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The predictive model for COVID‑19 
pandemic plastic pollution by using 
deep learning method
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Junde Chen 4 & Reza Derakhshani 5*

Pandemic plastics (e.g., masks, gloves, aprons, and sanitizer bottles) are global consequences 
of COVID‑19 pandemic‑infected waste, which has increased significantly throughout the world. 
These hazardous wastes play an important role in environmental pollution and indirectly spread 
COVID‑19. Predicting the environmental impacts of these wastes can be used to provide situational 
management, conduct control procedures, and reduce the COVID‑19 effects. In this regard, the 
presented study attempted to provide a deep learning‑based predictive model for forecasting the 
expansion of the pandemic plastic in the megacities of Iran. As a methodology, a database was 
gathered from February 27, 2020, to October 10, 2021, for COVID‑19 spread and personal protective 
equipment usage in this period. The dataset was trained and validated using training (80%) and 
testing (20%) datasets by a deep neural network (DNN) procedure to forecast pandemic plastic 
pollution. Performance of the DNN‑based model is controlled by the confusion matrix, receiver 
operating characteristic (ROC) curve, and justified by the k‑nearest neighbours, decision tree, random 
forests, support vector machines, Gaussian naïve Bayes, logistic regression, and multilayer perceptron 
methods. According to the comparative modelling results, the DNN‑based model was found to 
predict more accurately than other methods and have a significant predominance over others with a 
lower errors rate (MSE = 0.024, RMSE = 0.027, MAPE = 0.025). The ROC curve analysis results (overall 
accuracy) indicate the DNN model (AUC = 0.929) had the highest score among others.

The novel coronavirus disease (2019-nCoV), called by the World Health Organization (WHO) coronavirus 
disease 2019 (COVID-19), was first reported on December 31, 2019, in Wuhan,  China1. Due to the increasing 
number of infected people around the world, the WHO introduced the outbreak of COVID-19 as a pandemic. 
As of October 10, 2021, more than 240 million people worldwide had been infected by COVID-19, and it had 
led to the deaths of more than 4.9 million  people2. The spread of the COVID-19 pandemic affected people’s 
lifestyles in several fields, such as cultural, social, educational, economic, and environmental, which led to more 
conservative acts. Irreparable damage was caused to the economies of the countries by an increase in the number 
of patients and the implementation of  quarantine3. The environmental impact of COVID-19 is also significant. 
Although the spread of COVID-19 and the forced cessation of the generation of air pollutants, greenhouse gases, 
industrial wastewater, and wastes, and the cessation of natural resource degradation provided an opportunity 
for the environment to breathe, the spread of this pandemic produced waste that has unfavorable effects on the 
 environment4. Since the outbreak of COVID-19, there has been an unprecedented increase in using single-
use plastics (SUPs) such as hand sanitizer bottles, medical test kits, plastic bags, etc. Also, the use of personal 
protective equipment (PPE), including facemasks, disinfectant wipes, gowns, face shields, and gloves, has been 
recommended by WHO to decrease the spread of COVID-19 from human to human. Therefore, the manage-
ment of wastes resulting from SUPs and PPEs is a matter of concern that overshadows global health systems 
and disrupts the economies of countries. Because of the unusual generation of COVID-19 waste from hospitals 
and households, a waste emergency has been created on different  continents5. Since the outbreak of COVID-
19, the amount of plastic waste produced worldwide is estimated at 1.6 million tonnes per day, and also almost 
3.4 billion facemasks are disposed of daily  globally6. Table 1 provides information about the number of used 

OPEN

1School of Information Engineering, Yancheng Teachers University, Yancheng 224002, Jiangsu, People’s 
Republic of China. 2Department of Civil Engineering, University of Tabriz, Tabriz, Iran. 3Department of Basic 
Sciences, Maragheh University of Medical Sciences, Maragheh, Iran. 4School of Informatics, Xiamen University, 
Xiamen 361005, Fujian, People’s Republic of China. 5Department of Earth Sciences, Utrecht University, Utrecht, 
The Netherlands. *email: r.derakhshani@uu.nl

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-31416-y&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2023) 13:4126  | https://doi.org/10.1038/s41598-023-31416-y

www.nature.com/scientificreports/

facemasks and generated plastic waste during the COVID-19 pandemic. In the meantime, China is estimated 
to generate nearly 702 million tonnes of plastic waste in the 1st rank in 2020. Iran is located in the 13th rank in 
the world, generating 62 million tonnes.

COVID‑19 pandemic wastes
All COVID-19-related waste (SUPs and PPEs) generated by hospitals, health centers, and infected individuals is 
called COVID-19 pandemic waste. The main of COVID-19 waste includes facemasks, gloves, gowns, face shields 
used by treatment staff, and types of consumer equipment utilized by COVID-19 patients. It is noteworthy that 
COVID-19 wastes aren’t limited to hospitals and healthcare facilities, but wastes generated by asymptomatic 
patients or people who have recovered at home are also considered COVID-19 waste. COVID-19-related waste 
can be divided into two groups, according to the WHO and the US Centres for Disease Control and Prevention 
(CDC). One is waste generated within healthcare facilities and hospitals, which must be collected with extra 
care and disposed of as medical waste. Another is waste generated from preventive measures such as facemasks, 
plastic gloves, etc., which can be considered harmless  waste7. Solid waste produced via households has gained 
little notice from the scientific community, while it can facilitate the COVID-19 spread by the fomite transmission 
route. SARS-CoV-2 can survive on various substrates from a few hours to a few days; for example, it is stable on 
plastics and stainless steel for 2–3  days8,9 Kampf. Therefore, solid waste generated from contaminated PPEs (e.g., 
gloves and facemasks) is hazardous to health and the  environment10,11. A patient with COVID-19 can produce 
about 3.4 kg/day of healthcare  waste12. The volume of biomedical waste in the form of waste plastics has increased 
during the COVID-19 pandemic. The facemasks and gloves are mainly composed of non-biodegradable poly-
meric substances that can degrade as macro-, meso-, and microplastics once discarded into the  environment13,14. 
There is an increasing concern that discarded PPEs rising from the pandemic of COVID-19 could end up in our 
marine ecosystems. The SARS-CoV-2 may be existed on the PPEs surface and enter the water bodies. Improper 
disposal of PPEs not only results in environmental risk but also causes potential risks to human health due to 
the consumption of seafood worldwide. In addition, macro-, meso-, and microplastics in aquatic ecosystems 
can act as possible vectors of pathogens. Also, marine mammals and organisms may be at risk of entanglement 
and ingestion of latex gloves, which result in intense injuries and  death15. Plastic waste can make the bulk of 
mismanaged wastes that interferes with the animal’s natural habitat and disturbs  those16. Biomedical plastic 
wastes take several years to biodegrade, which allows them to float into terrestrial environments and aquatic 
ecosystems and threaten human  health17.

With the COVID-19 outbreak, the generation of waste in Iran has tripled. The volume of hospital waste during 
the pandemic of COVID-19 in Tehran has reached 100 tons per day, while previously, we had about 60 to 70 tons 
of hospital waste per day. Therefore, proper disposal of hospital waste in a COVID-19 epidemic is essential. In 
addition, due to the overburden of hospitals with COVID-19 patients, there is a need to treat infected patients 
in households. However, there is no management strategy for the proper disposal of generated healthcare waste 
from households. According to the evidence, medical waste generated in hospitals and healthcare facilities dur-
ing the COVID-19 pandemic is no different from other infectious medical waste and managed. As a regulation 
related to medical waste disposal, most wastes are disposed of together in a traditional waste burial. On the other 
hand, in Iran, often solid wastes are dumped in poorly managed landfills where waste pickers could scavenge 
for recyclable materials. This can lead to the spreading of the coronavirus. Therefore, to prevent the spread of 
SARS-CoV-2, an appropriate management strategy is needed to dispose of corona waste.

The COVID-19 pandemic has sparked a rush for plastic with infraction potential. Since most of these plastics 
cannot be recycled, so has the waste. Growing concern about these wastes like masks, gowns, face shields, safety 
glasses, protective aprons, sanitizer containers, plastic shoes, and gloves arising from the current COVID-19 
pandemic could end up in our aquatic ecosystems. CDC recommended infected plastics have to discard in plastic 
bags after use and then dumped in  trashcans18. The unprecedented rises in the number of disposable pandemic 
wastes lead to provide massive plastic pollution  worldwide19. This could potentially exacerbate the plastic pollu-
tion challenges created by more than 10 million tonnes that have been threatened by our  environments20. Benson 
et al.6 prepared an international map for specific disposal of mask waste that was considered the most volume 
of COVID-19 pandemic waste plastics. Doremalen et al. (2020) and Chin et al. (2020) prepared a dataset for 
COVID-19 pandemic waste, which shows about 266 masks were disposed of per  hour8,21. This massive amount 
of pandemic waste leads to an increase in the potential indirect risk of COVID-19  infection22,23. In this regard, 
preparing the special MSW to reduce the COVID-19 pandemic waste is required. The first step in establishing 
an appropriate MSW is obtaining the generated COVID-19-based pandemic waste volume. This amount of 
risk-able plastics has to be separated from the main body of municipal waste and disposed of separately. Thus, 

Table 1.  The quantity generated plastic waste during the COVID-19 pandemic in the world.

Continents Total daily facemask (million) Plastic waste (ton/day)

Asia 1,876,182,682 954,642

Europe 446,023,935 154,624

Africa 412,815,855 276,466

South america 381,415,704 135,374

North america 245,336,151 75,796

Oceania 21,683,378 8,768
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the specified volume should be transported and isolated and the production volume covers a wide range that 
must be determined for the past, present, and future. The present study is focused on providing a procedure to 
determine the COVID-19-based pandemic wastes with high accuracy. As known, the accurate forecast in this 
field can provide a way to reduce production, safe recovery, and proper burial of pandemic wastes.

The presented article tries to assess pandemic wastes in Iranian metropolises, which play an important role in 
the indirect spread of COVID-19. In this regard, after providing a comprehensive framework for the COVID-19 
spread in megacities in Iran, the predictive model based on a deep neural network was conducted.

Methods
Deep learning is a subset of machine learning based on artificial neural networks with a representation of learn-
ing that attempts to model high-level abstract concepts in the data process using a multiple linear/nonlinear 
processing layers’ deep graph. Deep learning has developed as deep neural networks (DNN), deep belief net-
works (DBN), recurrent neural networks (RNN), convolutional neural networks (CNN), restricted Boltzmann 
machines (RBM), and autoencoders sparse coding (ASC)  architectures24 which have the exceptional ability to 
learn the various patterns in data analyses. The DNN (known as dense structural learning) is an artificial neural 
network (ANN) with multiple layers between the input–output layers which finds the correct mathematical 
manipulation to turn the input into the output, whether it can be defined as linear or non-linear  relationships25. 
The DNN network moves through the layers calculating the probability of each output. The user can review 
the results and select which probabilities the DNN network should display and return the proposed label. Each 
mathematical manipulation is considered as a layer, and a complex DNN has many layers, hence the name ‘deep’ 
networks. Deep architectures include many variants of a few basic approaches where each stage has found suc-
cess in specific  domains24.

DNN is a deep learning approach that is used for high accurate classification or prediction based on extracted 
features from input data (basic or primary dataset). Due to the DNN network capability, by increasing neural 
layers, the accuracy of the analysis can be increased, so increasing the learning depth. The input data provide the 
1st layer of DNN evaluation as a data matrix in which each element has a specific feature value. Hence, the input 
layer is organized by each DNN layer and unit. These units extract different features from the input data. The 
output layer was considered as classified/predicted layers from the input data. The middle layers were calculation 
layers of DNN. Combining these layers in the sequence can extract the desired features and, thereby, classify the 
input data into the desired classes.

Study location. Iran is one of the most sensitive countries during the COVID-19 outbreak. The COVID-19 
outbreak affected most parts of Iran very  fast26,27. The growing COVID-19 infection in Iran leads to unpredict-
able development in the production of pollution-prone waste. On the other hand, the lack of proper locations 
for landfilling caused this pollution to have a social and trans-social aspect. In this regard, the expansion of 
COVID-19 and the increase of infected patients caused to increase in the COVID-19-based pandemic wastes 
rapidly. To determine the impacts of COVID-19 outbreaks on the environment and solve problems in the waste 
management sector during this pandemic, we need appropriate information about the situation of solid waste in 
Iran’s metropolises. Since only official statistics on infected cases, recovered cases, and mortality are declared by 
the Ministry of Health and Medical Education of Iran (MHME), it is necessary to contact the municipalities to 
assess the current state of solid waste management in metropolitan areas. Therefore, extensive field studies were 
conducted to find the relationship between the number of infected cases and the amount of plastic waste gener-
ated in metropolitan areas in both household and hospital wards, and the corresponding graphs were prepared.

Data resources and preparation. In order to implement the proposed DNN-based model, the basic or 
primary dataset must first be provided. This dataset will be used to train and tested by the DNN techniques 
and lead to reaching the prediction goal. The dataset was prepared from 8 Iran metropolises concluded Tehran, 
Mashhad, Esfahan, Karaj, Shiraz, Tabriz, Qum, and Ahvaz. Data on infected cases is gathered per day in the 
mentioned metropolises from the beginning of February 27, 2020, to October 10, 2021, based on updates from 
the website “Worldometer.” These data mostly reflected the COVID-19 spread in the cities. Doing the field sur-
vey from both household and hospital plastic waste in each city helped to modify the primary dataset. During 
the field survey of these megacities, basic information was gathered from hospitals, healthcare centers, and cities’ 
landfills regarding the volume and type of SUPs and PPEs. Table 2 provides information about the data recourses 
that were used to enrich the dataset. The provided database categorized the infection cases, PPEs, SUPs, and Test 
Kits and used medical package volumes in time duration to investigate the pandemic plastic pollution in Iran. 
All data is classified in rows and columns for each city separately.

After providing the main dataset, this dataset was divided into training and testing sets (80% and 20% of 
the information, respectively). The training set was used to learn the DNN model, and the test set was used for 
testing the performance and accuracy of the proposed model.

The number of newly infected cases in Iran’s metropolises from the beginning of the first wave that appeared 
on February 27, 2020, to October 10, 2021, is plotted using Microsoft Excel (Fig. 1). As shown in Fig. 1, at the 
beginning of the Coronavirus outbreak, the number of infected cases was low in all eight of Iran’s metropolises, 
but because the virus has a rapid spread and due to lack of awareness of how the virus behaves, it has spread 
rapidly throughout all cities. It led to the beginning of the first wave of COVID-19 in Iran, which reached its 
wave on March 30, 2020. After passing the first wave, due to the preventive measures of the government and 
the people becoming more aware and observing the health protocols by them, we witnessed a decrease in the 
number of infected cases in Iran. Although, due to the reopening of businesses and low observance of health 
protocols by the people, it did not take long for us to see the start of the second wave again on May 16, 2020, and 
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the number of infected cases increased and reached its wave on June 4, 2020. The third wave of COVID-19 was 
related to the onset of autumn and the cooling of the weather. In this wave, the number of infected cases increased 
exponentially, and more patients needed hospitalization and intensive care. Coinciding with the emergence of 
the new coronavirus mutation, known as the British Variant, the fourth wave of COVID-19 began and remained 
in Iran until June 4, 2021. Unfortunately, due to the spread of the Delta Variant, Iran is currently in the fifth wave 
of COVID-19. The number of infected cases in this wave reached a record 50,228 cases on October 10, 2021.

Field survey and ground investigations. Iran is one of the countries with a high prevalence of COVID-
19. As of October 10, 2021, there had been 5,754,047 confirmed cases and 123,498 deaths in Iran, which made 
this country come 8th ranked in the world (Worldometer website). Along with other issues such as non-compli-
ance with health protocols, not implementing social distancing, and unsafe traveling during the COVID-19 pan-
demic, improper handling of corona waste in developing countries, including Iran, increases the possibility of 
Coronavirus propagation. In Iran, with more than 85 million people, over 18 million tonnes of municipal solid 

Table 2.  The information about dataset preparation regarding the field survey. *MWMU: Municipality Waste 
Management Unit. **IMHME: Iranian Ministry of Health and Medical Education.

City Parameter Unit Value (average) Data source

Tehran

COVID-19 infection Case/day 4464.037 Worldometer

PPEs kg/day 14,097.65 MWMU*

SUPs kg/day 11,621.03 MWMU

Test kits kg/day 30,163.89 IMHME**

Medical packages kg/day 45,558.81 IMHME

Mashhad

COVID-19 infection Case/day 2667.176 Worldometer

PPEs kg/day 13,272.11 MWMU

SUPs kg/day 10,577.77 MWMU

Test kits kg/day 31,914.75 IMHME

Medical packages kg/day 40,977.53 IMHME

Esfahan

COVID-19 infection Case/day 1842.235 Worldometer

PPEs kg/day 12,682.44 MWMU

SUPs kg/day 9189.781 MWMU

Test kits kg/day 23,115.06 IMHME

Medical packages kg/day 47,536.48 IMHME

Karaj

COVID-19 infection Case/day 1743.118 Worldometer

PPEs kg/day 12,292.35 MWMU

SUPs kg/day 8092.088 MWMU

Test kits kg/day 31,497.45 IMHME

Medical packages kg/day 35,951.73 IMHME

Shiraz

COVID-19 infection Case/day 1102.765 Worldometer

PPEs kg/day 10,042.53 MWMU

SUPs kg/day 8627.327 MWMU

Test kits kg/day 27,787.06 IMHME

Medical packages kg/day 38,891.01 IMHME

Tabriz

COVID-19 infection Case/day 811.1765 Worldometer

PPEs kg/day 9099.062 MWMU

SUPs kg/day 7665.711 MWMU

Test kits kg/day 31,560.95 IMHME

Medical packages kg/day 32,894.51 IMHME

Qum

COVID-19 infection Case/day 643.7647 Worldometer

PPEs kg/day 8527.540 MWMU

SUPs kg/day 6622.454 MWMU

Test kits kg/day 26,761.95 IMHME

Medical packages kg/day 34,926.61 IMHME

Ahvaz

COVID-19 infection Case/day 467.0270 Worldometer

PPEs kg/day 6640.596 MWMU

SUPs kg/day 6105.355 MWMU

Test kits kg/day 26,154.13 IMHME

Medical packages kg/day 32,377.42 IMHME
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waste (MSW) annually are generated. Only 8% of MSW are recycled by legal framework due to poor separation 
programs implemented all over the country. Therefore, hazardous household waste, including medical waste, is 
mixed with general household waste and can have health and environmental  problems28. In this regard, the pre-
sented study provides an extensive field survey from the main hospitals and municipal waste management units 
in megacities to provide the relevant information used in the primary dataset. This information, after pre-pro-
cessing, is used in the prediction process. During the pre-processing stage, the non-relevant data, like the waste 

Figure 1.  The number of new daily infected cases of COVID-19 in Iran’s metropolises.
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volume of not pandemic like non-organic wastes, food waste, metals, etc., was removed from the database. The 
main focus was on pandemic plastics like PPEs, SUPs, and medical wastes that are potentially prone to pollution.

DNN model implementation. After providing the primary dataset that was used as a basic database 
of the COVID-19 spread and pandemic plastic usage in various megacities in Iran, the dataset was randomly 
divided into testing and training sets. In the next stage, the model was trained and tested regarding the learning 
rate. Considering the test/train ratio is important for the model learning rate, that is, the response to the esti-
mated error each time the model weights are updated. In fact, the learning rate controls how quickly the model 
is adapted to the problem. Lower learning rates require more training epochs as smaller changes are made to the 
weights at each update, whereas larger learning rates result in rapid changes and require fewer training epochs. 
Specifically, the learning rate is a configurable hyperparameter used in the training of neural networks that has 
a small positive value, often in the range between 0.0 and 1.0. The learning rate used in this study was selected 
by optimizers, which for 0.01 and no momentum were scheduled via callbacks in Keras support. To this end, the 
DNN model was run for 700 iterations (epochs) using the training and validation datasets.

This database randomly divided into the testing and training data sets which are cover 20% and 80% of the 
primary database, respectively. Figure 2 is illustrated the processing flowchart of the DNN model implementation. 
The DNN-based predictive model is used to forecast the riskable pandemic plastic pollution for future events.

Performance evaluations. The performance of the proposed methodology was estimated based on both 
the confusion matrix and statistical error estimators such as mean squared error (MSE), root means square 
error (RMSE), and mean absolute percentage error (MAPE). The performance matrix is a specific table that 
visualizes the performance of a prediction algorithm based on its predicted values, and it contains the sensitiv-
ity, specificity, and 1-specificity parameters. For classification tasks, the terms true positives (TP), true negatives 
(TN), false positives (FP), and false negatives (FN) compare the results of the classifier in question with trusted 

Preparing the COVID-19 

database 

Preparing the datasets 

Training set (80%) Testing set (20%) 

Deep neural network 

Dense Dropout Fully connected

Predict the COVID-19 

pandemic plastics in Iran 

Evaluation of results 

(MSE, RMSE, MAPE)

Comparative results 

(SVM, RF, DT, GNB, BNB, 
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Ground survey for preparation 

of information 

Figure 2.  The processing flowchart of the DNN predictive model.
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external  judgments25. Precision (TP/[TP + FP]), also called the positive predictive value, is the fraction of rel-
evant instances (TP) among the retrieved instances. Also, recall (TP/[TP + FN]) is the total fraction of relevant 
instances.

Both precision and recall, therefore, are based on measures of  relevance29. Accuracy can be a misleading 
metric for imbalanced datasets. For example, for a prediction set with 90 positive and 10 negative values, clas-
sifying all values as negative gives a 0.90 (90%) accuracy score. The f1-score which known as the harmonic factor 
(F1 = 2 × [precision × recall]/[precision + recall]) provides approximately the average of the precision and recall 
values when they are close and is more generally the harmonic mean.

The overall accuracy represents the probability that an individual will be correctly classified by a test; that is, 
the sum of TP plus TN divided by the total number of the individuals tested.The application of the performance 
matrix helps to characterize the trustworthiness of the classifiers in  question24.

To estimate the error estimators from the confusion matrix, the mean squared error (MSE), root mean square 
error (RMSE) and mean absolute percentage error (MAPE) was used to measure the model accuracy. In statis-
tics, MSE, RMSE, and MAPE are considered as an estimator to measure the average of the squares of the errors 
between the estimated values and the actual value. In machine learning, these errors represent the empirical risk 
of the average loss on an observed dataset which indicates the rate of predictive model accuracy.

Verifications. The common intelligence learning-based classifiers are used for justification of applied DNN 
model to verification of modeling. In this regard, the k-nearest neighbors (k-NN), decision tree (DT), ran-
dom forests (RF), support vector machines (SVM), Gaussian naïve Bayes (GNB), logistic regression (LR), and 
multilayer perceptron (MLP) methods were selected to comparative subjects for prepare confusion matrix. In 
the machine learning field and specifically in a statistical classification problem, a confusion matrix is used to 
investigate the performance of applied algorithms especially supervised learning. The confusion table indicates 
the degree of visualization based on information retrieval documents which allows more detailed analysis than 
a mere proportion of correct classifications (accuracy). In the matrix’s context, precision (represents the positive 
and negative predictive values in numeral diagnostic tests), recall (represents the performance of binary clas-
sifications sensitivity), and f1-score (harmonic factor) are defined as relevant documents. The comparative algo-
rithms were used as  justification30. The above classifiers were used for verification of DNN based method by pro-
viding the comparative confusion tables. Also, the receiver operating characteristic (ROC) is used to control of 
mentioned predictive models’ performances. The ROC curve is a graphical description that shows the diagnostic 
ability of a binary classifier system as its discrimination threshold is varied. As a result, the overall accuracy and 
area under the curve (AUC) from the confusion matrix and ROC curve represent the accuracy of the classifiers. 
All models from DNN to verification classifiers are tested by both the confusion matrix and ROC to obtain the 
performance status of the methods.

Results
The number of newly confirmed cases and the amount of household and hospital plastic waste caused by COVID-
19 in all 8 metropolises of Iran have been obtained, and the results are shown in Figs. 3 and 4. As shown in Fig. 3, 
at the beginning of the outbreak of COVID-19 in Iran in all eight metropolises, the generation of household 
plastic waste increased unprecedentedly. The reason was fear of the virus and excessive use of disposable plastic 
items such as disposable gloves, plastic bags, masks, and face shields. Also, with lockdown cities at the beginning 
of the outbreak, more household waste was generated. By subsiding the initial wave of the disease, people’s sen-
sitivity decreased, but due to using the PPEs, the generation of household plastic waste has increased compared 
to previous years. On the other hand, as shown in the graphs, during the peak of the disease in the first to fifth 
waves, the production of plastic waste increases significantly, which is related to the stress caused by COVID-19, 
and people usually use more PPEs during the waves of COVID-19. Figure 4 shows the generation of hospital 
plastic waste. As shown in the graphs, at the beginning of the disease outbreak in Iran, the production of hospital 
waste compared to household waste did not increase significantly. However, with the progression of the disease 
and more people referring to medical facilities and hospitals, the process of waste generation has increased, and 
at the same time, with the peak of the disease in multiple waves, the production of hospital waste has increased. 
This increase is related to the consumption of PPEs by medical staff such as doctors, nurses, etc., as well as the 
plastic equipment used by COVID-19 patients.

According to these figures, it can be seen that Iran has faced different waves of COVID-19 epidemics, which 
has led to an exponential increase in the use PPEs. There is a logical relationship between increasing PPEs and 
increasing COVID-19 contagion waves in Iran. Thus, by using a prediction method to forecast the increase/
decrease level of pandemic plastic wastes for future events. Nevertheless, the information about COVID-19 con-
tagion waves from February 27, 2020, to October 10, 2021, and the PPEs usage during this duration were utilized 
as the primary database for the DNN-based predictive model. By applying the predictive model to measured 
data, it can be mentioned the model provides a suitable prediction of PPEs expansion in different cities. Figure 5 
is illustrated the results of the DNN predictive model performance value for the first 100 stages of evaluation. 
According to this figure, the model performance evaluation is conducted properly, and the evaluation criteria 
reached 0.9 in the first stages. Figure 6 is provided the predictive model results of the confusion matrix during 
the forecasting of the COVID-19 pandemic wastes expansion in Iran’s metropolises. According to these figures, 
it can be mentioned the DNN-based model provides high-accurate results to predict plastic pollution.

Figure 7 illustrates the prediction regression variations that were conducted on the database by the DNN 
model for megacities of Iran. The presented figure provided a linear regression analysis for measured and pre-
dictive values of the used PPEs for different studied cities and estimated the R-square values in hospital and 
household plastic wastes. As seen in this figure, the regression between measured and predicted values indicates 
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the DNN model’s high capability. As a justification of the DNN model used, the common classifier concluded as 
k-NN, DT, RF, SVM, GNB, LR, and MLP methods. The justification procedure utilized to prepare the compara-
tive confusion matrix was used for a measure of methods performance. The confusion matrix and ROC curve 
are used as verification. Precision (also called positive predictive value) is the fraction of relevant instances 
among the retrieved instances, while recall (also known as sensitivity) is the fraction of relevant instances that 
were retrieved. Both precision and recall are therefore based on relevance. So, the precision represents the total 
of true prediction, and recall has presented a sensitivity of the analysis. Figure 6 provides information about the 

Figure 3.  The amount of household plastic waste caused by COVID-19 in Iran’s metropolises.
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precision, sensitivity, and accuracy of the DNN model during the training and validation process. Also, in order 
to evaluate the model capability, the error rates were evaluated for all predictive models shown in Table 3. The 
error rate indicated the predictive model’s accuracy. The MSE, RMSE, and MAPE values are obtained for the 
various classifiers. According to this table, the DNN model outperformed the benchmark methods.

Figure 4.  The amount of hospital plastic waste caused by COVID-19 in Iran’s metropolises.
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Discussion
The deep neural network (DNN) is a type of machine learning model that is capable of learning complex patterns 
in data and can be applied to a wide range of tasks. They have been used in many fields, including image and 
speech recognition, natural language processing, and forecasting, to name a few. The presented study attempted 
to investigate DNN to predict COVID-19 pandemic plastic waste expansion in eight megacities in Iran, which 
is considered the main objective of the study. The algorithm evaluated PPEs and SUPs generation regarding the 

Figure 5.  The DNN model performance evolution for COVID-19 pandemic plastic in the first 100 epoch.

Figure 6.  The error rate and confusion matrix for DNN predictive model.



11

Vol.:(0123456789)

Scientific Reports |         (2023) 13:4126  | https://doi.org/10.1038/s41598-023-31416-y

www.nature.com/scientificreports/

Figure 7.  The regression metrics for DNN predictive model: (a) Ahvaz, (b) Esfahan, (c) Karaj, (d) Mashhad, (e) 
Qum, (f) Shiraz, (g) Tabriz, (h) Tehran.

Table 3.  Estimated error rates for different predictive models.

Classifier MSE RMSE MAPE

k-NN 0.42718541 0.41025881 0.50487288

Decision tree 0.45047509 0.45527133 0.67085132

Random forests 0.29886415 0.30175298 0.31253664

SVM 0.28157449 0.27168503 0.25416574

GNB 0.33689459 0.38012520 0.35336942

MLP 0.10746354 0.13714221 0.17456325

Logistic regression 0.25776357 0.27596413 0.25976830

DNN 0.02435120 0.02798154 0.02595136
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COVID-19 pandemic spread in Iran during that specific time. The prediction was implemented on the primary 
inventory database, which was provided based on digital and field (site) surveys from the target cities; this was 
divided randomly into training (80%) and testing (20%) sets for the analysis. The DNN-based predictive model 
was compared to the benchmark models regarding performance and accuracy which results show a significant 
capability of the algorithm to predict accurately. The high accuracy achieved by the proposed DNN predictive 
model over other comparative classifiers as well as fewer errors rate. As a notification, this study has some limita-
tions that could be considered in future research. These limitations can be addressed as follows:

• The primary database was provided based on released information from authorities and large hospitals/ 
medical centers, and urban services of the municipality from the megacities, so the input data is limited.

• The predictive model requires many strong processors to analyze the inputs, so the processing stages are 
time-consuming and slow.

The predictions based on the time series have shown good agreement with the measured data, as shown in 
Figs. 1, 3, and 4. The forecasting results have indicated that the using and producing pandemic wastes are compat-
ible with the spread of COVID-19 across entire cities. Household plastic waste, in particular, show a decreasing 
trend. However, hospital waste is more closely linked to the overall trend of infections.

Referring to the justification process, the proposed model reached the highest accuracy (0.96) with preci-
sion (0.93) rather than other classifiers concluded k-NN (0.70 accuracy and 0.67 precision), DT (0.85 accuracy 
and 0.75 precision), RF (0.82 accuracy and 0.73 precision), SVM (0.82 accuracy and 0.60 precision), GNB 
(0.82 accuracy and 0.81 precision), MLP (0.77 accuracy and 0.84 precision), and LR (0.74 accuracy and 0.66 
precision). Also, the obtained error rate indicated the DNN model was operated with less error than others 
which is MSE = 0.024, RMSE = 0.027, and MAPE = 0.025. The other classifiers error rates are k-NN (MSE = 0.427, 
RMSE = 0.410, MAPE = 0.504), DT (MSE = 0.450, RMSE = 0.455, MAPE = 0.670), RF (MSE = 0.298, RMSE = 0.301, 
MAPE = 0.312), SVM (MSE = 0.281, RMSE = 0.271, MAPE = 0.254), GNB (MSE = 0.336, RMSE = 0.380, 
MAPE = 0.353), MLP (MSE = 0.107, RMSE = 0.137, MAPE = 0.174), and LR (MSE = 0.257, RMSE = 0.275, 
MAPE = 0.259). Regarding the benchmark classifiers used in the study for verification, the models have shown 
the superiority of the proposed DNN procedure. Finally, the ROC curves were used to evaluate the overall 
accuracy and degree of the capability for each machine learning-based predictive model. According to the 
results, the proposed method reached the highest overall accuracy (AUC = 0.969). Other classifiers reached k-NN 
(AUC = 0.809), DT (AUC = 0.828), RF (AUC = 0.828), GNB (AUC = 0.908), MLP (0.779), and LR (AUC = 0.742).

Conclusions
The global outbreak of COVID-19 is providing a high alert situation worldwide and lead to an increase in using 
personal protective equipment (PPE) based on WHO and CDC recommendations. These PPEs caused the exten-
sion of medical waste (named pandemic plastic pollution) with high risk-able as COVID-19 infection potential 
in the environment, which is required special MSW management. Addressing the COVID-19-based pandemic 
waste generation in the world and Iran provide a huge concern about indirect COVID-19 spread. Providing 
information about the pandemic plastic pollution volumes is the first step in MSW management for such risk-
able wastes. The presented study attempted to provide a proposed predictive model based on deep learning 
and deep neural network (DNN) framework. The aim of the predictive model is to prepare an accurate view of 
COVID-19-based pandemic plastic expansion in the megacities of Iran. In this regard, the pandemic spread and 
PPEs usage data were gathered from February 27, 2020, to October 10, 2021, and used as the primary database 
for the predictive model. The database used for DNN-based modeling regarding the predicting of MSW volume 
for pandemic plastic expansions. The results of the research can be categorized as follow:

1. The pandemic plastics (e.g., masks, gloves, aprons, and bottles of sanitizers) are consequences of COVID-19 
pandemic-infected waste, which is significantly increased at the global level. These hazardous wastes play 
an important role in environmental pollution and indirectly spread COVID-19. The pandemic plastics 
expansion leads to global concern about COVID-19-based risk-able wastes, and providing special MSW 
management is necessitating urgent prevention to control the pandemic spread.

2. The prediction of the pandemic plastics’ volume can be used for appropriate MSW management, considered 
the first step to controlling the indirect pandemic spread. In this regard, the application of artificial intelli-
gence techniques received huge attention due to the highly accurate results. In the meantime, the application 
of deep learning approaches provides more efficient predictive models.

3. The deep learning procedure (DNN) was used for the prediction of COVID-19-based pandemic plastics 
expansion in megacities of Iran. The model was implemented on a comprehensive database for forecasting 
the waste variations with respect to COVID-19 epidemic waves in Iran. The predictive model is controlled 
by a confusion matrix to evaluate the model’s performance. According to the confusion matrix, the DNN 
model provides 96% accuracy and 93% precision. Also, the estimated error rate is MSE = 0.024, RMSE = 0.027, 
and MAPE = 0.025, which indicates the high performance of the predictive model regarding other machine 
learning-based algorithms.

4. The common classifiers used for justification for DNN predictive models such as k-NN, DT, RF, SVM, GNB, 
MLP, and LR algorithms were selected for comparative subjects. According to the performance evalua-
tions, the models operated under k-NN (0.70 accuracies and 0.67 precision), DT (0.85 accuracies and 0.75 
precision), RF (0.82 accuracies and 0.73 precision), SVM (0.82 accuracies and 0.60 precision), GNB (0.82 
accuracies and 0.81 precision), MLP (0.77 accuracies and 0.84 precision), and LR (0.74 accuracies and 0.66 
precision). Based on errors table obtained for these classifiers concluded NN (MSE = 0.427, RMSE = 0.410, 
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MAPE = 0.504), DT (MSE = 0.450, RMSE = 0.455, MAPE = 0.670), RF (MSE = 0.298, RMSE = 0.301, 
MAPE = 0.312), SVM (MSE = 0.281, RMSE = 0.271, MAPE = 0.254), GNB (MSE = 0.336, RMSE = 0.380, 
MAPE = 0.353), MLP (MSE = 0.107, RMSE = 0.137, MAPE = 0.174), and LR (MSE = 0.257, RMSE = 0.275, 
MAPE = 0.259).

5. According to the confusion matrix and statistical error estimators’ results, the DNN model has achieved 
more accuracy than justification methods which are indicated the capability and high performance of the 
DNN predictive model over other methods.

6. The receiver operating characteristic (ROC) curve analysis results of all models to evaluate the degree of the 
capability that indicates the DNN model (AUC = 0.969) was the highest score than others which contains 
k-NN (AUC = 0.809), DT (AUC = 0.828), RF (AUC = 0.828), GNB (AUC = 0.908), MLP (0.779), and LR 
(AUC = 0.742).

Data availability
All data generated or analyzed during this study are included in this published article.erest.
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