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Quantifying progress in research 
topics across nations
Kimitaka Asatani 1*, Sumihiro Oki 2, Takuya Momma 3,4 & Ichiro Sakata 1

A scientist’s choice of research topic affects the impact of their work and future career. While the 
disparity between nations in scientific information, funding, and facilities has decreased, scientists 
on the cutting edge of their fields are not evenly distributed across nations. Here, we quantify relative 
progress in research topics of a nation from the time-series comparison of reference lists from papers, 
using 71 million published papers from Scopus. We discover a steady leading-following relationship 
in research topics between Western nations or Asian city-states and others. Furthermore, we find 
that a nation’s share of information-rich scientists in co-authorship networks correlates highly with 
that nation’s progress in research topics. These results indicate that scientists’ relationships continue 
to dominate scientific evolution in the age of open access to information and explain the failure or 
success of nations’ investments in science.

Bibliographic  databases1, open  journals2, and online educational  content3 have liberated scientists from con-
straints on access to information. However, certain scientists or groups in hotspots of  knowledge4 tend to pro-
duce more significant  output5, while others follow their  lead6. Pursuing trends is not the aim of science, and 
several studies have found that the development of non-conventional research is essential for generating new 
 knowledge7,8. However, collective  attention9 promotes community discussion and  discovery10, and research that 
follows the trend is likely to have greater  impact11. Recent developments in computational methods are helping 
scientists and funding agencies discover cutting-edge  topics12 or assess the novelty of  paper13.

Global investment in  science14 has been narrowing the gap between nations, not only in terms of the num-
ber of published articles but also in the number of highly cited  articles15. China has made significant strides in 
scientific research in recent  decades14. The performance of a nation or region is assessed based on the structure 
of its research system, which is inferred from the output of each research  field16. A recent  study17 demonstrates 
that disparities in regional scientific competitiveness are being reduced through the analysis of the concentration 
of research fields. Conversely, the winners of major scientific  awards18, top-performing research  universities14, 
and high-impact  publications19 remain confined to certain nations, such as the US and the UK. Several domain-
specific  studies20–22 have provided insight into the significant role played by certain nations in the development of 
domains. However, these microscopic analysis requires extensive effort and has not yet been generalized across 
all fields. Given that certain nations lead in science, several causes of national differences in scientific output 
have been analyzed: education  systems23, social  diversity24, and individual  mobility25. As funding agencies are 
dedicated to selecting research  topics26, it is essential to reveal the structural relationships and inequality between 
nations in terms of research topic.

In this study, we quantify national research topic progress using time-series comparisons of the references in 
published papers. The comparison identifies the microscopic difference between the research topics of nations. 
We assume that the aggregation of reference lists in papers from a nation represents its overall profile of engage-
ment with research topics, as the reference lists are used for  unsupervised27 and  supervised28 estimations of 
research topics. Using 71 million research papers from Scopus, we identified a leading-following relationship 
among research topics between pairs of nations. For instance, China and Japan tend to engage in research topics 
that are similar to those in which the US and the UK previously engaged. Moreover, the accumulation of two-
nation comparisons, which we define as the Topic Progress Index (TPI), reveals a long-term leading-following 
relationship between Western nations and Asian city-states, on the one hand, and other nations.

We also demonstrate that information-rich scientists (those with high eigenvector centrality in co-authorship 
networks) play a crucial role in steering the progress in research topics. From a co-authorship network of 16 
million scientists, we identified information-rich scientists who are engaging in newer research topics that oth-
ers follow, and who are likely to be cited more frequently. These information-rich scientists are often based in 
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Western nations, and the proportion of information-rich scientists in many nations was correlated with research 
topics progress. These results provide support for national research strategies that promote global co-authorship29, 
the recruitment of top  scientists30, and the encouragement of scientists to go abroad and  return31.

Results
Research topic comparison between pairs of nations. Assuming the reference list of a paper indi-
cates the research topic of the paper, (unregularized) vector representation of the research topics in nation A 
in year y can be introduced as T′

A,y = (T ′
1,A,y ,T

′
2,A,y , . . .) , where each element denotes the aggregation of refer-

ences1, 2 . . . ’s in nation A in year y. Each paper is assigned to its first author’s nation. We used tfidf  weighting32 
for aggregation to adjust the paper’s difference with respect to the number of references and to eliminate the 
effects of frequently cited references (detailed in “Methods” section). Then, we performed L2-normalization of 
T′
A,y to obtain research topic TA,y.

In a comparison of research topic T in 2015 between the top 40 paper-publishing nations, some groups of 
nations have a high similarity in research topics (Fig. 1a). The Anglophone nations (USA, GBR, CAN, DEU, etc.) 
tend to have a similar research topic, while the Asian nations (CHN, IND, KOR, etc.) have a weaker link. This 
suggests that the former nations may form the core group in research topics. However, it is unclear which group 
is leading in research topic. A time-series comparison of T between nations reveals a time lag in research topic 
between them (China and the US comparison is shown in Fig. 1b). The research topic T in China after 2015 is 
similar to the T in the US in 2015 (red line in Fig. 1c), and T in the US before 2015 is similar to T in China in 
2015 (blue line in Fig. 1c). Assuming that research topics neither undergo rapid change nor evolve in a looping 
process, the difference in slope between the two lines in Fig. 1c indicates the delayed adoption of research topics 
in China compared to the US. Japan also lagged behind the United States, whereas Germany was only slightly 
behind, and the United Kingdom and Switzerland showed no delay (Fig. 1d-g; other comparisons among the 
top seven nations are shown in Fig. S1). We note that the results that papers are assigned to nations by fractional 
 counting33 (Fig. S2) show similar results that papers are assigned to the first author’s nations (Fig. 1).

Figure 1.  (a) Cosine similarity of research topic T in 2015 between the top 20 paper-publishing nations. The 
order of the nations is determined by average linkage clustering. (b) The cosine similarity matrix of T between 
China and the US from 2000 to 2020. (c–g) Two-nation comparisons: red lines indicate cosine similarities 
between T in 2015 in the US and T in 2010-2020 in China (c), Germany (d), the UK (e), Japan (f), and 
Switzerland (g). Blue lines indicate the opposite comparisons (in the other nation in 2015 and in the US in 2010-
2020). (h) Yearly change in the TPI of the top 20 paper-publishing nations, plus Hong Kong and Singapore, from 
1990 to 2020. (i) The average domain-adjusted citation count versus the TPI, both in 2018 for the top 40 paper-
publishing nations. The figures were generated using matplotlib(3.6.0) and labeled with Illustrator(26.0.2).
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Quantifying research topic progress of nations. Cosine similarity (cos) is a metric of the sim-
ilarity between two vectors of an inner product space and is the cosine of the angle between them. In this 
study, the leading-following relationship between two nations is derived from the time series comparison of 
the cosine similarity between T of them (detailed in “Methods” section). As with the analysis of the US(A)-
China(B) case (Fig.  1c), the difference between cos(TA,y ,TB,y+ )− cos(TA,y ,TB,y− ) (change in red line) and 
cos(TB,y ,TA,y+)− cos(TB,y ,TA,y− ) (change in blue line) indicates the US’s progress in research topics. The TPI 
of a nation is an aggregation of the comparisons with all other nations weighted by their respective numbers of 
published papers, for time intervals � = 1, 2, · · · , τ years. We calculated TPI using T of the top 40 paper-pub-
lishing nations during 2010-2020, with parameter τ = 5 years considering both rapidly changing domains such 
as computer science and others. Because the data were up to 2020, we calculated TPI around 2020 by masking 
the information after 2020 (detailed in “Methods” section).

The Western  nations34 (Western Europe and English-speaking developed nations) and Asian city-states (Sin-
gapore and Hong Kong) had high TPI for decades relative to other nations (Fig. 1h), whereas the dispersion 
in the number of published papers of those nations settles over time (Fig. S3). Taiwan, South Korea, and Japan 
had low TPI values, but their research topics did not differ markedly from those of the US and UK (Fig. 1a). 
Conversely, Switzerland had high TPI values, but its research topics were not similar to those of the US or the 
UK (Fig. 1a), indicating that a convergence of research topics with the US was not a necessary condition for 
research topic progress.

TPI relates to the average domain-adjusted citations, except for some nations (Fig. 1i). The impact is adjusted 
by the average number of citations per domain (see the “Methods” section). While the average domain-adjusted 
citations for China and the United States are similar, TPI identifies a leading-following relationship between 
them. The high citation numbers for papers from Hong Kong and Singapore are ascribed to those nations’ highly 
selective practices for recruiting scientists. Relative levels of progress or delay in topic uptake among nations 
are observed in each nation’s evolution of citing high-impact papers (Fig. S4): the US and UK tend to cite such 
papers earlier than China and Japan do. The same trend is observed over the average time (within five years 
after publication) each nation took to cite the 1000 most-cited papers (Fig. S5). However, this naive indicator is 
biased toward the most-cited articles, and it does not quantify research topic progress until several years later.

Next, we compare the university’s research topic progress to that of Oxford, which is ranked as the top uni-
versity in the  world35. Peking University and Tsinghua University lagged behind Oxford University (Fig. 2a,b). 
However, the University of Cambridge (Fig. 2c) did not, and Stanford University(Fig. 2d) slightly progressed to 
Oxford University. Other results shown in Fig. S6 indicate that top universities’ progress in research topics aligns 
with those of their nation. This result indicates that the topic progress of each nation might not correspond with 
the percentage of high-level universities within it.

The research topic progress of the Western world was observed in every domain (Fig. 3a; domain detail is 
shown in Supplemental Table T1). Note that some perturbed periods at specific domains are excluded (Supple-
mental Table T2). The research topics of Asian nations and Western nations differ in several domains, but they 
are similar in others (Supplemental Fig. S7). For example, Chinese/Indian research topics in the M3-Lifestyle 
Disease domain differ from those of the US and UK (Fig. 3d) and lag behind them (Fig. 3e). In contrast, in the 
CS1-Computer Science domain, China and India conduct research similar to the US and UK (Fig. 3b) but lag 
behind them (Fig. 3c). The similarity indicates that open access to information and the absence of geographical 
restrictions in the domain may synchronize the research topic, but the time lag remains.

Information-rich scientists and research topic progress. Because of the slight differences in acces-
sible information, the information spread among scientists may determine their research topic. Not surprisingly, 
the research topics of scientists resemble those of their co-authors (Fig. S8). Therefore, co-authorship networks 
entail a process of dissemination of research topics between scientists. We analyze a co-authorship network 
consisting of 16 million authors with 395 million relationships. Assuming that the amount of information value 
a scientist transmits via a link to another scientist is proportional to the amount of information value received, 
the extent of information value convergence to the node is calculated as the eigenvector  centrality36. Centrality 
is used to estimate economic outcomes/social  status37,38 and detection of the active part of the  brain39. For com-

Figure 2.  Detailed analysis of topic progress in universities: (a–d) University-level research topic comparison 
between Oxford and Peking University (a), Tsinghua University (b), Cambridge (c), or Stanford (d). The red 
lines indicate cosine similarities between T in 2015 in the Oxford and T in 2010-2020 in other universities. Blue 
lines indicate the opposite comparisons.
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parison, we also calculated  PageRank40, which gives more weight to a central node in small subgraphs; degree 
centrality; and the number of previously published papers.

The eigenvector centrality and degree on the 1999-2018 co-authorship network are correlated with the average 
domain-adjusted citations (Spearman R = 0.297 and 0.294, respectively; Fig. 4a). The higher citation perfor-
mance of high-degree scientists indicates that a large team or many collaborations increases scientific impact. 
However, the correlation of PageRank with citation impact is lower. This indicates that the local central position 
(lab leader, group leader, etc.) within a small sub-network (team or small community) is not critical to citation 
performance. Eigenvector centrality is not much affected by the scientist’s position in a small sub-network but 
rather by the information convergence in the whole network. Therefore, the correlation between impact and 
eigenvector centrality indicates the importance of connectivity to the core scientists of the entire co-authorship 
network. Moreover, research topics of papers written by high-eigenvector authors progress in research topic com-
pared to those of other papers (Fig. 4b). However, the difference between centralities is not significant (Fig. S9).

After aggregation of scientists on a national scale, the only feature that correlates strongly with a nation’s 
research topic progress is the proportion of high eigenvector scientists. The proportion of authors with the top 
n% of eigenvector centrality values is strongly correlated (Spearman R = 0.879, n = 10%) with the TPI in each 
nation (Fig. 4c), and the correlation is also high when n = 1% or 20% (Fig. S10). However, authors with high 
values of degree centrality or PageRank display weaker correlations (Spearman’s R=0.787 ,n = 0.1% or r=0.568 ,n= 
1%, respectively; Fig. S10). This result indicates that nations that have scientists located in a global information-
spreading core advance in research topic.

The high-eigenvector-centrality scientists are illustrated by bright color in Fig. 4d. These scientists are located 
mainly in the middle left area. Scientists in the US, UK, and Switzerland are likely to be located in the same area 
(middle left of each figure in Fig. 4d), and the area is populated with a high percentage of high-eigenvector-
centrality (yellow) scientists. By contrast, most Chinese and Japanese scientists plot separately in the peripheral 
areas. National differences in the proportion of high-eigenvector-centrality scientists are explained by the inter-
national co-authorship density (Fig. 4e). Western nation’s scientists frequently coauthor with scientists in other 
western nations. Other peripheral nations such as China and Japan have low collaboration with western nations, 
and collaboration in these peripheral nations is also rare. Therefore, scientific information is spread intensively 
among scientists in Western nations, and scientists in other nations are exposed to little valuable information.

Figure 3.  Detailed analysis topic progress in each domain. (a Strip )plot of TPI (normalized 0 to 1) of nations 
in 2020 (in 2019 for M4-Infectious Diseases) in whole domains and in each of the 20 domains. Nations that 
published less than 300 papers during the year in each domain are excluded. (b) Cosine similarity of T between 
the top 20 nations in the number of papers in 2020 sorted by average linkage clustering in CS1-Computer 
Science. (c) Detailed plot of domains: the number of papers and TPI for each nation in CS1-Computer Science. 
(d, e) Same plots of (b, c) for M3-Lifestyle Disease. The figures were generated using matplotlib(3.6.0) and 
labeled with Illustrator(26.0.2).
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Discussion
The historical and global divide in research topic progress remains strong, despite the advancement of developing 
nations in  science42 and the increased open access to scientific  information1–3. Research topics originating in the 
Western World and city-state nations in Asia are later engaged with by the rest of the world, such as Japan, Brazil, 
and South Africa, consistent with many domain-specific  analyses20–22. Interestingly, time-lags are observed in all 
the analyzed domains, including computer science, in which there are fewer geographical constraints on access 
to information and computing hardware.

The TPI correlates strongly with the percentage of information-rich scientists. This analysis explains why 
open nations (characterized by high co-authorship and mobility of scientists) have greater impact on  science2. 
The UK and the US have highly ranked  universities43 that educate top scientists who frequently conduct joint 
research with scientists at institutions in other  nations44. These highly ranked UK and US universities attract 
notable international  scientists25. To reduce the gap with the west, China encourages its scientists to conduct 
research abroad and then return to  China45. At the end of the 1990s, Hong Kong and Singapore had success-
fully advanced research topics (Fig. 1h), demonstrating their cultivation of a productive research  ecosystem46. 
Conversely, China and Japan were falling behind in research topics and had few information-rich scientists. This 
difference is consistent with the observation that a large, long-term investment in science does not necessarily 
result in a leading position in pioneering new research topics and trends. However, given the rapid expansion of 
the number of Chinese scientists and China’s government  strategy47, future structural changes in co-authorship 
networks must be expected.

Analyses of culture, art, and business indicate that individual creativity is increased in networks or places 
where creative people congregate. For instance, a person obtains a higher income if at the center of a local 

Figure 4.  Information spreading on co-authorship network and research topic progress. (a) Blue, orange, 
green, and red bars show the Spearman correlation coefficients between the domain-adjusted citation count and 
eigenvector centrality, PageRank, degree centrality, and number of previously published papers for each author, 
respectively. (b) Comparison of T for the top 50% of papers (on the basis of the highest author eigenvector (EV)) 
and bottom 50% papers. The comparison is based on the year 2018. (c) The relationship between the TPI (2018) 
and the percentage of authors with the top 10% eigenvector centrality (2018) for each nation. (d) Visualization 
of the co-authorship network: Each scientist is colored in accordance with eigenvector centrality (yellow 
indicates high, and blue indicates low). The 2D position is obtained by  UMAP41 from the 128-dimensional 
 LINE28 embedding of the network. The authors of all nations (top left) and of five selected nations are plotted. 
(e) The network of nations based on international co-authorship density. Each edge is weighted by the 
number of co-authorship links between the pair of nations divided by the lower number of authors among 
the two nations. Node size indicates the number of authors in each nation. The figures were generated using 
matplotlib(3.6.0) and labeled with Illustrator(26.0.2).
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 community48, or that person becomes commercially more successful if he or she is close to the center of an 
art  market49. Other analyses have demonstrated that the number of registered  patents50 and talented  parsons51 
highlight the scale effects of collective creativity among regions or nations. A further  study52 demonstrated a 
link between national performance and the centrality of its components (national products) in the estimated 
components-relationship network. Our study demonstrates the scale effect on creative outputs from a large-scale 
network of individual records of research activities.

A limitation of this study is that TPI cannot evaluate the topic progress of a group of scientists who have 
small numbers of publications. Because TPI assumes continuous changes in research topics, it is not valid for 
domains where the research topic is dynamically changing (such as in the study of infectious diseases in 2020). 
TPI is a quantification of the time-delay in science between some sets of papers, but it does not assure a causal 
relationship in the time-delay between them. To explain the emergence of delays in research topics across nations, 
a statistical model that generates a time-series of topic changes of nations needs to be developed.

TPI is not a direct indicator of each nation’s research creativity. Advanced research topics do not always 
generate creative outcomes, but the two factors are closely related in modern society. We need to analyze other 
factors that contribute research topic progress of nations. For example, TPI does not correlate with basic skills 
in reading, math, and  science53, which indicates that students in nations whose research topics are delayed may 
lose their chance to conduct important research. Additionally, the high TPI in the Western World (Fig. 1h) 
might be facilitated by the ready availability of English-language skills in those nations. Paper’s language can 
influence  citations54, and language skills may affect a scientist’s connection to central scientists who may speak 
English. These language barriers could be reflected in the structural divide of nations in the co-authorship net-
work (Fig. 4d). It is also necessary to examine whether nationality bias plays a role in peer review, as has been 
demonstrated for gender  bias55.

Methods
To compare and quantify the research topics progress, we extracted the reference lists from all published papers 
indexed in Scopus. We estimate the topic of a paper from the tfidf value of the contained reference list. The 
aggregation of tfidf papers of year y at nation A is considered research topic TA,y . Then, we conducted a time-
series comparison of T between nations and analyzed the progress/delay in research topics. Next, we simulated 
the information-spreading on a co-authorship network; in this part, with simple assumptions on information-
spreading, we calculated the network centrality of the author.

Data preprocessing. The Scopus dataset covers all domains of science. We use 70,731,510 papers from 
1970 to 2020 categorized as articles, letters, reviews, and conference papers, excluding other forms of published 
documents, such as errata, conference reviews, and books. A few articles with no information on authors or 
affiliations were excluded. Note that authorship and affiliation are identified with high accuracy in  Scopus56.

Internationally co-authored papers totaled 12,922,609. We adopted first author’s first affiliation protocol 
to select the nation where the main part of paper was conducted, as in most cases the contribution of the first 
author to a paper is significant. In the co-authorship analysis, we specified an author’s nation as the nation that 
appeared most frequently in the affiliations listed in the author’s publications in the preceding five years. If this 
protocol generated multiple nations for an author, the nation for the author was randomly assigned from among 
the multiple nations.

 We also perform fractional counting of  papers33 for each nation to obtain robust results. (Fig. S2 shows the 
results using fractional counting). When using fractional counting, international co-authorship papers between 
two nations result in a high similarity in research topics comparison.

Clustering and extraction of fields. The Scopus data include field labels, keywords, and journal catego-
ries of papers. The label of a published journal was used to estimate the field labels of papers published in that 
journal. However, multiple field labels and keywords were assigned to some papers. Furthermore, the recent 
development of interdisciplinary mega-journals made it difficult to categorize certain journals as belonging to 
one field.

Consequently, we adopted citation network clustering, because the reference list of the paper contains infor-
mation about its domain. We used the Leiden  method57 to cluster the papers on the citation networks consisting 
of 1,217,886,002 edges. We obtained 20 clusters (called domains) composed of more than 500,000 papers each, 
in the form of applied physics, infectious diseases, computer science, etc. We performed recursive clustering 
using the same method and obtained sub-clusters (sub-domains) for use in calculating the domain-adjusted 
citation count and in extracting key phrases. The details of the clusters and sub-clusters are presented in Sup-
plemental Table T1.

Calculating domain-adjusted citation count. The number of citations differs considerably across 
domains or sub-domains. For example, papers in the chemical and medical sciences tend to carry more cita-
tions than papers in the social sciences and humanities. To remove this inequality, the citation count of a paper 
was normalized by dividing it by the average citation count of the corresponding sub-domain. The mean of the 
domain-normalized citation count was then set equal to the mean of the original citation count for improving 
interpretability. Domain normalization is widely used as field-weighted citation  impact58 and field-weighted 
citation  impact59.

tfidf Vector of References. References in a paper are associated with the research topic of that paper. 
Therefore, the aggregation of reference lists from papers published by a nation in a specific year represents 
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the research topics in which the nation is engaged during that period. The multiset of references in a paper, 
operationalized as a bag of words (BOW) in natural language processing, is a straightforward representation 
of the research topic of the paper. However, there are a substantial number of highly cited references, and these 
highly cited references heavily influence the BOW of references. To avoid heavy influence of such references, we 
applied the tfidf  weighting framework to evaluate the amount of information that each reference(term) carried 
in a  paper32.

Figure 5a shows the procedure to calculate research topic T . In Eq. (1), the value of tfidf (r, p) is the product 
of the reference(term) frequency tf (r, p) , and the inverse paper(document) frequency.

In Eq. (2), er,p denotes the existence of reference r in paper p (if the reference is present, er,p = 1 , otherwise 
er,p = 0 ). The quantity idf (r, Pall) indicates the rarity of the reference r in the entire set of papers Pall . In Eq. (3), 
idf (r, Pall) is the logarithmically scaled index of the maximum number of references appearing, maxr′∈Pall nr′ 
divided by 1+ nr , where nr is the number of times that the reference r appears in Pall.

In Eq. (4), t ′r,A,y (the prevalence of research including reference r for nation A in year y) is the sum of the tfidf  
values for reference r over PA,y (all papers from nation A in year y). The list of research topics accommodating all 
references for nation A in year y is denoted as T′

A,y = (t ′1,A,y , t
′
2,A,y , . . .) . T

′
A,y was normalized so that its L2 norm 

was 1, and we obtained research topic TA,y = (t1,A,y , t2,A,y , . . .) of nation A at year y.

Papers containing more than 100 or fewer than 5 references were omitted from the analysis to exclude review 
papers and incomplete data. We ignored references with citation numbers more than 1000 to prevent distortions 
of cosine similarity; these commonly cited references could not add meaningful information to the analysis 
because they were likely to be cited from a wide range of papers. This procedure is standard in calculating the 
tfidf  in natural language processing to enhance task  performance60.

(1)tf-idf(r, p) = tf(r, p)× idf(r, Pall)

(2)tf(r, p) =
er,p∑

r′∈p er′ ,p

(3)idf(r, Pall) = log
maxr′∈Pall nr′

1+ nr

(4)t ′r,A,y =
∑

p∈PA,y

tf-idf(r, p)

Figure 5.  Calculation of Leading-Following Relationships Between Nations: (a) The research topic T is 
based on references in the papers published in a particular year. We weight each reference by using the tfidf  
framework. For each paper, tf (r, p) (the reference frequency of r in paper p) is the number of occurrences of 
r divided by the total number of references in the paper. We sum the values of tf  for PA,y (papers published 
in nation A during year y), weighted by the inverse document frequency idf  (as discussed in the “Methods” 
section). idf  indicates the rarity of the references (the amount of information the reference provides)32. (b) Topic 
progress/delay between pairs of nations: Dy− ,y,y+

A,B  is calculated as the difference between the amount of rise of the 
red and blue lines. The red line indicates the extent to which nation B follows nation A (the blue line indicates 
the converse). In the example shown, research topics in nation A are followed by those in nation B.
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Calculation of TPI. First, we considered the topic of influence between a pair of nations on a reference 
r at year y considering a rise from y− to y+ . Nation A’s degree of being followed by nation B on reference r is 
quantified as the product of tr,B,y+ − tr,B,y− (B’s increase of engagement on the topic from y− to y+ ) and tr,A,y (A’s 
engagement with the topic at t). Consequently, the extent of A’s topic progress toward B with respect to reference 
r can be calculated from the difference between A’s degree of being followed by B and B’s degree of being followed 
by A [Eq. (5)]. When A or B does not engage with the research topics related to reference r, dy

− ,y,y+

A,B  equals 0.

A’s degree of being followed by B in year y considering the change of research topic from y− to y+ , Dy− ,y,y+

A,B  
was calculated from the sum of the dy

− ,y,y+

A,B (r) for the entire set of references Rall . We divided the values by their 
similarities for the entire set of references at y [denominator in Eq. (6)]. This is because the closer the distance 
between T in the pair of nations, the closer the mutual relationship, and the easier it was to propagate the topic. 
Considering that the L2 norm of T equals 1, Dy− ,y,y+

A,B  was calculated as the basic arithmetic operation of the cosine 
similarity of T [Eq. (7)]. Intuitively, the quantity Dy− ,y,y+

A,B  is the difference between the amounts of rise of the red 
and blue lines in Fig. 5b divided by the cosine similarity of T between the pair of nations at y.

Equation (8) describes the non-normalized TPI of nation A at y, TPI ′A,y . We calculated averaged Dy− ,y,y+

A,X,y  for 
all other nations weighted by the share of the number of published papers of nation X at year y, SyX . Then we 
summed the value for all (y−, y+) = (y − 1, y + 1), . . . , (y − τ , y + τ) . We used τ = 5 years to consider both 
short-term topic transitions, such as in computer science, and long-term transitions, such as in the humanities. 
When the similarity in research topics between A and B was low, cos(TA,y ,TB,y) < 0.005 , and we considered 
D
y− ,y,y+

A,B = 0 to avoid large responses to small changes in the research topics of A or B. Finally, TPI ′ for each 
nation in a particular year was standardized such that the average was 0 and the standard deviation was 1. Con-
sequently, we obtained the TPI [Eq. (9)]:

Data limitations affected the calculation of TPI after 2020− τ . When we calculated the TPI in 2019 with τ = 2 
years, the data for 2021 were missing. We assumed that the cosine similarity between Ty{y | y <= 2020} and 
Ty′ {y

′ | y′ > 2020} for any combination of nations were the same constant value. Consequently, when y+ > 2020 , 
cos(TA,y ,TB,y+ ) and cos(TB,y ,TA,y+) in Eq. (7) cancel each other. Thus, TPI after 2020− τ is calculated from data 
up to 2020.

Centrality analysis in the co-authorship network. We constructed a co-authorship network for 2018 
from the preceding 20 years of co-author relationships. When N authors authored a paper, the weight of each 
edge was 1/(N− 1) , assuming that one author interacted equally with the remaining N-1 authors. Papers with 
more than 30 authors were ignored to avoid the impact of hyperauthorship. Furthermore, only the largest con-
nected component was extracted for analysis. Eigenvector centrality (weighted), PageRank (weighted, α = 0.85 ) 
and degree centrality (un-weighted) were calculated for each node using the igraph  library61.

Data availability
The data that support the findings of this study are available from Elsevier but restrictions apply to the availability 
of these data, which were used under license for the current study, and so are not publicly available. Data are 
however available from the author (Kimitaka Asatani) upon reasonable request and with permission of Elsevier.
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