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Identification of an immunogenic 
cell death‑related gene signature 
predicts survival and sensitivity 
to immunotherapy in clear cell 
renal carcinoma
Shuoming Zhou , Yanwen Lu , Yuxin Chen  & Weidong Gan *

Immunogenic cell death (ICD) is the trigger of adaptive immune responses. However, the role 
of ICD‑related genes in clear cell renal carcinoma (ccRCC) remains unclear. We aimed to identify 
biomarkers associated with ICD and develop an ICD‑related predictive model that predicts the 
immune microenvironment, prognosis, and response to immunotherapy in ccRCC. Our study included 
739 patients (603 in the training set and 136 in the validation set) with clinicopathologic information 
and transcriptome sequencing data. Consensus clustering, principal component analysis (PCA), 
weighted gene co‑expression network analysis (WGCNA), univariate COX analysis, multivariate COX 
analysis, and the Lasso‑Cox algorithm were applied to shrink predictors and construct a predictive 
signature of overall survival (OS). We used CIBERSORT, ESTIMATE, and TIMER in the R package IOBR 
to evaluate the tumor microenvironment and immune infiltration pattern of each sample. Finally, 
the single cell sequencing results of immune cells in ccRCC were used to verify the results of immune 
infiltration analysis, and the performance of the prognostic model was evaluated by calibration 
curves and c‑index. This study revealed that inability of the initial immune response and primary 
immunodeficiency were significantly enriched in the ICD subgroup with poor prognosis. We found that 
the ten candidate ICD genes (CALR, ENTPD1, FOXP3, HSP90AA1, IFNB1, IFNG, IL6, LY96, PIK3CA, 
and TLR4) could affect the prognosis of ccRCC (p < 0.05). The prediction model (PRE) we constructed 
can not only predict the long‑term survival probability but also evaluate the landscape of immune 
infiltration in ccRCC. Our study demonstrated that low infiltration of dendritic cells in ccRCC implies a 
poor prognosis, whereas the degree of CTL infiltration is less important. An individualized prediction 
model was created to predict the 1‑, 2‑, 3‑, and 5‑year survival and responsiveness of ccRCC patients 
to immunotherapy, which may serve as a potent tool for clinicians to make better treatment decisions 
and thus improve the overall survival (OS) of ccRCC patients in the future.

Clear cell renal cell carcinoma (ccRCC) is the most common pathological type of renal cell carcinoma (RCC) 
and is typically characterized by malignant epithelial cells with clear cytoplasm, accounting for more than 70% 
of RCC 1–3. Although most limited ccRCCs are slow-growing and non-fatal, approximately 1/3 of patients present 
with local or distant metastases at initial  diagnosis4,5, implying a poor prognosis. Currently, surgical resection is 
the treatment of first choice for ccRCC 6. However, among ccRCC patients who are eligible for radical surgical 
treatment, about 1/4 will experience recurrence and metastases after  surgery7.

Given the resistance of ccRCC to conventional adjuvant therapies such as chemotherapy and  radiotherapy8–10, 
adjuvant therapy for ccRCC has largely shifted to targeted therapy and immunotherapy. Unfortunately, targeted 
therapies for ccRCC are often met with resistance, resulting in poor clinical outcomes. Therefore, immuno-
therapies such as IFN-gamma, immune checkpoint blockade, and cancer vaccines have emerged as promising 
treatment options for ccRCC  patients11. Not all patients can benefit from immunotherapy to prolong survival, 
probably due to the differences in tumor microenvironment and susceptibility to immunotherapy in each patient.
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Accumulating evidence has proved immunogenic cell death (ICD) is the trigger of adaptive immune responses 
through its association with danger signal pathways mediating the extracellular emission of danger  signals12–14. In 
cancer immunotherapy, the key point is to harness the immune system to elicit an anti-tumor immune response. 
Comprehensive preclinical studies have established ICD as a potent predictor of antitumor  immunity12,15–18. 
Results from a large-scale META study revealed that the ICD-related genes exhibited a highly-clustered and 
largely cancer type-specific prognostic  impact19. Furthermore, this META study analyzed the prognostic role of 
ICD in lung, breast, and ovarian cancers. Recently, related studies have also been performed in  HNSCC20, but 
to the best of our knowledge, no similar studies have been reported in ccRCC.

Previously, miRNA- and lncRNA-based gene signatures were used to diagnose RCC 21,22, but the above models 
do not investigate the tumor immune microenvironment or immunotherapy responsiveness. In this study, we 
aimed to identify biomarkers associated with ICD and develop an ICD-related predictive model called "PRE", 
which predicts the immune microenvironment, prognosis, and response to immunotherapy in ccRCC.

Materials and methods
Selection and analysis of datasets. Download ccRCC expression data from the TCGA and ICGC 
databases. UCSC Xena (https:// xenab rowser. net/ datap ages/) is a storehouse for a wide variety of public data, 
including the TCGA database, and has been processed for batch effect elimination, which is of high use. The 
high-throughput sequencing data used in the training set of this study were obtained from UCSC Xena, with 
the format of the sequencing data being FPKM. And the expression profile for the validation set was obtained 
from the ICGC (International Cancer Genome Consortium) database. The ICGC database contains 89 cancer 
projects from 17 administrative regions in Asia, Australia, Europe, North America and South America, includ-
ing 25,000 tumor genomes, with data from several RCC cohorts, such as RT-US, RECA-CN, CCSK-US, WT-US, 
and RECA-EU. The data used in this study’s validation set came from RECA-EU, and the sample size was greater 
than 100.

Row (gene) and column (sample) with NA value greater than 50% were then removed. Finally, we performed 
log2 (X + 1) normalization on the FPKM data.

The immunohistochemical results of PIK3CA, IL1R1, HSP90AA1, and ATG5 from renal tumors were down-
loaded from the Human Protein Atlas (HPA) database using the R package "HPAanalyze"23 and matched immu-
nohistochemistry images and information were obtained to compare and analyze the immunohistochemistry 
results for these four genes.

Prognosis‑related ICD genes screening. Based on the expression profile data and the corresponding 
clinical data of the patients, we bulk screened for ICD genes that were significantly associated with tumor prog-
nostic parameters such as OS. In this study, we assessed the prognostic significance of each ICD gene by the 
Survival package in R, integrating survival time, survival status, and gene expression data, using univariate Cox 
hazard analysis.

Consensus clustering. The clustering was performed via ConsensusClusterPlus package in  R24, using 
agglomerative pam clustering with a 1-pearson correlation distance and resampling 80% of the samples for 10 
repetitions. In this study, the k-means clustering algorithm was used to obtain stable clustering subgroups by 
learning the characteristics of mRNA expression of 11 ICD genes that were significantly associated with prog-
nosis. The optimal number of clusters was determined by using the plot of the empirical cumulative distribution 
function.

Principal component analysis (PCA). First, we use the PCA function in the Factoextra and FactoMineR 
packages in R to extract the features and cumulative contribution of each principal component. Then the princi-
pal components with the first and second contribution rates are selected to construct the new coordinate system, 
and the distribution status of subgroups in the new coordinate system is reconstructed. In accordance with the 
subgroup distribution status, we selected the major component associated with the target subgroup tightly and 
proceeded to analyze the contribution values of each original element. In the end, the principal components 
most relevant to the target subgroup were identified and the key genes to focus on for analysis were found.

Weighted gene co‑expression network analysis (WGCNA). To further explore the functional char-
acteristics of the target subgroup, this study mainly used the R package WGCNA for weighted gene co-expres-
sion network  analysis25. We calculated the correlation of all genes with the key genes FOXP3 and LY96 obtained 
from principal component analysis, screened out the genes that were significantly associated with the key genes 
(p < 0.05), and introduced these genes into WGCNA to obtain the gene co-expression module. The scale-free  R2 
was set to greater than 0.80 and the soft-gap value was set to  625. These modules were then used for correlation 
analysis with ICD subtypes to select the most relevant module to the target ICD subtype.

Functional enrichment analysis and gene set enrichment analysis (GSEA). Gene Ontology (GO) 
enrichment analysis and The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were 
performed on the obtained modular genes using the R package ‘ClusterProfiler’26.

Next, we obtained the GSEA software (version 3.0) from the GSEA (http:// softw are. broad insti tute. org/ gsea/ 
index. jsp) website and divided the samples into two groups based on the consensus clustering results. The subset 
(c2.cp.kegg.v7.4.symbols.gmt) was also downloaded from the Molecular Signatures Database (http:// www. gsea- 
msigdb. org/ gsea/ downl oads. jsp) to evaluate the relevant pathways and molecular mechanisms.

https://xenabrowser.net/datapages/
http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/index.jsp
http://www.gsea-msigdb.org/gsea/downloads.jsp
http://www.gsea-msigdb.org/gsea/downloads.jsp
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Screening of variables included in predictive model PRE. The dimensionality reduction analysis of 
LASSO-COX was performed by glmnet and survival packages in R. Lastly, 10 candidate genes and correspond-
ing values of lambda (λ) were obtained according to ccRCC patients’ OS in the training set. Riskscore = b1 × 1 
+ b2 × 2 + ⋯ + bixi, where the bi can be obtained from the lambda value and xi is the gene expression  value27.

Characterization of immune landscape and prediction of response to immunotherapy. IOBR 
[https:// doi. org/ 10. 3389/ fimmu. 2021. 687975] is a computational tool for immuno-oncology biology research. 
We used [CIBERSORT (DOI: (https:// doi. org/ 10. 1038/ nmeth. 3337), ESTIMATE (https:// doi. org/ 10. 1038/ 
ncomm s3612), TIMER (https:// doi. org/ 10. 1186/ s13059- 016- 1028-7)] in the R package IOBR to evaluate the 
tumor microenvironment and immune infiltration pattern of each sample. Finally, we used TIMER2.0 and 
TISCH tools to verify the results of immune infiltration  analysis28.

Tumor immune dysfunction and exclusion (TIDE) analysis was used to determine the responsiveness of 
patients to immunotherapy. TIDE (http:// tide. dfci. harva rd. edu/) as an analytical technique uses two major 
mechanisms of tumor immune evasion to predict immunotherapeutic response: T cell dysfunction and T cell 
suppression in tumors with low CTL levels.

Constructing and validating a nomogram for predicting overall survival. The variables of risk 
score, age, T-stage, grade, and gender were first subjected to multivariate cox regression analysis. The statistically 
significant variables from the results of the multivariate cox analysis were then used to build the ccRCC survival 
prediction model, and the model results were visualized in the form of Nomogram plots. Calibration plots ware 
used to compare predicted and actual OS for 1-, 2-, 3-, and 5-year survival probabilities in the training and 
validation groups.

Finding potential therapeutic compounds. To determine which target drugs might be useful against 
ccRCC cancer cells, we used the Broad Institute’s Connectivity Map build  0229,30, a public online tool (https:// 
porta ls. broad insti tute. org/ cmap/) that needs to be registered with a non-profit account that allows users to pre-
dict compounds that might activate or inhibit cancer cells based on a gene expression signature. We also used 
the SPIEDw web tool (http:// www. spied. org. uk/)31,32 with an ICD-related genes expression signature to inter-
rogate the CMAP database (https:// porta ls. broad insti tute. org/ cmap/)30. Lastly, we performed specific analysis 
within the Connectivity Map tools (https:// clue. io/)33 to further investigate the mechanism of actions (MOA) 
and drug-target.

Results
Expression and prognosis characteristics of ICD‑related genes in ccRCC . Based on previously 
published  literature19,20, we summarized a total of 34 ICD-related genes. To explore the biological role of ICD-
related genes, we first investigated whether ICD genes differ in relevant clinical features. It was found that the 
expression levels of 28 ICD genes were different in ccRCC tumor samples and paracancerous tissue samples in 
the TCGA database (Fig. 1A). Twenty-four genes were significantly highly expressed in tumor tissues (p < 0.05), 
including IFNG, CD8B, CXCR3, IFNB1, CD8A, P2RX7, PRF1, FOXP3, IL10, NLRP3, CASP1, CD4, LY96, 
ENTPD1, BAX, CASP8, IL17RA, NT5E, IL1B, IFNGR1, MYD88, TLR4, PDIA3, and CALR. PIK3CA, IL1R1, 
HSP90AA1, and ATG5 were significantly lower expressed in tumor tissues (p < 0.05), which were further con-
firmed by the protein expression profile in kidney cancer downloaded from HPA database (Fig. 1B). While the 
remaining six genes, TNF, IFNA1, IL17A, HMGB1, EIF2AK3 and IL6, were not significantly different between 
the two groups.

The univariate COX regression forest plot showed (Fig. S1) that 11 of the 28 ICD genes were significantly and 
statistically associated with OS (p < 0.05). Among them, IFNB1, CALR, PDIA3, FOXP3, IFNG, LY96, and IL6 
high expression groups had shorter OS compared to low expression groups and were negatively correlated with 
survival, while this phenomenon was diametrically opposed in ENTPD1, TLR4, HSP90AA1, and PIK3CA genes.

Consensus clustering identified two ICD‑associated subtypes in the gathered ccRCC 
cohort. The k-means algorithm in the "ConsensusCluster" package in R was used to combine the 11 ICD 
gene expression profiles that were significantly associated with OS for unsupervised clustering. The area under 
the CDF curve gradually increases when the value of K increases, and we need to keep the area under the curve 
(AUC) as large as possible, and try to make the CDF Delta fall as slowly as possible. The number of optimal 
clusters is K = 2, and the number of suboptimal clusters is K = 3 (Fig. 2A,B). The clustering has high stability 
when the parameter is set to k = 2. The clustering results are shown in Fig. 2C. Statistics of clustering results: 
C1(N = 298), C2(N = 233).

Therefore, on the basis of clustering, this study divided 531 cancer tissue samples into 2 groups (Cluster1 
and Cluster2) and compared the differences between these 2 subgroups. The Kaplan–Meier curves of the two 
subgroups showed that the overall survival of Cluster 1 was significantly lower than that of the Cluster 2 subgroup 
(Fig. 2D). We compared the expression of related ICD genes at the mRNA level in these two subgroups and found 
that FOXP3, IL6 and LY96 were significantly highly expressed in Cluster 1 compared to other genes (Fig. S2).

PCA found FOXP3 and LY96 play an important role in Cluster 1. To continue to explore the role of 
different ICD grouping patterns in this prognostic difference and to gain insight into Cluster1, this study used 
a PCA algorithm to find the key components and major molecules in Cluster1. Figure S3A shows the contribu-
tion of each principal component to the grouping, where we find that principal component Dim 1 accounts for 

https://doi.org/10.3389/fimmu.2021.687975
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1186/s13059-016-1028-7
http://tide.dfci.harvard.edu/
https://portals.broadinstitute.org/cmap/
https://portals.broadinstitute.org/cmap/
http://www.spied.org.uk/
https://portals.broadinstitute.org/cmap/
https://clue.io/
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Figure 1.  ICD genes expression profile. (A) Heatmap shows 34 ICD genes expression profiles of ccRCC 
and normal samples in TCGA database; (B) Immunohistochemical results of ATG5, PIK3CA, IL1R1, and 
HSP90AA1 in renal cancer and normal tissues; *p < 0.05; **p < 0.01; ***p < 0.001.

Figure 2.  Determination of ICD-associated subgroups by consensus clustering. (A, B) Delta area curve of the 
consensus clustering indicates the relative change in area under the cumulative distribution function (CDF) 
curve for k = 2–10; (C) Heatmap exhibits consensus clustering results (k = 2) in 531 ccRCC samples; (D) Kaplan–
Meier curves of OS in Cluster1 and Cluster2 subgroups.
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25.6% of the contribution in the grouping and principal component Dim 2 accounts for 21.1% of the contribu-
tion in the grouping. Afterwards, we analyzed the two subgroups in the distribution of principal components, as 
shown in Fig. S3B, and found that it was principal component Dim 1 that mainly distinguished Cluster 1 from 
the other subgroup Cluster 2. Therefore, we further analyzed the joint share (Fig. S3C) and the separate share of 
each factor in Dim1 (Fig. S3D). In the process of calculating the contribution of each factor in Dim1, we found 
that FOXP3, and LY96 have a greater impact on the principal component Dim1, and the main role of these two 
is to increase the weight of principal component Dim1.

The result of the PCA indicates that, at the level of mRNA expression, the two factors that play an important 
role in Cluster 1 are FOXP3 and LY96, and this result is in agreement with the results of Fig. S2B.

WGCNA displayed the turquoise gene module had a close relationship with Cluster 1. The 
above analysis showed that FOXP3 and LY96 were the main influencing factors in Cluster 1, so these two genes 
caught our attention. We calculated the correlation of all genes with two genes, FOXP3 and LY96, and considered 
genes with a p value < 0.05 and Spearman’s Correlation ≥ 0.50 as significantly associated. 600 genes were found 
to be co-expressed with FOXP3 and 463 genes were co-expressed with LY96. The two sets of genes were taken to 
intersect and plotted on a Venn diagram (Fig. S4). A total of 240 overlapping genes were finally found to exist. 
These overlapping genes were then incorporated into the WGCNA for analysis. The results of the soft threshold 
selection during the analysis are displayed in Fig. S5. Selected genes were divided into 3 modules by WGCNA.

We calculated the association between modules and clinical phenotypes using the Spearman correlation 
analysis method. The highest correlation was found between the turquoise module and Cluster 1, with a cor-
relation coefficient R = 0.51 (p < 0.0001) (Fig. S5D). The genes in the turquoise module may have an influence 
on the characteristics of Cluster 1.

Modular gene function enrichment analysis. To further understand the function of the turquoise 
module gene and thus to investigate the functional characteristics of Cluster 1, we performed the Gene Ontol-
ogy (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis and Gene Set 
Enrichment Analysis (GSEA).

GO enrichment analysis revealed that the enrichment results of these genes were mainly focused on immunity, 
including activation, infiltration, and regulation of immune cells (Fig. S6A). KEGG analysis showed that Cluster 
1 was closely related to primary immunodeficiency, Th17 cell differentiation, and the B cell receptor signaling 
pathway (Fig. S6B). When GSEA analysis was performed, a minimum gene set of 5 and a maximum gene set of 
5000 with 1000 replicate sampling was set based on gene expression profiles and phenotypic groupings, with P 
value < 0.05 and FDR < 0.1 being considered statistically significant. GSEA analysis found that the cytosolic DNA 
sensing pathway, which is the trigger of innate  immune34 was enriched in Cluster 1(Fig. S6C).

Construction of the predictive model PRE. By LASSO-COX dimension reduction analysis (Fig. 3A,B), 
ten candidate genes (CALR, ENTPD1, FOXP3, HSP90AA1, IFNB1, IFNG, IL6, LY96, PIK3CA, and TLR4) and 
their corresponding lambda values were used to calculate the risk score for each patient. The risk score model, 
whose name is "PRE", was developed premised on the formulas below: RiskScore = 0.112*CALR − 0.207*ENT
PD1 + 0.001*FOXP3 − 0.088*HSP90AA1 + 4.115*IFNB1 + 0.174*IFNG + 0.114*IL6 + 0.172*LY96 − 0.014*PIK3C
A − 0.234*TLR4.

Predictive value of PRE in prognosis and immunotherapy. Firstly, we explored the prognostic 
impact of PRE in ccRCC patients. The median risk score (− 0.14) of the training database was set as the cutoff 
value (Fig. 3C). Survival analysis indicated that the RiskScore-low group had prolonged survival time in the 
TCGA cohort (Fig.  4A, p < 0.001), which was further corroborated in the ICGC RECA-EU cohort (Fig.  4C, 
p < 0.05).

The roc and ci function of the pROC package in R evaluate the AUC and confidence interval of the prediction 
model PRE at 365-day, 1095-day, and 1825-day time points. We find that its c-index value is around 0.7 in both 
the training set and the validation set (Fig. 4B,D).

What’s more, our results showed that the number of alive statuses in the low-risk group was much higher 
than in the high-risk group. Moreover, the heat map of Fig. 3C indicated that ENTPD1, HSP90AA1, PIK3A, and 
TLR4 decreased with increasing risk score and were prognostic protective factors, while CALR, FOXP3, IFNB1, 
IFNG, IL6 and LY96 were prognostic dangerous factors.

Secondly, we explored if the PRE could assess the immune microenvironment of tumors and predict patient 
responsiveness to immunotherapy. Accumulating evidence suggests that ICD has a great effect on the activa-
tion of certain antitumor immune  responses12,15,16. In this research, we analyzed the composition of the tumor 
microenvironment between the RiskScore-high group and the RiskScore-low group. Overall, the immune score 
and estimate score were higher in the RiskScore-high group compared to the RiskScore-low group (Fig. 5A).

In addition, we assessed differences in immune infiltration of 22 kinds of immune cells between two groups 
utilizing the CIBERSORT approach. Figure 5B summarises the results obtained from 531 ccRCC patients from 
the TCGA-KIRC cohort. Patients in the RiskScore-high group, in particular, had significantly lower percent-
ages of resting  CD4+ T cell memory, resting NK cell, Monocyte, macrophage M1 and M2, resting dendritic cell 
and resting mast cell (Fig. 5E). This implies poor antigen presentation and immune activation in the Cluster 1 
subgroup.

Immunotherapy has demonstrated improved survival in the treatment of multiple tumor types, and it is urgent 
to identify patients who will benefit most. Thus, we further explored whether PRE could predict the efficacy of 
immunotherapy through TIDE. In our results, TIDE scores were significantly lower in the low-risk group than 
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that in the high-risk group, implying that patients with low PRE scores could benefit more from immunotherapy 
(Fig. 5C). When scatter correlation analysis was performed between TIDE scores and PRE risk scores, we found 
a positive correlation (p < 0.0001, r = 0.38), indicating that as risk score increases, patients have a greater prob-
ability of developing immune resistance (Fig. 5D).

Interestingly, we found that the proportion of  CD8+ T cells was significantly higher in the high-risk group 
than that in the low-risk group (Fig. 5C, p < 0.0001), which is similar to that of the CIBORSORT analysis.

Figure 3.  Constructing a predictive signature by LASSO-COX analysis. (A, B) Identifying 10 ICD genes most 
associated with OS; (C) Risk score curves, vital status distribution of each ccRCC patient in TCGA database, and 
heatmap of the prognostic 10 ICD genes.
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Nomogram can accurately and stably predict OS. To facilitate the clinical application of the prognos-
tic prediction model, an individualized prediction model for OS was constructed. The results of the multivariate 
COX analysis (Fig. 6A) show that T-stage, age, grade, and the risk score of the PRE model were independent 
predictors of survival status and the individualized prediction model for OS was premised on them. In the 
nomogram, the top part is the scoring system, and the bottom part is the prediction system. Total points, the sum 
points of each factor, could exactly predict the 1-, 2-, 3-, and 5-year survival rates of ccRCC patients (Fig. 6B). 
Figure 6C,D exhibited that the predicted and actual OS in the calibration curve had a satisfactory overlap in 
training and validation cohorts, indicating an optimal predictive accuracy. C-Index values were used to show the 
accuracy of each individual predictive factor in the survival prediction, and the c-index of this nomogram model 
was 0.752, which is higher than any other predictive factor (Fig. 6E).

Potential therapeutic compounds. Connectivity map (CMAP) analysis was used to explore the associa-
tion between genes, chemicals, and compounds to search for candidate drugs that might target pathways associ-
ated with ICD genes.

Finally, we found 54 candidate inhibitors by the SPIEDw tool and 30,973 possible target chemicals by the 
Broad Institute’s Connectivity Map build 02 tool. The two have 41 overlapping inhibitors and are ranked accord-
ing to the connectivity score. Table 1 shows the top 10 drugs with the highest connectivity score, together with 
the target and mechanism of action (MOA) of these drugs.

Discussion
After ID transformation, normalization, and deletion of highly missing sample data in the raw expression data, 
a total of 603 TCGA-KIRC samples, including 531 cancer samples and 72 normal control samples, were finally 
included in the training set of this study, and a total of 136 ICGC samples were included in the validation set. In 
this study, a predictive model based on ICD-related genes, PRE, was developed to accurately and stably assess 
the tumor microenvironment and its sensitivity to immunotherapy (Fig. 5C), thus further predicting patient 
prognosis. Furthermore, in order to improve the clinical applicability of the prediction model, we also combined 
clinicopathological factors and PRE to create a nomogram for predicting OS in ccRCC patients. In contrast to 
previous  studies35, we also included T-stage as an independent risk factor in the nomogram. Validation of the 

Figure 4.  The Kaplan–Meier and ROC curves of the 10-gene signature in predicting the prognosis of ccRCC. 
(A, C) The Kaplan–Meier curves of training set and validation set indicated that patients in RiskScore-H group 
have shorter OS than patients in the RiskScore-L group; (B, D) The results showed that the 365-,1095-, and 
1825-day ROC curves all had an area under the ROC curve (AUC) of greater than 0.6 in the two databases 
(TCGA and ICGC).
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Figure 5.  The landscape of immune infiltration in RiskScore-H and RiskScore-L groups. (A) For stromal 
score, immune score, and estimation score, the median and quartile estimations are shown by violin plots; (B) 
Proportion of different immune cells between RiskScore-H group and RiskScore-L group; (C) TIDE scores 
were significantly lower in the low-risk group than that in the high-risk group; (D) A positive correlation 
between TIDE scores and PRE risk scores (p < 0.001, r = 0.38); (E) 22 kinds of immune cells between two groups 
calculated by the CIBERSORT approach; (F) Low dendritic cell infiltration in ccRCC implies a poor prognosis 
(p = 0.0135); (G) The degree of CTL infiltration is less important in ccRCC (p = 0.388).
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calibration curves in the training and validation sets proves that our nomogram has a robust predictive accuracy 
(Fig. 6). In the nomogram, the higher the patient’s risk score, T-stage, grade, and age, the lower the 1-, 2-, 3-, 
5-year survival rate. The C-index, also known as the concordance index, can be used to estimate the probability 
that the predicted outcome of an event will be the same as the actual outcome. The C-index value indicates that 
the final nomogram has the highest predictive power (C-index = 0.752), higher than any of the other independ-
ent predictors (Fig. 6E).

When Kaplan–Meier survival analysis was performed, five cancer samples were excluded because no survival 
data were available (Fig. 2D). GO and KEGG analysis revealed that related gene functions were mainly enriched 
in primary immunodeficiency and Th cell differentiation, suggesting that the biological progression of ccRCC 
may be related to the inability of the initial immune response, a result also reported in a previous study by Gong 
et al.36. GSEA analysis found that cytosolic DNA sensing pathway which is the trigger of innate  immune34 was 
enriched in Cluster1. In a nutshell, results of the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) functional enrichment analysis and Gene Set Enrichment Analysis (GSEA) showed the close 
relationship between Cluster1-related genes and regulation and activation of the immune system.

Figure 6.  The nomogram predicts the OS accurately and stably in ccRCC. (A) Multivariate Cox analysis 
identified the independent predictors of survival status; (B) The 1-, 2- 3-, and 5-year deceased rate of ccRCC 
patients could exactly be predicted by the nomogram; (C, D) The Calibration plots showed the comparison 
between predicted and actual OS in training and validation sets; (E) The final nomogram has the highest 
predictive power (C-index = 0.752).
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Interestingly, the ESTIMATE results found that the RiskScore-H group had a higher immune score and esti-
mate score, a result similar to the findings of Wang et al.20. Combined with the CIBERSORT (Fig. 5E) results, we 
found that the proportion of killer cells such as NK cells or  CD8+ T cells was not low in kidney cancer. But due 
to the lack of APC cells, this resulted in the inability of antigen presentation and immune activation, which cor-
roborates the previous results of GO and KEGG gene enrichment analysis. Meanwhile, the TIMER2.O (Fig. 5F,G) 
and TISCH (Fig. 7) results demonstrate that low dendritic cell infiltration in ccRCC implies a poor prognosis, 
whereas the degree of CTL infiltration in ccRCC is less important, which is a strong argument for our previous 

Table 1.  Ten potential compounds from the CMAP with the targets and mechanisms of action (MOA) of 
these drugs. MOA mechanism of action, NA not acquired.

Compound Cell name MOA Target

Alprostadil PC3 Prostanoid receptor agonist PTGER1/PTGER2/CATSPER1/CATSPER2/CATSPER3/
CATSPER4/PTGDR/PTGER4/PTGIR

MK-1775 NCIH596 WEE1 kinase inhibitor WEE1

Josamycin YAPC Bacterial 50S ribosomal subunit inhibitor NA

Diphenhydramine VCAP Histamine receptor antagonist HRH1

Tolazamide SKB ATP channel blocker ABCC8/KCNJ1/KCNJ10/KCNJ11

Scoulerine PHH
1. Adrenergic receptor antagonist
2. GABA receptor antagonist
3. Serotonin receptor antagonist

ADRA1D/ADRA2A/GABRA1

Lopromide MCF7 Radiopaque medium NA

Metronidazole HEPG2 Bacterial DNA inhibitor CYP2C8/CYP2E1/CYP3A5/CYP3A7/CYP2C9/CYP3A4

Racecadotril HA1E Enkephalinase inhibitor MME

Radicicol SKBR3 NA NA

Figure 7.  Single cell sequencing results of immune cells shows the low proportion of DC (dendritic cell) in 
GSE139555 (A, B) and in GSE111360 (C, D).
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findings. Lastly, we found that the RiskScore-H group scored significantly higher than the group of RiskScore-L 
on dysfunction and exclusion in TIDE results, suggesting that it may be due to T cell dysfunction or immune 
escape that CTL could not play its original role of tumor cell killing.

There are some problems and limitations of this study that need to be explained. This is a retrospective study, 
and selection bias is inevitable. Prospective clinical studies in follow-up studies may help to further determine 
the accuracy of the nomogram model. We found that the ten candidate ICD genes (CALR, ENTPD1, FOXP3, 
HSP90AA1, IFNB1, IFNG, IL6, LY96, PIK3CA, and TLR4) may affect the prognosis of ccRCC, but their mecha-
nisms of action have yet to be studied in vitro and in vivo, and we are also working on related basic experiments 
to investigate the mechanisms and possible biological functions. Novel therapeutics based on the activation of 
cell death-related genes for the treatment of carcinoma have achieved the new  progression37. The inhibitory 
effects of these potential compounds provided in this study have been validated in basic studies of other cancer 
cell lines such as PC3, but have not been reported in kidney cancer cell lines. Therefore, further basic and clinical 
validation of the inhibitory effects of these target compounds in RCC is needed.

Conclusion
Our study used univariate COX analysis, multivariate COX analysis, and Lasso-Cox regression to screen vari-
ables. A predictive model, PRE, was constructed to both assess the pattern of immune cell infiltration in ccRCC 
and predict the responsiveness of patients to immunotherapy, as well as predict the probability of long-term 
survival. The PRE model constructed based on the ICD-related genes was further combined with clinical factors 
to improve the accuracy and applicability of the model. Finally, candidate target drugs with potential therapeutic 
effects are also provided.

Data availability
The original contributions presented in the study are included in the article/supplementary material, further 
inquiries can be directed to the corresponding author. The data generated by the TCGA Research Network 
(https:// www. cancer. gov/ tcga) and the ICGC Research Network (https:// dcc. icgc. org) served as the basis for the 
findings published here.
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