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Deep learning‑based network 
pharmacology for exploring 
the mechanism of licorice 
for the treatment of COVID‑19
Yu Fu , Yangyue Fang , Shuai Gong , Tao Xue , Peng Wang , Li She  & Jianping Huang *

Licorice, a traditional Chinese medicine, has been widely used for the treatment of COVID‑19, but all 
active compounds and corresponding targets are still not clear. Therefore, this study proposed a deep 
learning‑based network pharmacology approach to identify more potential active compounds and 
targets of licorice. 4 compounds (quercetin, naringenin, liquiritigenin, and licoisoflavanone), 2 targets 
(SYK and JAK2) and the relevant pathways (P53, cAMP, and NF‑kB) were predicted, which were 
confirmed by previous studies to be associated with SARS‑CoV‑2‑infection. In addition, 2 new active 
compounds (glabrone and vestitol) and 2 new targets (PTEN and MAP3K8) were further validated by 
molecular docking and molecular dynamics simulations (simultaneous molecular dynamics), as well 
as the results showed that these active compounds bound well to COVID‑19 related targets, including 
the main protease (Mpro), the spike protein (S‑protein) and the angiotensin‑converting enzyme 2 
(ACE2). Overall, in this study, glabrone and vestitol from licorice were found to inhibit viral replication 
by inhibiting the activation of Mpro, S‑protein and ACE2; related compounds in licorice may reduce 
the inflammatory response and inhibit apoptosis by acting on PTEN and MAP3K8. Therefore, licorice 
has been proposed as an effective candidate for the treatment of COVID‑19 through PTEN, MAP3K8, 
Mpro, S‑protein and ACE2.

Coronavirus disease 2019 (COVID-19) has had a significant impact on global health systems and economic 
development due to its highly infectious nature and complex  pathogenesis1. Existing therapies, including conven-
tional treatments (e.g., oxygen therapy) and immunomodulators, can only play a preventive role, and the rapid 
development of specific drugs and vaccines targeting COVID-19 has become the greatest  challenge2. Studies have 
shown that traditional Chinese medicine (TCM) can improve clinical symptoms, delay disease progression, as 
well as reduce mortality and recurrence rates in patients with COVID-193,4. Of the available formulas, preventive 
prescriptions, and therapeutic prescriptions for confirmed cases proposed by TCM, licorice is one of the most 
frequently used for the treatment of COVID-195,6.

Licorice is a perennial herb commonly used in  TCM7, leguminous or plant rhizomes and dried roots are 
frequently used in medicinal  preparations8. Many licorice compounds and corresponding targets have been 
shown to play a central role in the treatment of COVID-19 through network pharmacology analysis, as well as 
in in vivo or in vitro  studies9–11. In terms of compounds, for example, Glycyrrhizic Acid, and other compounds 
found in licorice can bind to Mpro, ACE2 and S proteins, respectively, which could inhibit COVID-19 repli-
cation and block virus binding  sites12–14; in terms of targets, MAPKs, ILs and NF-kB can regulate the MAPK 
signaling pathway, the IL-17 signaling pathway and the NF-kB signaling pathway, exerting anti-inflammatory 
and immunomodulatory  effects13.

Traditional network pharmacology, namely P1 (Fig. 1a) in this study, an research method is often used to 
identify active compounds and  targets15, has the advantages of being comprehensive, systematic, and holistic, 
which is consistent with the multi-compound, multi-target, and multi-pathway characteristics of TCM, expand-
ing the potential applications of TCM  research16. However, it still presents some challenges, such as the lack of 
comprehensive data on various drugs, genes, and  proteins17. Therefore, we proposed a deep learning (DL)-based 
network pharmacology method, in which a model integrated with a drug-target interaction (DTI) method was 
adopted [Highlight the innovative nature of the method].

Based on above new method, two new processes were proposed, namely P2 (Fig. 1bi) and P3 (Fig. 1bii). 
(1) For process P2, since the traditional network pharmacology approach does not consider characteristic 
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information about the molecular structure of proposed drugs, integrating GO and KEGG enrichment analysis 
in process P1 with the DTI prediction, it is possible to predict more compounds and targets. (2) Compared to 
process P2, which identifies some important compounds and targets after PPI analysis, process P3 takes into 
account all the active compounds of licorice and COVID-19 targets and performs a prediction of DTI, making 
full use of all available information.

In fact DTI is one of the most direct and effective methods for discovering active compounds and targets. 
Several new DTI methods have been developed in recent years, all of which have shown promising results, for 
example, DeepDTA, a model only extracts the sequence information of targets and compounds by the convolu-
tional neural network (CNN)18. And DeepPurpose, which combined the current optimal models, achieved better 
results compared to the previous  model19. However, these models only considered a single feature of compound 
information. Therefore, we proposed a new model called DeepDrugTargetInteractionandGraphConvolutional.

(DeepDGC) for DTI prediction, which included two DL algorithms, graph convolutional neural network 
(GCN) and CNN, to extract more characteristic information from the molecular structure of the compound. 
GCN and CNN were used to obtain two representations of the compound—the molecular map and the Morgan 
fingerprint, respectively. In addition, CNN was used to learn the amino acid sequence of the disease targets. After 
two vectors were generated in the above two steps, they were inserted into a fully connected layer, followed by a 
regression layer, in which the output was the compound-target affinity value.

According to the above description, this study included a total of three processes, i.e., P1 (Fig. 1a), P2 
(Fig. 1bi), and P3 (Fig. 1bii). Here, P1 was the traditional network pharmacology process; P2 and P3 were the 
improved processes proposed in this study.

Materials and methods
Acquisition of active compounds and licorice targets. We retrieved 249 compounds by searching the 
 TCMSP20 databases with the keyword "licorice". After screening the criteria of oral bioavailability (OB) ≥ 30% 
and drug-likeness (DL) ≥ 0.18, 92 active compounds remained. The corresponding targets of the active com-
pounds were obtained from the  TCMSP20,  SwissTargetPrediction21,  PharmMapper22 and  GeneCards23 data-
bases, and 1140 targets were named after deleting duplicate items.

Acquisition of disease targets. Searching the  GeneCards23,  OMIM24,  DrugBank25 and other databases 
with the keywords "COVID-19" produced 13,542 targets for COVID-19 after deleting duplicate values.

Acquisition of overlapping targets. A total of 774 overlapping targets remained after intersection 
screening using  Venny26 from 1140 licorice targets and 13,542 targets for COVID-19, which were considered 
potential targets of licorice acting in COVID-19.

Figure 1.  (a) Flow chart of traditional network pharmacology process (P1); (b) Improved flow chart for two 
processes: (i) process P2 and (ii) process P3.
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Acquisition of key compounds and key targets by analysis of PPI networks. The overlapping tar-
gets were loaded into the STRING  database27 to obtain the PPI network. After the removal of isolated targets, the 
PPI network was imported into Cytoscape  software28, where the Centiscape plug-in was used to screen for the 
key targets, with three parameters (Degree unDir, Betweenness unDir and Closeness unDir) used as thresholds. 
The key compounds were then acquired according to the key targets.

Acquisition of core compounds and core targets by GO and KEGG enrichment analysis. Based 
on the key targets, the Metascape  database29 was used to conduct GO and KEGG enrichment analysis (p < 0.01), 
and a licorice-compound-target-pathway network was built to screen core targets by the Cytoscape software. All 
compounds corresponding to the core targets on the network were defined as core compounds.

Predictions of compounds and targets based on DeepDGC. The DeepDGC model (Fig. 2) was used 
in both processes P2 and P3, the input data types being SMILES sequences for compounds and protein amino 
acid sequences for targets. After compounds were transformed into SMILES strings and targets were converted 
into protein amino acid sequences, each SMILES string was matched to each amino acid sequence one by one. 
The output of this model was affinity values that indicated the interaction probabilities.

CNN was an architecture containing one or more convolutional layers, usually followed by a pooling layer, and 
GCN, an optimization of CNN, was a graph neural network using convolutional operations and compensated for 
the inability of CNN to handle non-Euclidean structured data. Therefore, the model combined GCN and CNN. It 
comprised two separate CNN blocks and a GCN block. For CNN block, we used DeepDTA’s18 configurations to 
set up the CNN block for the DeepDGC model, and for GCN block, we used three graph convolutional layers. In 
each layer, the covalent bonds and node information were extracted according to the molecular map [Highlight 
the innovative nature of DL model].

The KIBA dataset (pretraining dataset) for DeepDGC comprised primarily of the SMILES strings of 2111 
active compounds, the amino acid sequences of 229 targets, and 118,254 binding affinity values. And it was 
employed to train the model using five-fold-cross-validation. Furthermore, to ensure the generalization ability, 
we set the activation functions relu and dropout. Finally, CI and MSE were used as evaluation indicators and the 
average results were reported. And with regard to the parameter settings, some of them were based on relevant 
studies, while other important parameters were compared experimentally for optimum results. The relevant 
parameters were set as shown in Table 1.

Subsequent to the evaluation of the pre-training dataset, the DeepDGC model was used to predict affinity 
values in process P2 and P3. The prediction dataset used in process P2 was composed primarily of the SMILES 
strings of the key compounds of licorice (obtained from the PPI analysis), and amino acid sequences of the key 
targets (obtained from the PPI analysis); while the prediction dataset used in process P3 was composed primarily 
of the SMILES strings of active compounds of licorice (screened by OB ≥ 30% and DL ≥ 0.18), and amino acid 
sequences of targets (for COVID-19).

Selection of compliant core compounds by ADMET analysis. ADMET prediction is the assessment 
of five aspects (absorption, distribution, metabolism, excretion, and toxicity), which plays a key role in drug 
 development30. In this study, the physicochemical and pharmacokinetic properties of the active components 
were predicted through the SwissADME  database31 and the pkCSM  database32, respectively.

The physicochemical properties considered here include molecular weight (MW), rotatable bond count (RB), 
H-bond acceptors (HBA), donor count, TPSA, and leadlikeness violations (LSV). The pharmacokinetic properties 
included absorption (i.e. Caco-2 cell permeability, HIA and skin permeability), distribution (i.e. VDss, unbound 
fraction, the blood–brain barrier and central nervous system permeability), excretion (i.e. total clearance and 
renal OCT2 substrate), and toxicity (i.e. AMES toxicity, maximum tolerated dose, hERG I inhibitor, hERG II 
inhibitor, oral rat acute toxicity (LD50), hepatotoxicity, skin sensitization, and minnow toxicity).

Validation of core compounds and core targets by molecular docking. Molecular docking was 
used to further verify the binding capabilities of the core compounds and related targets outlined above. First, 
the monomeric component structures of the protein targets and related information were obtained from the 
 UniProb33 and  PDB34 databases. Second, AutoDockTools was used to conduct a range of operations, such as 
hydrogenation, charge addition, removal of water molecules, and removal of metal ions. Third, the PubChem 
 database35 was used to construct the 3D structures of the active compounds. Subsequently, global docking boxes 
were generated by AutoDockTools while blind docking was performed using qvina-w. The binding score was 
used to evaluate the ability of a natural compound to bind to the target. Finally, heat maps and 3D docking maps 
of the docking results were created using Python and Pymol.

Molecular dynamics simulations. The compound-protein target pair with the highest binding energy of 
molecular docking was subjected to molecular dynamics (MD) simulations to further check the binding stability 
of the two. MD simulations were then performed using Gromacs  software36. To ensure the total charge neutrality 
of the simulated systems, corresponding amounts of sodium ions were added to the three systems to displace 
water molecules and produce solvent boxes of appropriate size. Next, periodic boundary conditions (PBC) were 
applied in each of the three directions of the system, thereby determining the force field parameters for the entire 
atom. Finally, two complexes were simulated for a 100 ns NPT ensemble (with constant number of particles, 
pressure and temperature).
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Results
Key compounds and key targets. To explore the mechanism underlying the therapeutic effects of 
licorice against COVID-19, 774 targets were imported into the STRING database to construct a PPI network. 
After screening according to three thresholds, we obtained 88 key compounds (Table S1) and 156 key targets 
(Table S2).

Core compounds and core targets. To determine the molecular mechanisms underlying the efficacy of 
licorice treatment against COVID-19, we used Metascape to perform the biofunctional annotation of GO and 
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Figure 2.  Detailed structure of the DeepDGC model.
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KEGG pathway enrichment analysis of the key targets. The GO biofunctional annotation results showed that a 
variety of terms were identified, including 254 biological process (BP) terms that mainly relate to the positive 
regulation of protein phosphorylation and the positive regulation of cell migration, 141 cellular component 
(CC) terms that mainly relate to the lumen of the vesicle, membrane rafts, and receptor complexes, 59 molecular 
function (MF) terms that were mainly related to kinase binding, protein serine/threonine/tyrosine kinase activ-
ity and transcription factor binding. The top 10 considerably enriched terms for BP, CC, and MF were visualized 
in Fig. 3a.

The KEGG pathway enrichment analysis results showed that the key targets were enriched in 180 pathways, 
and the top 20 paths with the highest level of enrichment were chosen for visualization in Fig. 3b, which revealed 
enrichment mainly in the P53 signaling pathway, cAMP signaling pathway, NF-kB, and other related signaling 
pathways.

Furthermore, to better understand the mechanism by which licorice acts on COVID-19, a licorice compound-
target-pathway relationship network was built based on the above KEGG pathway (Fig. S1), which suggests the 
potential interactions between active compounds and targets, as well as the related pathways of licorice for the 
treatment of COVID-19. Finally, the top 5 active compounds (quercetin, glypallichalcone, calycosin, vestitol, 
naringenin) were selected as the core compounds and the top 5 genes (PTGS2, HSP90AB1, PPARG, SYK, ALB) 
were selected as the core targets. These results derived from process P1.

Complementary core compounds and core targets. To explore more core compounds and core tar-
gets, a DeepDGC model was presented in this study. After the model was trained on the pre-training dataset, 
it was used to predict the affinity values between compounds and targets. We used four models  (KronRLS37, 
 SimBoost38,  DeepDTA15,  WideDTA39,  DeepPurpose19 as baseline models and the comparison results were 
shown in Table 2.

The prediction data set used in the process P2 was primarily composed of 88 SMILES strings of active com-
pounds and 1248 amino acid sequences of targets. The prediction data set used in the P3 process was composed 
primarily of 92 SMILES strings of active compounds and 58,378 amino acid sequences of targets. The final 
prediction affinity values of the top 30 for P2 and P3 were shown in Tables 3 and 4.

The combined results of the three processes (P1, P2 and P3), including all core compounds and core targets, 
were shown in Table 5. Compared with existing studies of formulations or formulae containing licorice, the 
relevance of the 4 compounds  (quercetin40,  naringenin40,  liquiritigenin41 and  licoisoflavanone42) and 6 targets 
 (SYK41,  PTGS243, PPARG 43,  ALB43,  HSP90AB144 and  JAK245) had been explored previously. Therefore, the other 

Table 1.  The DeepDGC model hyperparameter settings.

Hyperparameters Value range Meaning of parameters

Batch_size 128 Number of samples in a single training session

Epoch 2000 Number of iterations

Activation function ReLu Activation function

Optimizer Adam Optimizer

Dropout 0.1 Random deactivation rate

Learning rate (lr) 1e-4 Learning rate

Figure 3.  Enrichment analysis of GO and KEGG. (a) Top 10 biological processes, top 10 cellular compounds, 
and top 10 molecular functions: (b) top 20 KEGG pathways. The color scale indicates the different thresholds of 
p values and the size of the dots represents the number of genes corresponding to each pathway.
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Table 2.  Performances of various methods on KIBA dataset.

Method Proteins and compounds MSE CI

KronRLS37 S–W & Pubchem Sim 0.411 0.782

SimBoost38 S–W & Pubchem Sim 0.222 0.836

DeepDTA15 S–W & Pubchem Sim 0.502 0.710

DeepDTA15 CNN&Pubchem Sim 0.271 0.718

DeepDTA15 S–W &CNN 0.204 0.854

DeepDTA15 CNN & CNN 0.194 0.863

WideDTA39 PS + PDM & LS + LMCS 0.179 0.875

DeepPurpose19 GCN & CNN 0.177 0.879

DeepDGC CNN & CNN + GCN 0.162 0.888

Table 3.  Top 30 drug-target pairs obtained by the P2 process.

Key target Molecule name Mol ID Affinity Key target Molecule name Mol ID Affinity

JAK2 Shinflavanone MOL004805 12.553 SYK Naringenin MOL004328 12.314

JAK2 Phaseolinisoflavan MOL004833 12.524 SYK Vestitol MOL000500 12.310

PTEN Xambioona MOL005018 12.503 SYK Calycosin MOL000417 12.306

HSP90AB1 Vestitol MOL000500 12.496 SYK Glypallichalcone MOL004835 12.305

IDH1 Glyasperin B MOL004808 12.446 JAK2 Glyasperin B MOL004808 12.292

PTEN Phaseolinisoflavan MOL004833 12.432 LYN Gancaonin G MOL005000 12.284

HSP90AB1 Calycosin MOL000417 12.392 ERBB4 Inermine MOL001484 12.265

PTEN Glabrone MOL004912 12.373 ERBB4 Glyasperin B MOL004808 12.265

PTEN Licoisoflavone B MOL004884 12.373 ERBB4 Glyasperin C MOL004811 12.263

HSP90AB1 Quercetin MOL000098 12.363 LYN Licoisoflavone B MOL004884 12.252

HSP90AB1 Naringenin MOL004328 12.359 IDH1 Shinflavanone MOL004805 12.243

JAK2 Licoisoflavone MOL004883 12.343 IDH1 Xambioona MOL005018 12.237

PTEN Licoisoflavone MOL004883 12.338 IDH1 Licoisoflavone B MOL004884 12.237

HSP90AB1 Glypallichalcone MOL004835 12.326 SYK Xambioona MOL005018 12.223

SYK Quercetin MOL000098 12.315 IDH1 Glabrone MOL004912 12.219

Table 4.  Top 30 drug-target pairs obtained by the P3 process.

Key target Molecule name Mol ID Affinity Key target Molecule name Mol ID Affinity

RET Licoisoflavone B MOL004884 12.259 KIT Semilicoisoflavone B MOL004827 12.125

MAP3K8 Glabrene MOL004911 12.218 RET Glyasperin B MOL004808 12.119

RET Glabrene MOL004911 12.207 MAP3K8 Semilicoisoflavone B MOL004827 12.113

RET Isotrifoliol MOL004814 12.193 SYK Vestitol MOL000500 12.113

RET Semilicoisoflavone B MOL004827 12.189 MAP3K8 Lupiwighteone MOL003656 12.109

MAP3K8 Calycosin MOL000417 12.181 SYK Calycosin MOL000417 12.106

RET Kaempferol MOL000422 12.179 FGG Semilicoisoflavone B MOL004827 12.103

RET Calycosin MOL000417 12.165 MAP3K8 Licoisoflavone B MOL004884 12.099

RET Liquiritin MOL004903 12.160 SYK Glypallichalcone MOL004835 12.089

MAP3K8 Glypallichalcone MOL004835 12.154 MAP3K8 Liquiritin MOL004903 12.077

RET Glypallichalcone MOL004835 12.149 MAP3K8 Glyasperin B MOL004808 12.066

RET Liquiritigenin MOL001792 12.149 FGG Licoisoflavone B MOL004884 12.057

RET Lupiwighteone MOL003656 12.147 KIT Licoisoflavone B MOL004884 12.050

SYK Quercetin MOL000098 12.131 FLT1 Liquiritin MOL004903 12.024

SYK Naringenin MOL004328 12.125 FLT3 Liquiritigenin MOL001792 12.020
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15 core compounds (glypallichalcone, calycosin and vestitol) and 2 core targets (PTEN and MAP3K8) will be 
discussed below.

Non‑toxic and easily absorbed core compounds. Based on the above results, ADMET was used 
to predict the physicochemical and pharmacokinetic properties according to SwissADME and pkCSM. Swis-
sADME calculations showed that 5 compounds passed the stringent lead-like criteria (250 g/mol ≤ MW ≤ 350 g/
mol, XLOGP ≤ 3.5 and rotatable bonds ≤  746), indicating they could be considered excellent drug candidates 
against COVID-19 (Table 6). These lead-like compounds were further predicted by pkCSM. Regarding absorp-
tion parameters and drug distribution parameters, all 5 compounds were within the acceptable range. However, 
isotrifoliol, glypallichalcone and calycosin did not satisfy the criteria of hERG II inhibitor. Finally, only the new 
active compounds glabrone (MOL004912) and vestitol (MOL000500) could be considered eligible core com-
pounds, of which vestitol was identified by P1, and glabrone was identified in P2 and P3 (Table 7).

Stable combination of core compounds and core targets. To support our findings mentioned 
above, we used molecular docking to evaluate the interaction between the active core compounds and the core 
targets, in which binding affinity less than − 7.0 kcal/mol indicated a good  interaction47. Two new active com-
pounds in licorice (glabrone and vestitol) were docked to COVID-19 binding sites, such as Mpro, S-protein and 
ACE2. The binding affinities were shown in Table 8, and the binding modes of the selected active compounds 
and targets with the highest binding values was shown in Fig. 4. According to Tables 3 and 4, two new targets in 
COVID-19 (PTEN and MAP3K8) were docked to licorice-related compounds, such as glabrone, licoisoflavone 
B and isotrifoliol. The binding affinity results were shown in Table S3.

Molecular dynamics simulations. The larger the protein Calpha root-mean-square deviation (RMSD) 
of the MD simulations, the more violent the fluctuations indicating greater motility and less stability.The RMSD 
data of licorice, include glabrone and S-protein, as well as licoisoflavone B and MAP3K8, were shown in Fig. 5. 
The results showed that the RMSD fluctuations for S-protein/glabrone and MAP3K8/licoisoflavone B are within 
2 Å, which means that the system is less kinetic and more stable. These findings all showed that a stable confor-
mation has been achieved in the process of MD simulations [MD simulations analysis].

Table 5.  Summary of core compounds and core targets.

Process Core compounds Core targets

P1 Quercetin, glypallichalcone, calycosin, vestitol, naringenin PTGS2, HSP90AB1, PPARG, SYK, ALB

P2 Shinflavanone, phaseolinisoflavan, xambioona, glyasperin B, calycosin, glabrone, licoisoflavone B, quercetin, naringenin 
licoisoflavone, glypallichalcone, gancaonin G, inermine, glyasperin C HSP90AB1, SYK, JAK2, PTEN

P3 Licoisoflavone B, glabrene, isotrifoliol, semilicoisoflavone B, calycosin, kaempferol, liquiritin, glypallichalcone, liquiritigenin, 
lupiwighteone, quercetin, naringenin, glyasperin B, vestitol lupiwighteone, quercetin, naringenin, glyasperin B SYK, RET, MAP3K8

Table 6.  Lead-like compounds.

Mol ID MW Rotatable bonds
H-Bond 
acceptors H-Bond donors TPSA XLOGP GI Absorption

Lipinski 
violations

MOL004814 298.25 1 6 2 93.04 2.74 High 0

MOL004912 336.34 1 5 2 79.90 3.39 High 0

MOL004835 284.31 5 4 1 55.76 3.28 High 0

MOL000417 284.26 2 5 2 79.90 2.44 High 0

MOL000500 272.30 2 4 2 58.92 2.94 High 0

Table 7.  Non-toxic compounds.

Mol ID

Absorption Distribution Excretion Toxicity

Caco2 HIA Skin VDss FU BBB CNS TC OCT AMES MTDD hERG I hERG II LD50 HT SS MT

MOL004814 0.36 96.24  − 2.74  − 0.16 0.09  − 0.36  − 2.19 0.75 No Yes 0.28 No Yes 2.38 No No 0.02

MOL004912 0.70 92.64  − 2.78 0.07 0.09  − 0.31  − 1.76 0.44 No No  − 0.22 No No 2.13 No No 0.64

MOL004835 1.32 93.48  − 2.81  − 0.20 0.07  − 0.34  − 2.21 0.74 No Yes 0.56 No Yes 2.09 No No 0.87

MOL000417 1.08 94.51  − 2.75 0.06 0.08  − 0.07  − 2.20 0.20 No No 0.06 No Yes 2.35 No No 0.19

MOL000500 1.19 93.07  − 2.88 0.34 0.09  − 0.07  − 2.14 0.31 No No  − 0.50 No No 2.35 No No 0.69
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Discussion
The study design was divided into three processes, including the traditional network pharmacology process 
(P1) and the two improved processes (P2 and P3). Using this approach 20 core compounds and 6 core targets 
were predicted, among which 4 active compounds (quercetin, naringenin, liquiritigenin and licoisoflavanone) 
and 2 targets (SYK and JAK2), were associated with COVID-19 infection, as confirmed by previous studies. 
Furthermore, after ADMET and molecular docking analysis, two new active compounds were identified: vesti-
tol was identified in P1 and glabrone was jointly identified in processes P2 and P3. and 2 new targets were also 
predicted, among which PTEN was identified in P2, and MAP3K8 were identified in P3. In addition, this study 
also revealed the signaling pathways of P53, cAMP, and NF-kB.

Considering the 4 active compounds (quercetin, naringenin, liquiritigenin and licoisoflavanone), their 
potential roles in the treatment of COVID-19 have been demonstrated in previous studies. Quercetin has anti-
inflammatory activity exerted by inhibiting the secretion of pro-inflammatory factors (such as IL-6, IL-1β and 
TNF-α), by an antiviral effect by blocking the entry of coronavirus into host cells, as well as by an anticoagulant 
activity exerted by inhibiting plasma protein disulfide  isomerase48. Naringenin also induces anti-inflammatory 
and antiviral  activity49. As a flavonoid with anticancer, antioxidant, hepatoprotective, immune regulatory, and 
antiplatelet aggregation properties, liquiritigenin has served as a therapy for COVID-19. For example, liquir-
itigenin was used to form a complex with the Mpro of SARS-CoV2 because it was found to inhibit the catalytic 

Table 8.  Molecular docking results for glabrone and vestitol.

Key target Target structure ID Molecule name Mol ID PubChum Cid Bingding score (kcal/mol)

S-protein 7kce Glabrone MOL004912 5,317,652  − 9.3

Mpro 7ng3 Glabrone MOL004912 5,317,652  − 7.6

ACE2 7u0n Glabrone MOL004912 5,317,652  − 8.8

S-protein 7kce Vestitol MOL000500 92,503  − 7.5

Mpro 7ng3 Vestitol MOL000500 92,503  − 7.5

ACE2 7u0n Vestitol MOL000500 92,503  − 7.7

Figure 4.  Molecular docking analysis of the selected compounds and targets with the largest binding values. 
(a) The docking mode of glabrone and S-protein. (b) The docking mode of glabrone and Mpro. (c) The docking 
mode of vestitol and ACE2.
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activity of the main  protease50. Licoisoflavanone is an isoflavonoid compound that plays a role in the reduction 
of antiviral, cytokine storms, prevention of ARDS and multi-organ damage, and reduction of the severity of 
inflammatory  diseases51.

Previous studies have also indicated that SYK and JAK2 may serve as target proteins related to COVID-
19. SYK also plays an important role in the treatment of COVID-19 and has been reported to regulate signal 
transduction pathways implicated in these complications associated with COVID-1952. JAK2 involves in M2 
macrophage polarisation, inflammatory response, pulmonary fibrosis and thrombosis by activating STAT3, a 
signal transduction and transcriptional  activator53. An increasing number of studies have also highlighted that 
JAK2 is an important gene belonging to the JAK2/STAT3 signaling pathway, and can induce overexpression 
of IL-6 and IL-18, which can exacerbate the inflammatory response and lung  injury46. Furthermore, the SYK 
inhibitor (fostamatinib)54 and the JAK2 inhibitor (fedratinib)55, evaluated in clinical studies, are highly effective 
in the prevention and treatment of COVID-19.

The examples given above demonstrate the important roles of the 4 active compounds and 2 targets in 
COVID-19, identified in our analysis, and confirmed by previous studies, suggesting the usefulness of our model 
in the prediction of active compounds and targets. In fact, we also identified 2 new compounds (vestitol and 
glabrone) and 2 new targets (PTEN and MAP3K8) that have not yet been demonstrated to be directly associated 
with the treatment of COVID-19, but have been attested to have a role in the treatment of COVID-19-related 
diseases (e.g. hepatitis B, influenza A virus).

Many related studies had shown that the newly identified active compounds vestitol and glabrone play a key 
role in the treatment of COVID-19. Because they not only inhibit viral replication through stable binding to 
the three viral binding sites of S-protein, ACE2, and Mpro, but also exert antioxidant, anti-inflammatory, and 
antiviral effects. For example, vestitol can achieve an anti-inflammatory effect by inhibiting the NF-kB signaling 
pathway and has shown to be a considerable promising new anti-inflammatory  agent56. Glabrone can achieve 
an antioxidant activity by modulating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway and an anti-
inflammatory effect by regulating the NF-kB signaling  pathway57. In addition, the antiviral activity of glabrone 
was demonstrated by cytopathic effect (CPE) inhibition assays targeting the influenza A  virus58.

Two new targets identified using our approach, including PTEN and MAP3K8, were potentially key targets 
for the treatment of COVID-19. Studies had shown that PTEN can activate dendritic cells, B cells and T cells, 
which are innate immune cells, and secrete pro-inflammatory factors, including interferon (IFN), TNF-α and 
IL10, thus inducing the formation of the cytokine storm in patients with COVID-19. Therefore, targeting PTEN 
can inhibit the formation of cytokines  storms59. MAP3K8 participates in the pulmonary fibrotic response and the 
lung inflammatory response. An increasing number of studies had also highlighted the significance of MAP3K8 
in suppressing lung inflammation and fibrosis (the main symptom of COVID-19)60.

In terms of the signaling pathway, the P53, cAMP, and NF-kB signaling pathways, discovered by using KEGG 
pathway analysis, are involved in inflammation, immunomodulation and infection. The P53 signaling pathway 
is a pathway known to influence immune  responses61. Furthermore, p53, an intrinsic host restriction factor 
of SARS-CoV-2, can reduce virus  production62. The cAMP signaling pathway is the most important signaling 
pathway in EG pathway enrichment, and EG could also act on the PI3K-Akt, JAK-STAT and chemokine signaling 
pathways, thus reducing responses such as inflammation and  apoptosis40. In turn, the NF-kB signaling pathway, 
considered as an inflammation  center63, induces various target genes in inflammatory  diseases64,65, as well as 
regulates cytokine storm syndromes and  immunosuppression66,67.

S-protein and ACE2 were key protein targets in the first process of infection (attachment and cell entry)68,69, 
and Mpro was a key target in the second process of infection (replication and transcription)70. In this paper, we 
preliminarily concluded that vestitol and glabrone had good binding stability with S-protein, ACE2 and Mpro 
by molecular docking. Analysis of the S protein and glabrone was then further performed by MD simulations to 

Figure 5.  Differences in the root mean square deviation (RMSD) of the plural over time (blue polygonal line 
means glabrone and S-protein, red polygonal line means licoisoflavone B and MAP3K8).
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demonstrate that glabrone may inhibit host cell infection at the first stage of attachment and entry. In addition, 
we also conducted molecular docking of two new targets (PTEN and MAP3K8) with the compounds of licorice 
(including vestitol and glabrone), and the results showed good binding stability. We followed by MD simula-
tions of MAP3K8 and licoisoflavone B with the highest binding energy, which demonstrated that licorice may be 
considered an effective candidate for the treatment of COVID-19 through MAP3K8 [MD simulations analysis].

Based on the above analysis, we knowed that the DL-based network pharmacology method could compensate 
to some extent for the impossibility of obtaining all compounds and targets in traditional network pharmacology 
through databases and analysis software, and achieve a promising predictive results. However, due to the predic-
tive performance of DL was very dependent on the quantity and quality of the data, and it also had limitations in 
feature information extraction. Therefore, there was still room for improvement in future work in terms of the 
quantity and quality of data and feature extraction [Highlight the innovation of the method and the shortcom-
ings of the new method].

Conclusion
In this study, we proposed a DL-based DeepDGC model that learned from both molecular maps and Morgan 
fingerprint data representations of drugs, which contains more feature information for drug characterization 
that can be evaluated and optimize the model. As a result, 2 new compounds and 2 new targets were also found 
to possess potential effects on COVID-19 treatment. Although our findings are not sufficient to reach more 
definite conclusions and further validation, using in vivo or in vitro studies, is still encouraged, we believe that 
this method has a certain translational value that can also be applied to drug and target discovery studies in 
other diseases.

Data availability
The datasets for this study can be found in the https:// github. com/ 2022- fuyu/ COVID- 19.
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