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Bell correlations outside physics
C. Gallus 1*, E. M. Pothos 2, P. Blasiak 3,4, J. M. Yearsley 2 & B. W. Wojciechowski 5

Correlations are ubiquitous in nature and their principled study is of paramount importance in 
scientific development. The seminal contributions from John Bell offer a framework for analyzing 
the correlations between the components of quantum mechanical systems and have instigated 
an experimental tradition which has recently culminated with the Nobel Prize in Physics (2022). In 
physics, Bell’s framework allows the demonstration of the non-classical nature of quantum systems 
just from the analysis of the observed correlation patterns. Bell’s ideas need not be restricted 
to physics. Our contribution is to show an example of a Bell approach, based on the insight that 
correlations can be broken down into a part due to common, ostensibly significant causes, and a part 
due to noise. We employ data from finance (price changes of securities) as an example to demonstrate 
our approach, highlighting several general applications: first, we demonstrate a new measure of 
association, informed by the assumed causal relationship between variables. Second, our framework 
can lead to streamlined Bell-type tests of widely employed models of association, which are in 
principle applicable to any discipline. In the area of finance, such models of association are Factor 
Models and the bivariate Gaussian model. Overall, we show that Bell’s approach and the models we 
consider are applicable as general statistical techniques, without any domain specificity. We hope 
that our work will pave the way for extending our general understanding for how the structure of 
associations can be analyzed.

The understanding of correlations is crucial for theoretical progress throughout science. For example, in psychol-
ogy, formal analysis of social networks often quantifies different kinds of interaction between agents in terms of 
correlation functions (e.g., in this journal,1). In zoology, it might be of interest to study how correlations in the 
behavior between the organisms comprising an ecosystem varies with environmental characteristics, such as 
rainfall. In epidemiology, correlation is often the basis for attempts to understand the causal drivers of changes 
in the spread of particular diseases (e.g., in this journal,2). In engineering, correlations between the variables 
characterizing a complex system, such as the temperature of different components, might shed light on the prop-
erties of the system or help with troubleshooting. In economic theory, positive correlation between performance 
outcomes might signal  competition3. In this  journal4, complex financial systems have been studied in terms of 
interaction mechanisms ultimately based on correlation.

It hardly seems necessary to motivate the importance of studying correlation structure across science. Yet, 
there has been a hugely influential approach to correlation in physics, with so far negligible impact in the rest of 
science. John Bell developed what is arguably the most sophisticated framework for correlations in physics, show-
ing how certain assumptions about the structure of causal relationships between two pairs of variables produce a 
distinctive signature on the observed correlations. In particular, certain natural assumptions about the causes of 
physical phenomena lead to the so-called Bell inequality. The point of Bell’s analysis was to argue that, if using a 
causal analysis we can exclude any ’classical’ influences on any observed correlations, then particular correlation 
patterns could only be explained by something not classical in the physical nature of the corresponding systems 
- this has been the essential argument for how a Bell test can be used as evidence for the non-classical nature of 
quantum structure in the physical world. Bell’s work has inspired the exciting experiments conducted by Aspect, 
Clauser, and Zeilinger, whose importance has been recognized with the recent Nobel Prize in Physics (2022).

At this point, we have to offer a disclaimer to our readers: our work is intended to be of general interest, 
concerning any situation where there is a need to understand the structure of correlations. However, the bulk 
of work concerning Bell’s framework has been conducted in physics. Therefore, much of the ensuing discussion 
inevitably borrows from corresponding work in physics and extends this work accordingly.

In physics, the derivation of the inequalities in a Bell experiment rests on the assumptions of realism, local-
ity and free choice, while any observed violations show that models insisting on all three assumptions run into 
contradictions with physical reality. Bell experiments are performed by subjecting two space-time separated com-
ponents of an entangled particle system to certain measurements (e.g. spin measurements). Note that different 
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notions of non-locality exist, for example those based on information retrieval and local state  discrimination5, 
whereas the perspective taken here is based on causal mechanisms. The experimenters on each side choose the 
regimes x, y freely from one of two possible spin directions. The result of the two measurements are recorded as 
a and b, respectively. A time series of quadruplets (a, b, x, y) results, from which a statistic P(ab | xy) and four 
expectation values �ab�xy =

∑

a,b ab P(ab | xy) can be computed. For simplicity we use the compact notation 
∑

a,b ab P(ab|xy) when we mean 
∑

a,b ab P(a, b|x, y).
The combination of these four expectation values yields the four S-values

Note, here we follow the Clauser-Horne-Shimony-Holt (CHSH)  approach6, as their variant of the original Bell 
inequalities are slightly simpler and, in any case, better suited to the present purposes. Either way, this provides 
us with a tool to make testable distinctions between different causal models for a given dataset. Specifically, Bell’s 
seminal ideas lead to the conclusion that any realist local hidden variable model where experimenters can freely 
chose x, y has to satisfy the following four inequalities

While the theoretical maximum value for the S-values is 4, an intuitive class of classical models leads to a 
maximum value of 2, whereas quantum mechanics predicts violations of that maximum, but only allows S-values 
up to the famous Tsirelson bound of 2

√
2,7. Let us call the quantities from any of these equations S-values.

Depending on the experimental context and the causal model, violations of the Bell Inequalities (5) have 
sharply contrasting meaning. In realist models for quantum physics, they may be interpreted as violations of free 
choice or as violations of Bell  locality8,9, or even as indications of  retrocausality10,11.

In general, it will always be a challenge in extending a tool developed in physics, to the study of systems out-
side  physics12–14. There are two difficulties in extending Bell’s framework to the study of correlations outside phys-
ics. First, the assumptions of locality and free choice in Bell’s framework are very particular to physics. Beyond 
the question of whether microscopic physical systems have quantum structure or not, locality and free choice 
have extremely limited interest. However, this difficulty does not pose a serious problem in putative extensions, 
since it is straightforward to imagine how analogous assumptions could guide suitable causal analyses in different 
situations. Amongst others,  Pearl15–17 pioneered a formal methodology for doing so, aiming at the development 
of a theory of causal and counterfactual inference. Second, and perhaps more seriously, Bell’s framework involves 
two systems with two pairs of binary variables characterizing each system. The fact that we have a pair of binary 
variable pairs limits applicability outside physics, at least insofar as the study of correlation is concerned. This is 
because, in general, we are interested in the association between pairs of variables and, also, it is more practical 
to consider pairs. Outside the study of quantum mechanics, there are relatively few cases whereby a system is 
naturally characterized by a pair of variables, let alone binary ones. Indeed, existing applications of Bell inequali-
ties outside physics often involve somewhat artificial set-ups for how to arrange variables so that Bell tests are 
possible (e.g., in behavioral  sciences18–20).

Any general statistical measure inevitably simplifies situations, which are probably very complex. The cor-
relation is a great example, insofar that the association between two variables is reduced to a single, linear index, 
regardless of any information about the causal processes linking the two variables. In seeking to apply Bell’s ideas 
outside physics, our aim is to develop an association index with some sensitivity to the causal structure relevant 
to two variables, but in a way which is as domain general as possible. The key assumption is that it is possible 
to separate the relatedness between two variables into two distinct parts, a part due to significant causes and a 
part due to incidental noise, and that the two parts can be distinguished in terms of the magnitude of variable 
change, at different parts of the variable’s range. We will see shortly how this assumption can be developed to a 
quantitative, precise framework.

In the remainder of the paper, we discuss a concrete application of these ideas, based on associations between 
the price change of different securities, in the S&P 500 index. There are three main reasons why we have chosen 
finance as an area for a first application of our framework. First, there is an immediately available, large data 
set. In the S&P 500 index, the information to construct variables corresponding to price changes for different 
securities within a temporal window is readily available: the S&P 500 offers 125,000 pairs of securities, against 
which we can test our new proposal for association, against standard correlation. Second, in finance, correlations 
play an important role. Correlations between the price change of different securities are key in creating optimal 
portfolios using Markowitz’s mean-variance model, while correlations between single securities and a broad 
market index enter the capital asset pricing model via the market beta and, from there, the valuation of companies 
via the discounted cash flow  model21–27. Understanding the generative processes leading to correlations in the 
stock market is clearly a hugely involved  task28–37. So, a key objective is whether the use of S-values, instead of 
correlations, affords any advantages. Finally, there have been several proposals aimed at capturing association 
structure in more detail. It is important to note that, even though the models we will discuss have their origins 
in finance research, they are general statistical models and can be applied in any area where there is a need for 
detailed understanding between variables.

(1)S1 = �ab�00 + �ab�01 + �ab�10 − �ab�11,

(2)S2 = �ab�00 + �ab�01 − �ab�10 + �ab�11,

(3)S3 = �ab�00 − �ab�01 + �ab�10 + �ab�11,

(4)S4 = − �ab�00 + �ab�01 + �ab�10 + �ab�11.

(5)|Si| ≤ 2 for i = 1, . . . , 4.
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In what follows, we first describe how the S-test in physics can be translated to something interesting in other 
areas. As noted, most of the mathematical methods follow from the Bell literature in physics. However, we intend 
our conclusions and analytical tools to be applicable in any area where there is a need to understand association 
structure in some detail, with finance being our chosen area of application presently.

From physics to other disciplines. In physics experiments, precise assumptions about the structure of 
the systems under study enable detailed predictions concerning the ensuing correlations. Outside physics, such 
detailed assumptions and predictions are not possible in general terms. Indeed, the precise causal origins of some 
observed correlations are likely to vary across different areas of application. Nonetheless, a generic approach can 
be developed, by partitioning the relevant variable, for example in finance, price change, into different regimes, 
for example, into weak and strong parts. We propose that the different regimes can be understood in terms of 
differing causal mechanisms, which allows a broad distinction between correlations due to significant causes for 
two companies and incidental processes. It may appear too ambitious to seek to separate out correlations due to 
significant causes versus incidental processes. However, the current practice of relying on just price correlations 
from historic time series data does not take into account any possible causal mechanisms responsible for the 
observed behaviour; indeed such mechanisms may change with time, as markets are subject to structural change 
and different regimes may have been at work during the time period that is used to compile a database. Our aim 
is to show that substantial progress can be made with the above approach, utilizing technical tools from physics 
and the field of causal inference.

Specifically, in finance, we propose a definition of the S-values by partitioning the observed financial time 
series into different regimes. To this end, consider two securities A (for example, Apple Inc.) and B (for example, 
Broadcom Inc.) and a list of different financial regimes (to be explained shortly) with respect to a security such 
that, on a given day, one and only one financial regime prevails. The measurement outcomes are now generated 
by the simultaneous price changes in securities A, B. In particular, the outcome will be a = 1 if security A has 
increased in price over a given time period and b = 1 if security B has increased in price over the same time 
period. Similarly, decreases in price are denoted by a = −1 and b = −1 , respectively.

For financial applications, the available history consists of public information and information that was pos-
sibly private initially and became public subsequently. Possible ways to determine financial regimes, by which 
the value of x, y is defined, would be by using an exogenous time series or the prices of the securities themselves. 
This allows partitioning the available data in a way that is analogous to the measurement settings in the standard 
Bell setup.

Restricting ourselves to financial price data only, an interesting choice of regimes is the distinction between 
weak and strong price change, whereby it is assumed that weak changes are due to incidental processes whereas 
strong changes are due to (ostensibly) shared, significant causal factors. Though not essential to the subsequent 
analysis, there are many ways to motivate these causal factors starting from known market mechanisms. For 
example, it is known that classical correlations tend to be higher during a market crash when investors may 
 panic28,38–42. Under such circumstances, common causes driving correlations between many securities would 
be de-risking requirements and decreased collateral values.

To obtain a simple and symmetrical description, we separate large price changes from small changes by 
defining x = 1 for each day in the time series when the price of security A has gone up or down by less than a 
fixed percentage rA , and x = 0 when the price of security A has changed by a larger amount. Days with x = 0 
are called strong days for security A. Similarly y ∈ {0, 1} is defined as a function of the price change in security 
B, over the same time period, using rB as threshold to separate weak from strong days. We think it is a reason-
able intuition that strong price changes are due to significant events in the market, possibly unique to the pair 
of stocks considered, while weak changes are due to residual or incidental market processes. Note, analogous 
approaches can be envisaged in any domain of application, that is, we think that in the case of any variable we 
can (fairly generically) identify large vs. small changes, and so adopt definitions analogous to the ones just above 
- or exogenous variables could be recruited to separate out measurement regimes in the variables of interest.

With these definitions, the four S-values can be computed from Eqs. (1)–(4). Importantly, it is possible to 
derive variants of the Inequalities (5), for particular causal models, as shown below. If the empirical data shows 
violations of these inequalities, such causal models can be excluded in line with the leitmotiv of the field of causal 
 inference15–17. Note, in the physics literature, a discussion of Bell inequalities is usually accompanied by careful 
consideration of whether an observed violation of the inequalities is due to ’genuine’ contextuality, versus signal-
ling or direct influence (e.g.43). However, for the present purposes this distinction is irrelevant, because we aim at 
a general statistical technique capable of indicating a violation of certain causal mechanisms as described below.

The quantities Si are defined as linear combinations of four conditional expectations, which can be inter-
preted as correlations between the outcomes a, b under different regimes x, y. Out of these four S-values the S1
-value is the most interesting for us, because S1 can be interpreted as correlation when strong change in at least 
one part of the system occurs. This can be seen directly from Eq. (1), as all correlations with at least one strong 
change (i.e., the regimes xy = 00, 01 and 10) are added, while the contribution with weak change in both parts 
of the system (i.e. xy = 11 ) is subtracted. So, S1-values can be interpreted as a type of correlation (in the above 
specific sense), but where the contributions involving strong change on at least one part are separated from the 
contribution involving only weak parts.

We consider two ways to utilize S-values towards understanding the correlation between the variables of inter-
est, here security prices. In both cases, assumptions about the correlation structure can be tested by comparing 
empirically measured S-values against theoretical S-values, derived on the basis of specific model assumptions. 
First, because the S-value can always be empirically computed independently of a parametric distribution model, 
we can examine very general causal models characterizing the interdependence between two securities, provided 
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we can make a meaningful distinction between strong and weak change. Here we can derive specific bounds on 
possible S-values, which can be used to eliminate certain classes of models. In an application to finance, as we 
will see, the bound of 2 may be broken by dependencies between two stocks, but other bounds are implied by 
certain generative models like the Factor  Models44,45 and the bivariate Gaussian  model46,47. In both cases, models 
can be given a specific parametric form.

Can we apply our framework to acquire additional insights into these models or develop simplified tests of 
their applicability? Regarding Factor Models, we show that S-values computed conditionally on precisely known 
values of all contributing factors may not exceed 2. As this result holds for any arbitrary functional relation-
ship between stock price returns and the contributing factors, one important and surprising message is this: in 
cases where a linear factor model is invalidated by finding conditional S-values above 2, then assuming a more 
complicated functional relationship for stock price change based on the same contributing factors will also 
be invalidated. Regarding the bivariate Gaussian distribution model, we show how S-values can be computed 
explicitly and how such values can exceed the classical limit of 2. Estimating S-values, as a function of classical 
correlation, the empirically observed S-value can be employed as a test of the adequacy of the Gaussian model. 
Overall, our approach brings together generative models of association with assumptions about the causal struc-
ture, allowing tests for both, in a seamless framework.

Bell tests for generic causal models. A Bell analysis is underwritten by a causal network, encoding the 
assumptions of putative sources of influence between the two components of a system. In physics, with two 
binary questions for systems composed of two parts, it is straightforward to provide a corresponding causal 
network, consistent with the key assumptions of locality and free choice. In the finance case, more care is needed 
since the causal network has to additionally reflect the way assumptions about measurement regimes x, y interact 
with measurement outcomes a, b.

When the measurement regimes are categorized into a strong versus a weak price change, a natural choice for 
a simple causal model would be to postulate one unknown cause U1 for driving the magnitude of price change (i.e. 
x, y) and a different unknown cause U2 for driving direction (i.e. a, b). U1 could be interpreted as a market volatil-
ity factor reflecting general uncertainty, while U2 could be regarded as a measure of optimistic versus pessimistic 
market responses to new information. However, there is not a unique way in which even these two simple ideas 
can be translated into a causal model and Fig. 1 shows two variants of hypothetical causal mechanisms. Herein, 
U1 is responsible for determining whether a trading day is strong, with a large price change in either direction. 
Cause U1 is thus responsible for separating strong trading days from weak trading days (the latter reflecting 
incidental correlation) and thus influences only x, y directly. The second cause U2 is responsible for determining 
price direction, i.e. whether stocks go up or down and therefore has direct influence on a, b.

Figure 1.  Two competing causal models. On the left-hand side two possible causal models for stock price 
co-movements are shown. Model (a) was inspired by the Bell experiments in quantum mechanics, while Model 
(b) is an extension of Model (a) with just one additional causal arrow. Both models may be proposed to describe 
stock price behavior in the regime of weak versus strong price changes. The right hand side shows a heatmap of 
S1-values from daily closing price changes of S&P-500 stocks for the time period 4.5.2016 to 3.5.2019 grouped 
into 11 sectors according to the Global Industry Classification Standard (GICS) and ordered by descending 
strength of classical correlation within each sector. An identical threshold of rA = rB = 1% was used for each 
pair of stocks. The deep red indicates S1-values above two. Those values falsify Model (a).
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How could we decide between Model (a) versus Model (b)? One may suspect that U1 also has an effect on 
price direction, in which case in Fig. 1 an arrow from U1 to U2 is needed and hence Model (b) is more appro-
priate. However, one may also argue that Model (a) is simpler and should thus be preferred. Interestingly, it is 
possible to test via the S-values whether the simpler model provides a feasible option, because the simple Model 
(a) mathematically implies a Bell bound of 2, as stated in the following proposition (see Supplementary infor-
mation for the proof).

Proposition 1 For the causal Model (a) in Fig. 1 the inequalities |Si| ≤ 2 have to hold for all i = 1, . . . , 4.

However, empirical values of S1 can be substantially above 2, so that Model (a) is readily falsified as shown 
by the heatmap on the right-hand side of Fig. 1. The heatmap of S1-values also illustrates the usefulness of the S1
-value to show the sectorial structure of the stock market. Below the diagonal, black dividing lines were added 
to show the industry sectors using the companies’ fundamental main operating business model.

In our application to the S &P 500, data for the S1-value immediately falsified Model (a). In terms of examining 
different causal models, generally each quantity S1, S2, S3, S4 provides a testable opportunity to falsify a specific 
causal model, but a violation of the bound of 2 can occur at most in one of the four quantities:

Proposition 2 For a given statistic {P(ab |xy)}xy not more than one of the four Inequalities (5) can be violated.

See Supplementary information for the proof. Regarding causal Model (a) in Fig. 1 the violation |S1| > 2 
therefore implies |Si| ≤ 2 for i = 2, 3, 4.

Other, more complex causal mechanisms than Model (a), are not ruled out by the data. For example, a causal 
connection from U1 to U2 may be assumed, leading to Model (b) in Fig. 1. This could be motivated in the financial 
area by considering that, for example, nervous and volatile markets may tend to interpret ambiguous news for 
stocks A, B in a pessimistic way, leading to a decline of stock prices. Formally, this leads to a link between causes 
for the magnitude of change (i.e. U1 ) and causes for the direction of change (i.e. U2 as it determines a, b and hence 
whether a price change is positive or negative). Despite the fact that Model (b) has just one causal arrow more 
than Model (a), Model (b) is fully general in the sense that, without further restrictions, any possible statistic for 
the four values a, b, x, y can be generated from it, as the following proposition shows.

Proposition 3 Let P̃ be an arbitrary joint probability distribution of the quadruplets (a, b, x, y) and let P denote the 
joint probability distribution generated by Model (b) for those quadruplets. Then, Model (b) can be specified in a 
manner that yields P = P̃ . This can be achieved by defining U1 appropriately and setting U2 := U1 , so one general 
cause suffices to generate any arbitrary distribution P̃.

The proof of Proposition 3 is given in Supplementary information. It shows that Model (b) achieves its gen-
erality essentially by having a causal connection from one unkown cause to all observed values a, b, x, y and by 
allowing arbitrary probability distributions for the unkown cause. So, Model (b), in its general form, provides 
a generic class of models. Because of this generality, it cannot be applied directly. In the next section, we will 
therefore explore three pertinent special cases to restrict Model (b).

Bell tests for specific parametric causal models
So far we have not identified a causal model, which lends itself to an applicable description of the empirical data 
and/or application of more specific generative models. We want to achieve this by exploring specific parametric 
special cases of the generic Model (b). First, we start with a situation where the unknown causes have a very 
simple parametric expression through dichotomous or uniformly distributed values. Second, as another special 
case of Model (b), we consider Factor Models, i.e. descriptions of stock price returns through a linear combina-
tion of different observable factors. Third, we examine the bivariate Gaussian distribution model as a generative 
model, in which stock price change is driven by a fundamental drift and a random overlay of volatility modelled 
by Brownian Motion.

1. A generating model with dichotomous causes. As outlined, we first consider the implications from allowing 
only simple parametric distributions for the causes in Model (b). As shown in the first part of the following 
Proposition 4, any distribution of quadruplets can be generated by a special case of Model (b), where we 
use only one dichotomous unknown cause and one uniformly distributed common error term driving the 
behavior of a and b. In particular, a causal graph equivalent to Model (b) can be specified, where the causal 
arrows concerning weak vs. strong days (parameters x, y expressing for example volatility) can be separated 
from the causal arrows for upward vs. downward price change (parameters a, b expressing for example market 
direction), by the simple addition of a uniformly distributed common error term.

With Model (b) it is also easy to generate the full algebraically possible range of S1-values without being 
restricted by a bound, like the Tsirelson bound in quantum mechanics. In fact, two separate dichotomous causes 
specified by only one parameter are sufficient to achieve this, as shown in the second part of Proposition 4. We 
give an explicit corresponding parametrization in the proof of Proposition 4 in Supplementary information, 
which is amenable to further generalisations, and outlines a way by which Model (b) can be made practically 
useful as a parametric model for an observed statistic.
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Proposition 4 Assuming bivalued unknown causes in Model (b) in Fig. 1, the following holds true: 

1. For any arbitrary joint probability distribution P̃ of the quadruplets (a, b, x, y), identical bivalued causes U1 
and U2 can be defined such that the joint probability distribution generated by Model (b) equals P̃ up to an 
independent, uniformly distributed error term common to a and b.

2. An explicit parametrization for two separate causes U1 and U2 with only one free parameter can be given such 
that the S1-value computed from Model (b) can attain every number in the interval [−4,+4].

To prove the second part of Proposition 4, we proceed by directly parameterizing the strength of the causal 
links in Model (b). Specifically, different parameters concern the strength of the links representing significant 
causes versus residual processes. Our approach allows us to compute S1 as a product S1 = 4(1− 2γ )(1− 2ǫ) . See 
the proof of Proposition 4 in Appendix A of the Supplementary information for a definition of the parameters 
γ and ǫ . Intuitively, parameter γ can be thought of as quantifing the strength of the link between the common 
causes U1 and U2 in Model (b) in Fig. 1, while parameter ǫ corresponds to the pattern of outcomes, i.e. the links 
between U2 and a, b in that causal model.

The model from the proof of Proposition 4 should be seen as an illustrative example. It is a compromise 
between a small number of parameters and sufficient flexibility. In this simple model, possible S1-values span the 
entire algebraic range [−4,+4] , while the other quantities S2, S3, S4 vanish, but it can be extended to situations 
with non-zero S2 -, S3 - and S4-values by introducing additional free parameters. Despite its simplicity, the speci-
fied model allows us to generate all theoretically possible S1-values, if the parameters γ and ǫ are unrestricted. 
Note, particular empirical domains of application might allow us to specialize the model to reduced ranges for 
ǫ, γ , thereby restricting the possible range for S1 as well. In contrast to the prediction from quantum  mechanics7, 
this approach generates no general Tsirelson bound for S1.

2. Factor Models. Factor Models aim to explain the returns of single stocks by one or more observable com-
mon factors. Such common factors may simply be the return of a broad market index, like the S &P 500, 
or more complex factors, such as the return of a diversified portfolio of small stocks minus the return of a 
diversified portfolio of large stocks,  see44,45. Formally, a linear Factor Model assumes that the returns of two 
stocks RA,RB are given by the relationships

Here, F1, . . . , Fm are common factors that are observable on any trading day, whereas αA,αB and 
βA
1 , . . . ,β

A
m,β

B
1 , . . . ,β

B
m are constants. Differences (residuals) between the observed stock returns RA,RB 

and the linear predictions are denoted by eA, eB and are assumed to be independent.

If the assumed linear relationship is unrealistic, the Factor Model can be generalized to

by using two arbitrary functions fA , fB.
As Model (b) can generate any distribution of quadruplets, Factor Models can be seen as a special case of 

Model (b) for the purpose of analyzing S-values. However, Factor Models provide a more specific causal story, 
because Factor Models connect x and a, as well as y and b in a special way, as the former pair (x, a) is derived 
from RA only, while the latter pair (y, b) is solely generated from RB , as illustrated in the causal diagram in Fig. 2. 
Interestingly, Factor Models allow a Bell bound conditional on the common factors, as the following proposi-
tion shows.

Proposition 5 With given arbitrary functions fA, fB , random variables F1, . . . , Fm (“factors“) and random variables 
eA, eB (“residuals“), Eqs. (8) and (9) define two stock return processes RA, RB , from which the variables a, b, x, y 
can be computed.

Let us denote the four S-values computed conditionally on the values of the factors as Si|F . If the residuals are sto-
chastically independent, then we obtain

See Supplementary information for the proof. Importantly, the derivation of the Bell bound for the conditional 
S-values holds even in the case of a non-linear Factor Model and is independent of the number of factors used.

(6)RA =αA +
m
∑

j=1

βA
j Fj + eA,

(7)RB =αB +
m
∑

j=1

βB
j Fj + eB.

(8)RA =fA
(

F1, . . . , Fm, e
A
)

,

(9)RB =fB
(

F1, . . . , Fm, e
B
)

|Si|F | ≤ 2 for i = 1, . . . , 4.
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The Bell bound in Proposition 5 only holds conditionally on all factor values F = (F1, . . . , Fm) . An interesting 
conundrum arises: We have already seen that for many pairs of stocks the value of S1 as computed from the data 
exceeds the value of 2. So, how is it possible that when computing S1-values conditionalised on the factors F, all 
these conditional S1-values may not exceed 2? One possible answer is that the specific Factor Model is incorrect 
in most cases. However, there is another, subtler possibility. In fact, this analysis reveals instances of Simpson’s 
paradox. As we show with an illustrative example in Appendix B, it is possible to have S1|F ≤ 2 conditional on 
different factor values, but when computing S1 for all data, S1 > 2 , because

may hold.
Proposition 5 is a powerful result concerning the implications of applying a Factor Model to a particular pair 

of stock prices. It links Factor Models with our framework, via the conditionalisation of the S-values on specific 
values of F. Assume that we want to construct a specific Factor Model for two stocks and a single observable 
factor F, such as a general market index like the S&P 500. Then, if there exists an instance for the variable F in 
which S1|F > 2 holds, we have to conclude that the considered Factor Model is invalid. Current practice con-
cerning Factor Models typically involves linear regression (and so an assumption of linear relationship between 
price indices and the single stocks), but Proposition 5 is not restricted in this way: Proposition 5 encompasses 
any functional relationship between the price indices and the additional variables F, so that S1|F > 2 indicates 
that something is missing in any function linking single stock price returns to a particular factor F (in that the 
residuals from the corresponding Eqs. (8) and (9) would not be independent). This holds also true if more than 
one factor is used. An important implication is that if one does not have the right factors when setting up a linear 
model, then moving to non-linear models with complicated functional relationships would generally not help.

The values in Eqs. (8) and (9) have a continuous distribution, so that conditioning on specific single point 
values is not practical. To apply Proposition 5 with real data, the first step is to select appropriate intervals for 
the factors F, such that the measurement settings are stable across intervals, i.e. P(xy|F) = P(x, y|F) = P(x, y) . 
With a stable probability distribution for the measurement settings, i.e. constant P(xy|F) on a set of factor val-
ues, Proposition 5 holds, as shown in Appendix C of the Supplementary information. In practice, there would 
be a trade-off between choosing small intervals, yielding constant probabilities versus intervals that contain a 
reasonably large number of data points.

For the present examples, we used three different pairs of stocks and divided the range of value changes in 
the single factor S&P 500 into two intervals, distinguishing between days with positive returns of the S&P 500 
and days with negative returns, i.e. we look at P(xy|F > 0) versus P(xy|F < 0) . It can be seen, from the almost 

(10)Si  =
∑

F

Si|FP(F)

Figure 2.  Factor Models. Panel (0) illustrates the Factor Model described in Eqs. (8) and (9), where the factors 
F generate the stock price returns RA and RB from which x, a and y, b are derived. Residuals are not shown 
in the diagram and appear as noise terms in the equations. Panels (i), (ii) and (iii) illustrate empirical tests of 
the factor model. These panels are based on the daily price change of the general S&P-500 market index as 
the explaining factor for market price change during the time period 4.5.2016 to 3.5.2019. Each of the three 
panels shows the conditional probabilities P(xy|·) for the four regimes xy = 00, 10, 01, 11 for a different pair of 
stocks. Again, a threshold of 1% is used to distinguish days with weak price change from days with strong price 
change. We compare the value of P(xy|F < 0) , i.e. the probability on days with negative returns in the S&P-500, 
against P(xy|F > 0) , i.e. the probability on days with positive returns in the S&P-500. Horizontal lines in the 
panels show equal probabilities. Panel (i) shows the stock pair ES (Eversource Energy) and AEE (Ameren Corp) 
with conditional S1-values of S1|F<0 = 2.25 and S1|F>0 = 2.15 . Panel (ii) shows the same analyses for the pair 
of stocks EQR (Equity Residential) and ESS (Essex Property Trust), while the righthand Panel (iii) shows the 
analyses for the pair of stocks SNPS.O (Synopsys Inc.) and CDNS.O (Cadence Design Systems Inc.).
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horizontal lines in Fig. 2, that the assumption of measurement setting independence is approximately valid. For 
different pairs of stocks we observe conditional S1-values above 2 both on the positive and the negative inter-
val. This indicates a failure of the specific Factor Model for the observed price change of the two stocks, when 
assuming a coarse graining of the S&P 500 index by just distinguishing between positive and negative returns. 
Therefore, it is not possible to have a complete explanation of the observed (Bell) statistics of the two stocks 
under consideration, with this specific Factor Model, based on a two-interval coarsening of S &P 500. That is, a 
Factor Model for these two stocks based on just whether S &P 500 was up or down on different trading days fails.

In general, if the condition of measurement setting independence is fulfilled, i.e. constant conditional prob-
abilities P(xy|·) occur across different ranges of factor values (see Proposition 7 in Appendix C of the Supple-
mentary information), the degree by which S1 exceeds 2 can be seen as a measure of the non-applicability of the 
Factor Model. While the above examples in Fig. 2 use a very rough coarse graining of the Factor, by partitioning 
the range of S&P 500 index values into just two intervals, a finer partitioning is of course possible and could yield 
a stronger conclusion. However, fulfilling the condition of constant conditional probabilities P(xy|·) becomes 
harder, when a fine partition with many sub-intervals is used. An important direction for future work is extend-
ing Proposition 7 to situations when the probabilities P(xy|·) vary across the chosen intervals. Also, note that 
such analyses can be easily extended by considering other variables for a Factor Model, e.g. as in multi Factor 
Models like the 3- or the 5-Factor Model by Fama and  French44,45.

3. Gaussian Models. The present approach can be utilized to examine the validity of different generative models 
for associations between securities. Apart from Factor Models, a particularly influential one is the bivariate 
Gaussian model, which is frequently used in continuous time financial theory for pricing and hedging of 
derivative securities and for optimal consumption over time,  see48–51.

The Gaussian model can be expressed for two stocks as

with two correlated Brownian Motions WA,WB , two positive numbers σA, σB as price volatilities, and µA,µB 
as price drifts. With the simplification of assuming zero risk free interest rates and zero price drift, three model 
parameters remain, σA, σB and the correlation ρ between the two Brownian Motions.

The density function, for the joint distribution of the logarithmic returns of the two stocks over a short time 
interval

is given by

From this density function, the four expectation values that make up the S-value in Eqs. (1)–(4), can be 
computed, such as, for example:

If the thresholds rA and rB are taken as constant multiples of the volatilities σA and σB , fomulae for the S-values 
are possible that contain only the Gaussian correlation ρ as a free parameter, see Supplementary information.

Proposition 6 If the price of two securities follows the bivariate Gaussian model in Eqs. (11)–(12) and if the thresh-
olds that separate weak from strong days are given as rA = ασA and rB = βσB with positive constants α,β , then the 
S-values can be computed via analytic expressions. It holds for example that

where Ŵ(s, x) =
∫∞
x ts−1e−tdt denotes the incomplete gamma function and

(11)dSA(t) =SA(t)(σAdW
A(t)+ µAdt),

(12)dSB(t) =SB(t)(σBdW
B(t)+ µBdt),

RA = ln

(

SA(t)

SA(t − 1)

)

, RB = ln

(

SB(t)

SB(t − 1)

)

,

pρ(v,w) =
exp

(

− 1
2(1−ρ2)

(

v2

σ 2
A
+ w2

σ 2
B
− 2 ρvw

σAσB

))

2πσAσB
√

1− ρ2
.

�ab�00 =E
[

sign(RA)sign(RB)1|RA|>rA1|RB|>rB

]

.

�ab�00 =

∫∞
γx

∫∞
γy

e−v2−w2
sinh(2ρvw)dvdw

∫∞
γx

∫∞
γy

e−v2−w2
cosh(2ρvw)dvdw

=
∑∞

n=0 c2n+1Ŵ(n+ 1, γ 2
x )Ŵ(n+ 1, γ 2

y )
∑∞

n=0 c2nŴ(n+ 1/2, γ 2
x )Ŵ(n+ 1/2, γ 2

y )

γx =
α

√

2(1− ρ2)
, γy =

β
√

2(1− ρ2)
, ck =

2kρk

k!
.
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The other expectation values 〈ab〉10, 〈ab〉01, 〈ab〉11 have analogous analytic expressions leading to an analytic formula 
for SGaussi  for all i = 1, 2, 3, 4 in the Gaussian model, as shown in Supplementary information.

Figure 3 illustrates SGauss1  as a function of Gaussian correlation ρ , if the same multiple of volatility is chosen 
for the thresholds of the two securities. The Gaussian model does allow strong levels of association between two 
securities and readily yields values SGauss1  above 2, however, it does not exhaust the full range of possible S1-values 
[−4, 4] . In fact, S1-values that are possible under the Gaussian model lie substantially below 4 and may therefore 
not explain high empirical S1-values. If the empirically determined value Semp

1  is above the curves shown in 
Fig. 3, then we may conclude that the data would offer a refutation of this model. Figure 3 illustrates the excess 
of empirical S1-values over SGauss1  for S&P-500 stocks with red colors. While the amount of information in this 
figure is too much to make it readily applicable, it does illustrate that using the S1-value offers a simple test of the 
applicability of the Gaussian model, for any two stocks.

Conclusion and discussion
A key objective in most scientific domains is to understand the causal structures which give rise to observed 
correlations. For example, in finance, what are the factors that drive risk and return between the components 
of financial portfolios? Finding asset allocations and risk diversification strategies that lead to a smooth and 
balanced outcome under different financial regimes is key for financial stability and economic prosperity. Study-
ing the association and mechanisms between joint price changes in financial instruments is therefore of high 
importance.

Our approach has been to explore an established framework from physics for linking assumptions about 
causal structure to correlations. There is a long history of cross-fertilization between physics and other disci-
plines. Regarding our chosen example in finance, a notable application concerns the heat equation to the pricing 
and hedging of financial  derivatives48. Quantum methods have also been applied to problems in social science, 
cognitive modelling, games and  finance2052–57.

Regarding correlations, Bell’s approach is the most influential framework for understanding the way particu-
lar causal models can be linked to observed correlations in nature. It is a framework and a general method for 
understanding the structure in the correlation between two components of a system, afforded by an underly-
ing causal  model58–60. However, its formulation does not depend on the laws of quantum mechanics and is in 
principle open to applications in any domain (concerning economics and finance, see, for example,15–17,61–63).

Figure 3.  Gaussian Models. The lefthand side shows the SGauss1 -values computed via Monte Carlo simulation 
as functions of Gaussian correlation ρ , with thresholds taken as alpha multiplied by the respective volatility 
(i.e. rA = ασA and rB = ασB , with α chosen in the range from 1 to 3). The righthand side shows a heatmap of 
the positive excess � = S

emp
1 − SGauss1  from daily closing price changes of S&P-500 stocks using the same time 

period, GICS sector classification and ordering as in Fig. 1. For each pair of stocks, � was computed by setting 
the threshold, that separates strong from weak days, to the stock’s daily volatility, as it was observed over the 
entire time period. Equation (1) was used to compute Semp

1  from the time series of historic stock prices, while the 
SGauss1 -value used was based on Monte Carlo simulations (as illustrated in Fig. 3 for positive values), with ρ set to 
the historic correlation between the daily returns of the two stocks under consideration.
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The main difference between the application of Bell’s framework in physics and applications in other areas is 
that in the former case it is employed as a test of macrorealistic models, whereas in applications on the macro-
scopic domain, such as finance, realism is a given, so that violations of Bell bounds have to be interpreted in the 
terms of a putative underlying causal network. This yields a fairly generic approach recognizing that correlations 
between two variables can occur because of shared causes or because of random fluctuations, where only the 
former is typically of interest. In finance, the variables of interest would be the price of two securities, so that 
our approach essentially assumes a separation between correlations resulting from significant shared causes 
from correlations assumed to be due to residual market processes. Such a separation can be realized using Bell’s 
framework.

The partitioning of (price) data into different regimes allows different conclusions regarding the causal model 
of association in these regimes. This opens the route to explore and possibly refute competing causal models 
from the available data. We offered a basic example: when x, y are defined by the magnitude of price change, 
one of the two causal models in Fig. 1 can be readily excluded from observation on the basis of Proposition 1. 
The remaining causal model from Fig. 1 is very general, but can be given a parameterization to allow a simple 
description of observed S1-values, as shown in Propositions 3 and  4. These methods are not specific to finance 
and can be easily generalized to any domain.

There are many alternative ways to restrict Model (b), including by utilizing domain-specific theory. In 
finance, two influential models are Factor Models and Gaussian Models, though note again that the applicability 
of these models is quite general (they are particular ways to model the association between variables). For Factor 
Models we have shown in Proposition 5 that conditional S-values are subject to the Bell bound, provided the 
residuals are stochastically independent. This provides interesting testing possibilities in empirical data sets in 
which the measurement settings x, y remain stable across chosen intervals of factor values. As the mathematical 
result does not require a linear relationship between factors and stock price returns and as it holds for any number 
of factors, Proposition 5 underlines the importance of choosing the right factors with independent residuals, 
when setting up a factor model. Proposition 5 thus offers potential for a very general test of proposals for Factor 
Models based on particular combinations of factors.

Regarding the widely used Gaussian model, Proposition 6 shows how the present framework can be employed 
so that limits on the S1-value can be used to probe the Gaussian distribution assumption. While Gaussian models 
are known to underestimate the probability of extreme events, the S1-value can be computed independently of 
the Gaussian assumption and, where empirical S1-values outside the range attainable by Gaussian models are 
found, the inappropriateness of the Gaussian assumption follows. The present approach offers an alternative, 
simple way to test Gaussian models, which complements existing methods, such as, specifically for  finance64–66, 
and can be generalised to variants of the Gaussian model approach.

The present paper aims to outline possible applications of Bell’s method as a general framework for linking 
causal assumptions to observed correlations. Even when it is desirable to restrict analyses to a single variable of 
primary interest, such as stock price, there is a rich range of possibilities one could employ, depending on the 
focus of interest. While in this paper only one regime was considered, the list of possible regimes can be readily 
extended. Following from our example in finance, to study, for example, causal mechanisms of market crashes, an 
asymmetric definition, where x, y are set to the value of zero only in the case of a large price decline could be used.

With the present advances in computational power and theoretical methods of machine learning, applications 
of data mining algorithms to finance are often attempted. However, while the amount of data may seem large, 
the available time periods are sometimes short and the relevant environments may not be static. For example, in 
finance, with ongoing changes in regulation, investor behavior, as well as fiscal and monetary policy, the avail-
able time series data generally results from different causal regimes. To find appropriate quantitative models for 
learning it may also be important to incorporate human knowledge regarding economic, political and market 
mechanisms into a machine learning approach.

Another consideration is that the present method can be generalised so that the regimes can be defined via 
additional variables, to take into account particular hypotheses for specifying the different measurement regimes. 
In finance, such variables might correspond to known economic, political, regulatory, and market mechanisms. 
The important point is that, in specifying the underlying generative causal model, there would be many cases 
where different models imply different restrictions on the ensuing correlations, that can be tested using the pre-
sent approach. In particular, a Bell test may reveal when a certain formalisation of human knowledge is at odds 
with observed statistical facts. The language of Bayesian networks and the causal model approach may thus help 
to build better models, based on statistical data and assumptions about putative causal mechanisms. Ultimately, 
more informative measures of association may be derived, by simple choices concerning the underlying causal 
mechanisms for the variables of interest.

Overall, we have shown how Bell’s framework in physics can be adapted to offer a measure of association 
between variables in any domain, focused on a distinction between strong and weak changes. We explored vari-
ous causal models formalising an intuition of changes due to shared, substantial causes vs. incidental processes 
and illustrated various ways in which an initial causal model proposal could be refined. Additionally, we con-
sidered two well-known generative models in our application domain, based on factors driving market returns 
or on a bivariate Gaussian distribution, to describe co-movements in security prices. In both cases, we showed 
how our framework can provide simple tests for the validity of the chosen model in different cases. Thus, the S1
-value extends the concept of correlation both instrumentally and in terms of the underlying supporting theory.

Data availibility
The data that support the findings of this study are available from www. refin itiv. com but restrictions apply to the 
availability of these data, which were used under license for the current study, and so are not publicly available. 

http://www.refinitiv.com
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Data are however available from the corresponding author upon reasonable request and with permission of 
refinitiv.
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