still less than 30%1. 
Moreover, the incidence of melanoma is predicted to rise by 7% from 2014 to  20352. Diagnosis of melanoma 
depends upon a histopathologist’s interpretation of the tissue at a cellular level, with subjective thresholds for mor-
phological features. Histopathological interpretation can be challenging, resulting in high levels of interobserver 
 variation3, which may in part be due to the wide range of histological appearances (see Fig. 1). Consequently, 
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up to 17% of diagnoses are reclassified as false positives or false negatives when reviewed by a specialist panel 
of  pathologists3.

The current prognostic biomarkers based on histological features are contained within the current staging 
system (American Joint Committee on Cancer, AJCC)4, with maximum tumour depth (Breslow thickness) 
remaining the most important predictor of survival for over 50  years5. Other prognostic biomarkers contained 
within the AJCC staging include ulceration, mitoses, lymph node involvement and metastatic disease detected 
in viscera. However, the staging system explains an insufficient proportion of the variance in  survival6 with some 
thin tumours unexpectedly causing metastatic disease.

Given that there is currently a staffing shortage in pathology services globally, with only 3% of pathology 
departments reporting being fully staffed in the United Kingdom (UK)7, there is a clear need for tools that aid 
pathologists and improve workflow. It is important that any new prognostic biomarkers not demand additional 
work of histopathologists.

Digital microscopy has become an essential tool in pathological research over the past few decades. Initially, 
cameras mounted on microscopes enabled the generation of standard digital images, but the invention of the 
whole slide scanner over 20 years ago, glass slides can now be scanned to create a whole slide image (WSI) ena-
bling the tissue to be viewed at multiple magnifications (see Fig. 2). The generation of digital images of histologi-
cal tissue has allowed the creation and application of image analysis (IA) algorithms. More recently still, artificial 
intelligence (AI) models have been applied to these images and yielded promising  results8–12.

There is a clear need to improve our current subjective histopathological assessment of cutaneous melanoma, 
which may be achieved by the implementation of image analysis algorithms. There have been several studies 
of IA applied to melanoma digital slides, all of which have reported variable methodologies and performances. 

Figure 1.  An example of the range of histopathological appearances of melanoma. The first image on the far 
left shows a tumour in which the tumour cells are obscured by large amounts of melanin pigment; the second 
image from the left shows a more conventional melanoma without pigment; the third image from the left shows 
a balloon cell variant of melanoma; the image on the right is an example of a spindle cell melanoma. This is an 
original image created by the authors using Medical Image Manager, HeteroGenius Limited, UK.

Figure 2.  Glass slides are scanned using a slide scanner (photo above, credit: Mike Hale, University of Leeds) to 
create a whole slide image (image below) which can be viewed on a computer display. This digitisation of whole 
slide images has permitted the application of image analysis algorithms.
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Prior to any algorithm being adopted into clinical workflows, extensive clinical validation is required, the first 
step of which would be to provide sufficient evidence to indicate that a model is likely to meet end user require-
ments. This represents the rationale for this review which summarises the existing evidence and evaluates the 
performance of these algorithms.

Materials and methods
This systematic review and meta-analysis was written and performed in accordance with our protocol (PROS-
PERO ID 336,714) and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses-Diagnostic 
Test Accuracy (PRISMA-DTA)  Statement13.

Participants and studies. We included studies of any design that reported accuracy outcomes of IA 
applied to histological images of cutaneous melanoma.

Target condition. The target condition was cutaneous melanoma.

Index test. The index test was any form of automated IA. This includes more conventional IA techniques as 
well as neural networks. Manual annotation of histological images was not included.

Reference standard. The reference standard was any form of histopathological assessment of the haema-
toxylin and eosin (H&E) histological image and/or immunohistochemical staining.

Search strategy. PubMed and Embase were searched from inception to 11th March 2022, restricted to 
English language (for full search strategy see Appendix 1). Citation checking was also conducted.

Study selection. All citations were independently deduplicated and screened by ELC and RGW. Where 
possible, the full texts of potentially eligible articles were obtained and independently assessed by the same two 
individuals with disagreements resolved by discussion. We included abstracts as well as full texts.

Data extraction. Data were extracted concerning study demographics; type of IA; type of reference stand-
ard; conditions included and test statistics to construct 2 × 2 tables of the number of true-positives (TP), false-
positives (FP), false-negatives (FN) and true-negatives (TN).

Methodologic quality assessment. The QUADAS-AI tool was in development at the time of carrying 
out this work and therefore a tailored version of the Quality Assessment of Diagnostic Accuracy Studies QUA-
DAS-2 was created (per a recent important article in  Nature14) and used to appraise the risk of bias and applica-
bility of the included studies (Appendix 2).

Assessment of risk of bias for patient selection included whether there was one WSI per patient and if they 
were contained within one set, since studies that involved multiple WSIs per patient with cases from the same 
patient spread across the training and test sets result in an overestimation of the model’s performance. Risk of 
bias with regards to the index test included details of the presence of a separate (ideally external) test set and 
whether all the cases were included in the analysis. Studies that do not use a separate test set are also at risk of 
overestimating a model’s performance. Bias of the reference standard included whether the reference standard 
results were interpreted without knowledge of the index test, alongside the ability of the reference standard to 
correctly identify melanoma. If the reference standard is interpreted with knowledge of the index test, then this 
may bias the reference standard to mirror the index test results, again overestimating performance. Finally, studies 
including cases with a time interval of more than 10 years between the diagnosis of the reference standard and 
the digital image creation indicated a high risk of bias for flow and timing, since diagnostic criteria and terminol-
ogy changes with time and glass slides fade introducing risk that they may not clearly depict the pathology and 
underestimate the model’s performance.

Applicability assessment involved whether the case selection, index test or reference standard matched the 
review question.

This data was summarised using the Risk-of-bias VISualisation (robvis)  tool15.

Statistical analysis. The MetaDTA: Diagnostic Test Accuracy Meta-Analysis v2.01  shinnyapp16,17 was 
used to generate summary sensitivities, specificities, forest plots and summary receiver operating characteristic 
(SROC) plots using a bivariate random-effects model. A sensitivity analysis was performed including only those 
studies generating IA models concerned with melanoma tumour detection. A flow-diagram was generated using 
the PRISMA2020  tool18. Publication bias was not assessed because the determinants are not well understood for 
diagnostic accuracy  reviews19 and the Deeks test has low power in the presence of substantial  heterogeneity20. 
The significance level was set at 5%. Confidence intervals were generated to the 95% level.

Results
Study selection. Ultimately, sixteen studies were included (Fig. 3).

study characteristics. Study characteristics are presented in Supplementary Table  1. Studies originated 
from the  UK21,  Germany11,22,  France23,  Italy12,  Sweden24,  USA10,  Canada25–28,  Japan29 and  China27,30–33(p202) and 
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were performed between 2012 and 2021. Studies varied in size with a median sample size of 100 specimens or 
slides (interquartile range [IQR] 66–583.5; range 1–1079). Overall, 4,888 specimens were included, of which at 
least 2,715 were melanoma specimens. The diagnostic entities within the datasets varied between studies, with 
some only containing melanoma  deposits12,21,24–26,33 and others containing more than one  pathology10,11,22,27–32.

There was between-study variation in terms of intended use of the IA. Most studies focused on a binary 
classification task, with some focussing on detection and localisation of melanoma deposits in WSIs containing 
melanoma (melanoma versus not melanoma)12,25,26,32 and others performing diagnostic classifications including 
melanomas versus  naevi11,22,31 and primary melanoma versus metastatic  melanoma33. Five studies addressed more 
complex classifications into three or more diagnostics  entities10,23,28–30. One  study24 did not focus on a classifica-
tion task, but instead studied automation of the proliferation index in melanoma.

There was some degree of variation in the IT used. Most employed the use of a convolutional neural networks 
(CNN), with the architecture differing  considerably10–12,22,23,26,29–31,33. Studies using CNNs were more recently 
conducted. Two of the earliest studies employed the use of a support vector machine (SVM)24,27. Two studies 
used a combination of a CNN and SVM as their index  test11,32. A further study used more basic image processing 
and adaptive thresholding  method29.

There was heterogeneity in the reference standard. In most studies pathologists provided diagnostic 
 labels10–12,22,31, categorised specimens by histological  features23, carried out manual  annotation21,25,28,30 or inter-
preted immunohistochemical  staining23,24,26. Some studies used a combination of these  approaches23,32. Two 
studies did not detail the reference standard  used29,33.

There was variation in the reported units for performance analysis. Some studies reported pixel-based 
 outcomes25,26 or cell-level  outcomes24,27,28, whereas others focussed on patch-level12,22,31,32 or slide-level 
 classifications10,11,30,32. Three studies did not report on their unit for  analysis23,29,33, whilst one appeared to be at 
the WSI-level23.

Risk of bias and applicability concerns. The risk of bias and applicability assessment are summarised in 
Fig. 4. Twelve studies were at risk of selection  bias10,11,22–24,26–31,33, of which, four studies were at high risk since 
more than one histological image was included per patient and were spread across the training/ test  sets10,26,27,33. 
The remaining studies were at unclear risk of patient selection  bias12,21,23,27–29,31,33. Thirteen studies were at risk 
of bias from the index  test11,12,21–23,25–31,33; seven studies were at high risk either due to the index test not being 
tested on an external test set (i.e., a source separate to those used for training/ validation)21,22,25,27,30, or not 
reporting results from a separate test  set28, or the test set being derived from the same histological slide as the 
training and validation  sets26. Six studies were at unclear risk of bias from the index  test11,12,23,29,31,33. Eleven stud-
ies were at unclear risk of bias from the reference  standard11,23–29,31,31–33 because it was not clear if the reference 
standard results were interpreted without knowledge of the IA or if the reference standard was likely to correctly 
classify the target condition. No studies were at high risk. Fifteen studies were at risk of bias due to the flow and 
 timing10–12,21,23,25–33; one study was at high risk of bias since the reference standard was determined over 10 years 
prior to the index test being  conducted24. The remaining fourteen studies were at unclear risk of bias since the 
timings for the determination of the reference standard and index test were not  reported10–12,21,23,25–33.

Figure 3.  Study flow diagram generated using PRISMA2020 available at: https:// estech. shiny apps. io/ prisma.

https://estech.shinyapps.io/prisma
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Twelve studies were of unclear concern regarding the applicability of patient  selection12,21,23–29,31,33, due to it not 
being stated if the cases were purposively selected. There were applicability concerns for seven studies regarding 
the index test; three studies were of high  concern22,26,28 and four  studies23,29,31,33 were of unclear concern that the 
index  test22,23,26,28,29,31,33 or its conduct or interpretation differed from the review question. Eight  studies23–29,33 had 
unclear concerns for applicability of the reference standard because it wasn’t clear if the individual determining 
the reference standard was suitably qualified or there were unclear criteria for diagnosis.

Synthesis of results. Of the sixteen studies included in this systematic  review10–12,21–33, six studies had 
data that could be meta-analysed11,12,21,22,32,33. The extracted data from five of these studies were from published 
 work12,21,22,32,33 and additional data from one study was provided by the  authors11. Over these 5 studies, 1,935 
specimens were included, of which at least 1,088 were melanoma specimens. The true-positive, false-positive, 
false-negative and true-negative rates can be seen in Supplementary Table 2.

Figure 5 shows forest plots of the sensitivity and specificity of any form of IA applied to cutaneous melanoma 
histological images. The mean sensitivity was 90% (CI 82%, 95%) and mean specificity was 92% (CI 79%, 97%), as 
shown in Fig. 6. For the studies which could not be included in the meta-analysis due to deficiencies in reporting, 
the performance metrics are summarised in Supplementary Table 3.

Sensitivity analysis. A sensitivity analysis was performed using the 5 studies concerned with tumour 
 detection11,12,22,32,33. In total there were 1,853 specimens, of which at least 1,088 were melanoma specimens. The 
mean sensitivity of IA for cutaneous melanoma tumour detection was 88% (CI 79%, 93%) and a mean specificity 
of 90% (CI 71%, 97%).

Discussion
For all tasks, IA applied to cutaneous melanoma histological images has a high sensitivity and specificity (Fig. 6). 
When including only those studies concerned with tumour detection, the results were similar. The performance 
of the models not included in the meta-analysis were also favourable (Supplementary Table 3).

As shown in Fig. 5,  three12,21,33 of the six meta-analysed studies reported very high sensitivities and specifici-
ties, whereas the other  three11,22,32 were more modest. These three  studies11,22,32 applied the IA to a reasonably 
sized separate test dataset containing more than one diagnostic entity. By contrast, the other three  studies12,21,33 

Figure 4.  QUADAS-2 summary diagram assessing risk of bias and applicability in the included studies. For 
more information on how the judgements were made, see Appendix S2.
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Figure 5.  Forest plots of the sensitivity and specificity of image analysis applied to melanoma whole slide 
images.

Figure 6.  Summary receiver operating characteristic plot of image analysis applied to melanoma whole 
slide images. The confidence region are the 95% confidence intervals around the summary estimate. The 
predictive region also captures between study statistical heterogeneity, so depicts the region in which we have 
95% confidence that the true sensitivity and specificity of a future study should lie. The predictive region 
encompasses the possibility that the index test may be worse than chance.
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contained less varied datasets containing only melanoma specimens, which may explain the more accurate 
results.

Across the 16 studies included in this  review10–12,21–33, there was no clear association between the type of 
index test or reference standard and the reported performance. Surprisingly, an increase in the number of data 
sources did not appear to temper performance; two  studies10,12 contained data from three sources but reported 
highly accurate results.

Given the exploratory nature of this work, there is currently no consensus regarding whether a more sensitive 
or specific test is preferable. A more sensitive test would result in fewer false negatives, which in the context of 
melanoma detection is likely to be of greater utility as missing a melanoma would not be acceptable, particularly 
as these tests are likely to be used as a screening or triage tool prior to pathologist assessment.

The studies that could not be included in the meta-analysis due to the lack of raw data or data appropriate 
for back calculation, reported alternative performance metrics including  accuracy25,26,30,31, dice co-efficient26, 
area under the curve (AUC)10,24,30, F-score24,29,31,  precision24,  recall24, percentage correctly  classified23, positive 
prediction  rate28, under-segmentation  rate28. The unit of analysis was also variable for the same reasons and 
included classifications at a pixel-level25,26, cell-level24,27,28, patch-level12,22,31,32 and slide-level10,11,30,32. This variety 
in reported unit of analysis and performance metrics presents challenges for interpretation and data amalgama-
tion, but it is expected given the wide range of model tasks included in this review. It is essential that the unit of 
analysis is appropriate for the task to prevent inaccurate performance estimation, as detailed in a seminal paper 
on the  subject34. However, regardless of the unit of analysis or performance metrics presented, we urge authors 
to report their raw data in a confusion matrix (containing the TP, FP, TN, FN counts) for classification-based 
tasks as per existing  guidelines35.

The clinical utility of the studies presenting results at the slide-level was clear; to assist with specimen 
 triage10,11,22,23,30,31,33. However, many studies which detected melanoma at a cell, pixel or patch-level did not 
address the clinical utility of their  models21,25–29, when these models are suited to prognostic biomarker genera-
tion. This may be due to difficulties acquiring the necessary data, but we would recommend that future studies 
detecting melanoma at a cell, pixel or patch-level, focus on how these models could be applied to predict patient 
outcome.

Our review had limitations. While 16 studies were included in the review, data extraction was only possible 
for six of the studies owing to deficient  reporting11,12,21,22,32,33. There was concern for risk of bias and applicability 
in all included studies, although reporting standards and methodological rigor did appear to improve with time. 
This variation in methodological rigor and reporting standards is likely due to a lack of reporting guidelines, 
although these are currently under  development14. Additionally, our risk of bias and applicability assessments 
may be suboptimal since the QUADAS-AI tool was still in development at the time of completion of this work. 
Future reviewers should deploy this AI-specific tool.

Conclusion
Based on limited and heterogenous data, IA offers high accuracy when applied to melanoma histological images. 
The focus of work to date has been on developing the technology in this field, which has accelerated over the past 
decade. Going forwards, future work should address the clinical application of such models and evaluate their 
use as a screening/ triage tool or for prognostic/ predictive biomarker generation. The quality of existing studies 
is variable but is improving with time—it is important that authors report their data according to AI-specific 
 guidelines14 once they are published.

Data availability
Data used to derive the results presented in this paper are available in the supplementary material.
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