
1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:4343  | https://doi.org/10.1038/s41598-023-31365-6

www.nature.com/scientificreports

Critically synchronized brain 
waves form an effective, robust 
and flexible basis for human 
memory and learning
Vitaly L. Galinsky 1* & Lawrence R. Frank 1,2

The effectiveness, robustness, and flexibility of memory and learning constitute the very essence 
of human natural intelligence, cognition, and consciousness. However, currently accepted views on 
these subjects have, to date, been put forth without any basis on a true physical theory of how the 
brain communicates internally via its electrical signals. This lack of a solid theoretical framework 
has implications not only for our understanding of how the brain works, but also for wide range of 
computational models developed from the standard orthodox view of brain neuronal organization and 
brain network derived functioning based on the Hodgkin–Huxley ad-hoc circuit analogies that have 
produced a multitude of Artificial, Recurrent, Convolution, Spiking, etc., Neural Networks (ARCSe 
NNs) that have in turn led to the standard algorithms that form the basis of artificial intelligence (AI) 
and machine learning (ML) methods. Our hypothesis, based upon our recently developed physical 
model of weakly evanescent brain wave propagation (WETCOW) is that, contrary to the current 
orthodox model that brain neurons just integrate and fire under accompaniment of slow leaking, 
they can instead perform much more sophisticated tasks of efficient coherent synchronization/
desynchronization guided by the collective influence of propagating nonlinear near critical brain 
waves, the waves that currently assumed to be nothing but inconsequential subthreshold noise. 
In this paper we highlight the learning and memory capabilities of our WETCOW framework and 
then apply it to the specific application of AI/ML and Neural Networks. We demonstrate that the 
learning inspired by these critically synchronized brain waves is shallow, yet its timing and accuracy 
outperforms deep ARCSe counterparts on standard test datasets. These results have implications for 
both our understanding of brain function and for the wide range of AI/ML applications.

The mechanisms of human memory remains one of the great unsolved mysteries in modern science. As a criti-
cal component of human learning, the lack of a coherent theory of memory has far-reaching implications for 
our understanding of cognition as well. Recent advances in experimental neuroscience and neuroimaging have 
highlighted the importance of considering the interactions of the wide-range of spatial and temporal scales at 
play in brain function, from the microscales of subcellular dendrites, synapses, axons, somata, to the mesoscales 
of the interacting networks of neural circuitry, the macroscales of brain-wide circuits. Current theories derived 
from these experimental data suggest that ability of humans to learn and adapt to ever-changing external stimuli 
is predicated on the development of complex, adaptable, efficient, and robust circuits, networks, and architectures 
derived from a flexible arrangements among the variety of neuronal and non-neuronal cell types in the brain. A 
viable theory of memory and learning must therefore be predicated on a physical model capable of producing 
multiscale spatiotemporal phenomena consistent with observed data.

At the heart of all current models for brain electrical activity is the neuron spiking model formulated by 
Hodgkin and Huxley (HH)1 that has provided quantitative descriptions of Na+/K+ fluxes, voltage- and time-
dependent conductance changes, the waveforms of action potentials, and the conduction of action potentials 
along nerve fibers2. Unfortunately, although the HH model has been useful in fitting multiparametric set of 
equations to local membrane measurements, the model has been of limited utility in deciphering complex 
functions arising in interconnected networks of brain neurons3. From a practical standpoint, the original HH 
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model is too complicated to to describe even relatively small networks4–6. This has resulted in the development 
of optimization techniques7–10 based on a much reduced model of a leaky integrate-and-fire (LIF) neuron that is 
simple enough for use in neural networks, as it replaces all these multiple gates, currents, channels and thresh-
olds with just a single threshold and time constant. A majority of spiking neural network (SNN) models use this 
simplistic LIF neuron for the so called “deep learning”11–14 claiming that this is inspired by brain functioning. 
While multiple LIF models are used for image classification on large datasets15–19, most applications of SNNs 
are still limited to less complex datasets, due to the complex dynamics of even the oversimplified LIF model and 
non-differentiable operations of LIF spiking neurons. Some remarkable studies have applied SNNs for object 
detection tasks20–22. Spike based methods were also used for object tracking23–26. A research is booming in using 
LIF spiking networks for online learning27, braille letter reading28, different neuromorphic synaptic devices29 for 
detection and classification of biological problems30–36. Significant research is focused on making human-level 
control37, optimizing back-propagation algorithms for spiking networks38–40, as well as penetrating much deeper 
into ARCSes core41–44 with smaller number of time steps41, using an event-driven paradigm36, 40, 45, 46, applying 
batch normalization47, scatter-and-gather optimizations48, supervised plasticity49, time-step binary maps50, and 
using transfer learning algorithms51. In concert with this broad range of software applications, there is a huge 
amount of research directed at developing and using these LIF SNN in embedded applications with the help of 
the neuromorphic hardware52–57, the generic name given to hardware that is nominally based on, or inspired by, 
the structure and function of the human brain. However, while the LIF model is widely accepted and ubiquitous 
in neuroscience, it is nevertheless problematic in that it does not generate any spikes per se.

A single LIF neuron can formally be described in differential form as

where U(t) is the membrane potential, Urest is the resting potential, τm is the membrane time constant, R is the 
input resistance, and I(t) is the input current58. It is important to note that Eq. (1) does not describe actual spiking. 
Rather, it integrates the input current I(t) in the presence of an input membrane voltage U(t). In the absence of 
the current I(t), the membrane voltage rapidly (exponentially) decays with time constant τm to its resting poten-
tial Urest . In this sense the integration is “leaky”. There is no structure in this equation that even approximates 
a system resonance that might be described as “spiking”. Moreover, both the decay constant τm and the resting 
potential Urest are not only unknowns, but assumed constant, and therefore significant oversimplifications of the 
actual complex tissue environment.

It is a curious development in the history of neuroscience that the mismatch between the observed spik-
ing behavior of neurons and a model of the system that is incapable of producing spiking was met not with a 
reformulation to a more physically realistic model, but instead with what can only be described as an ad-hoc 
patchwork fix: the introduction of a “firing threshold” � that defines when a neuron finally stops integrating the 
input, resulting in a large action potential almost magically shared with its neighboring neurons, after which 
the membrane voltage U is reset by hand back to the resting potential Urest . Adding these conditions results in 
(1) being only capable of describing the dynamics that happen when the membrane potential U is below this 
spiking ruler threshold � . It is important to recognize that this description of the “sub-threshold” dynamics of 
the membrane potential until it has reached its firing threshold describes a situation where neighboring neurons 
are not effected by what is essentially a description of sub-threshold noise.

In short, the physical situation described by (1) is contradictory to many careful neuroscience experiments 
that show, for example, that (1) the neuron is anisotropically activated following the origin of the arriving signals 
to the membrane; (2) a single neuron’s spike waveform typically varies as a function of the stimulation location; 
(3) spatial summation is absent for extracellular stimulations from different directions; (4) spatial summation 
and subtraction are not achieved when combining intra- and extra-cellular stimulations, as well as for nonlo-
cal time interference59. Such observation have lead to calls “to re-examine neuronal functionalities beyond the 
traditional framework”59.

Such a re-examination has been underway in our lab, where we have developed a physics based model of 
brain electrical activity. We have demonstrated that in the inhomogeneous anisotropic brain tissue system, the 
underlying dynamics is not necessarily restricted by reaction–diffusion type only. The recently developed theory 
of weakly evanescent brain waves (WETCOW)60–62 shows from a physical point of view that propagation of 
electromagnetic fields through the highly complex geometry of inhomogeneous and anisotropic domain of real 
brain tissues can also happen in a wave-like form . This wave-like propagation agrees well with the results of the 
above neuronal experiments59 as well as in general explains the broad range of observed seemingly disparate 
brain spatiotemporal characteristics. The theory produces a set of nonlinear equations for both the temporal 
and spatial evolution of brain wave modes that include all possible nonlinear interaction between propagating 
modes at multiple spatial and temporal scales and degrees of nonlinearity. The theory bridges the gap between 
the two seemingly unrelated spiking and wave ‘camps’ as the generated wave dynamics includes the complete 
spectra of brain activity ranging from incoherent asynchronous spatial or temporal spiking events, to coherent 
wave-like propagating modes in either temporal or spatial domains, to collectively synchronized spiking of 
multiple temporal or spatial modes.

In this paper we highlight some particular aspects of the WETCOW theory directly related to biological learn-
ing through wave dynamics, and demonstrate how these principles can not only augment our understanding of 
cognition, but provide the basis for a novel class of engineering analogs for both software and hardware learning 
systems that can operate with the extreme energy and data efficiency characteristics of biological systems that 
facilitate adaptive resilience in dynamic environments.

(1)τm
∂U

∂t
= −(U − Urest)+ RI ,
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We would like to emphasize that a major motivation for our work is the recognition that there has been a 
rapidly growing focus in the research community in recent years on theories of memory, learning, and conscious-
ness rely on networks of HH (LIF) neurons as biological and/or physical basis63. Every single neuron in this case 
is assumed to be an element (or a node) with fixed properties that isotropically collects input and fires when 
enough has been collected. The learning algorithms are then discussed as processes that update network proper-
ties, e.g., connection strength between those fixed nodes through plasticity64, or number of participating fixed 
neuron nodes in the network through birth and recruitment of new neuron nodes65, etc. In our paper, we focus 
on different aspect of network functioning—we assume that network is formed not by fixed nodes (neurons) but 
by a flexible pathways encompassing propagating waves, or wave packets, or wave modes. Formally those wave 
modes play in any network of wave modes the same role as single HH (LIF) node in network of neurons, there-
fore, we often interchangeably use and substitute ‘wave mode’ for ‘network node’. But, as any single neuron may 
encounter multiple wave modes arriving from any other neuron, and synchronization with or without spiking 
will manifest as something that looks like anisotropic activation depending on the origin of the arriving signals59, 
our wave network paradigm is capable of characterizing much more complex and subtle coherent brain activity 
and thus shows more feature-rich possibilities for “learning” and memory formation.

The test examples based on our WETCOW inspired algorithms show excellent performance and accuracy and 
can be expected to be resilient to catastrophic forgetting, will demonstrate real-time sensing, learning, decision 
making, and prediction. Due to very efficient, fast, robust and very precise spike synchronization, the WETCOW 
based algorithms are able to respond to novel, uncertain, and rapidly changing conditions in real-time, and will 
enable appropriate decisions based on small amounts of data over short time horizons. These algorithms can 
include uncertainty quantification for data of high sparsity, large size, mixed modalities, and diverse distribu-
tions, and will be pushing the bounds on out-of-distribution generalization.

The WETCOW model is supposed to capture several different memory phenomena. In a non-mathematical 
way it can be described as

•	 Critical encoding–the WETCOW model shows how independent oscillators in a heterogeneous network 
with different parameters form a coherent state (memory) as a result of critical synchronization.

•	 Synchronization speed—the WETCOW model shows that due to coordinated work of amplitude-phase cou-
pling this synchronization process is significantly more fast than memory formation in the spiking network 
of integrate-and-fire neurons.

•	 Storage capacity—the WETCOW model shows that a coherent memory state with predicted encoding param-
eters can be formed with as low as two nodes, thus potentially allows for significant increase of memory 
capacity comparing to the traditional spiking paradigm.

•	 Learning efficiency—the WETCOW model shows that processing of a new information by a mean of syn-
chronization of network parameters in a near critical range allows a natural development of continuous 
learner-type memory representative of human knowledge processing.

•	 Memory robustness—the WETCOW model shows that memory state formed in non-planar critically syn-
chronized network potentially more stable, continuous learning prone, and resilient to catastrophic forgetting.

The experiments presented below are clearly beyond human training capacity, but nevertheless represent a very 
good set of preliminary stress tests to provide support for all our claims, from Critical Encoding to Memory 
Robustness. The demonstration that back propagation step is not generally required for very good performance 
of continues learning as well as small footprint of nodes and input data involved in memory formation are 
representative of human few-shot learning66–69 as well as relevant to the larger issues introduced in our paper.

Weakly evanescent brain waves
A set of derivations that lead to the WETCOW description was presented in details in60–62 and is based on 
considerations that follow from the most general form of brain electromagnetic activity expressed by Maxwell 
equations in inhomogeneous and anisotropic medium70–72

Using the electrostatic potential E = −∇� , Ohm’s law J = σ · E (where σ ≡ {σij} is an anisotropic conduc-
tivity tensor), a linear electrostatic property for brain tissue D = εE , assuming that the scalar permittivity ε is a 
“good” function (i.e. it does not go to zero or infinity everywhere) and taking the change of variables ∂x → ε∂x′ , 
the charge continuity equation for the spatial–temporal evolution of the potential � can be written in terms of 
a permittivity scaled conductivity tensor � = {σij/ε} as

where we have included a possible external source (or forcing) term F  . For brain fiber tissues the conductivity 
tensor � might have significantly larger values along the fiber direction than across them. The charge continuity 
without forcing i.e., (F = 0 ) can be written in tensor notation as

∇ · D = ρ, ∇ ×H = J +
∂D

∂t
⇒

∂ρ

∂t
+∇ · J = 0.

(2)
∂

∂t

(

∇2�
)

= −∇ ·� · ∇� + F ,

(3)∂t∂
2
i � +�ij∂i∂j� +

(

∂i�ij

)(

∂j�
)

= 0,
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where repeating indices denote summation. Simple linear wave analysis, i.e.  substitution of 
� ∼ exp (−i(k · r −�t)) , where k is the wavenumber, r is the coordinate, � is the frequency and t is the time, 
gives the following complex dispersion relation:

which is composed of the real and imaginary components:

Although in this general form the electrostatic potential � , as well as the dispersion relation D(�, k) , describe 
three dimensional wave propagation, we have shown60, 61 that in anisotropic and inhomogeneous media some 
directions of wave propagation are more equal than others with preferred directions determined by the complex 
interplay of the anisotropy tensor and the inhomogeneity gradient. While this is of significant practical impor-
tance, in particular because the anisotropy and inhomogeneity can be directly estimated from non-invasive 
methods, for the sake of clarity we focus here on the one dimensional scalar expressions for spatial variables x 
and k that can be easily generalized for the multi dimensional wave propagation as well.

Based on our nonlinear Hamiltonian formulation of the WETCOW theory62, there exists an anharmonic 
wave mode

where a is a complex wave amplitude and a† is its conjugate. The amplitude a denotes either temporal ak(t) or 
spatial aω(x) wave mode amplitudes that are related to the spatiotemporal wave field �(x, t) through a Fourier 
integral expansions

where for the sake of clarity we use one dimensional scalar expressions for spatial variables x and k, but it can be 
easily generalized for the multi dimensional wave propagation as well. The frequency ω and the wave number k 
of the wave modes satisfy the dispersion relation D(ω, k) = 0 , and ωk and kω denote the frequency and the wave 
number roots of the dispersion relation (the structure of the dispersion relation and its connection to the brain 
tissue properties has been discussed in60).

The first term Ŵaa† in (6) denotes the harmonic (quadratic) part of the Hamiltonian with either the complex 
valued frequency Ŵ = iω + γ or wave number Ŵ = ik + � that both include a pure oscillatory parts ( ω or k) and 
possible weakly excitation or damping rates, either temporal γ or spatial � . The second anharmonic term is cubic 
in the lowest order of nonlinearity and describes the interactions between various propagating and nonpropa-
gating wave modes, where α , βa and βa† are the complex valued strengths of those different nonlinear processes. 
This theory can be extended to a network of interacting wave modes of the form (6) which can be described by 
a network Hamiltonian form that describes discrete spectrum of those multiple wave modes as62

where the single mode amplitude an again denotes either ak or aω , a ≡ {an} and rnm = wnme
iδnm is the complex 

network adjacency matrix with wnm providing the coupling power and δnm taking into account any possible 
differences in phase between network nodes. This description includes both amplitude ℜ(a) and phase ℑ(a) 
mode coupling and as shown in62 allows for significantly unique synchronization behavior different from both 
phase coupled Kuramoto oscillator networks73–75 and from networks of amplitude coupled integrate-and-fire 
neuronal units58, 76, 77.

An equation for the nonlinear oscillatory amplitude a then can be expressed as a derivative of the Hamilto-
nian form

after removing the constants with a substitution of βa† = 1/2β̃a† and α = 1/3α̃ and dropping the tilde. We 
note that although (10) is an equation for the temporal evolution, the spatial evolution of the mode amplitudes 
aω(x) can be described by a similar equation substituting temporal variables by their spatial counterparts, i.e., 
(t,ω, γ ) → (x, k, �).

Splitting (10) into an amplitude/phase pair of equations using a = Aeiφ and making some rearrangements 
these equations can be rewritten as70–72

(4)D(�, k) = −i�k2i −�ijkikj − i∂i�ijkj = 0,

(5)γ ≡ ℑ� = �ij
kikj

k2
ω ≡ ℜ� = −

∂i�ijkj

k2

(6)Hs(a, a†) = Ŵaa†+ aa†
[

βaa+ βa†a
†− 2α

(

aa†
)1/2

]

(7)ak(t) =
1

2π

∞
∫

−∞

�(x, t)e−i(kx+ωkt)dx,

(8)aω(x) =
1

2π

∞
∫

−∞

�(x, t)e−i(kωx+ωt)dt,

(9)H(a, a†)=
�

n



Hs(an, a
†
n)+

�

m �=n

�

anrnma
†
m + a†nr

∗
nmam

�





(10)
da

dt
=

∂Hs

∂a†
≡ Ŵa+ βa†aa

† + βaa
2 − αa(aa†)1/2,
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where ψ , wa and wφ some model constants.

Single mode firing rate
The effective period of spiking Ts (or its inverse—either the firing rate 1/Ts or the effective firing frequency 
ωs = 2π/Ts ) was estimated in70–72 as

where the critical frequency ωc or the critical growth rate γc can be expressed as

where

and

Figure 1 compares the single node results (13) to (15) with peak-to-peak period/frequency estimates from 
direct simulations of the system (11) to (12). Several inserts show shapes of numerical solution generated at the 
correspondent level of criticality cr

(11)
dA

dτ
= γA+ A2

[

wa cos (φ − ψ)− α
]

,

(12)
dφ

dτ
= ω + Awφ cosφ,

(13)Ts =
2π

ω
√

1− γ 2/γ 2
c

=
2π

ω
√

1− ω2
c /ω

2
,

(14)ωs = ω

√

1− γ 2/γ 2
c =

√

ω2 − ω2
c ,

(15)ωc = γw, γc =
ω

w
,

(16)w =
wφ cosφc

α + wa cos (φc + ψ)
,

(17)φc = arctan

[

wa sinψ
√

α2 − (wa sinψ)2

]

.

(18)cr =
γ

γc
= w

γ

ω
.

Figure 1.   Plot of the analytical expression (14) for the effective spiking frequency ωs = 2π/Ts (green) and the 
frequency estimated from numerical solutions of (11) and (12) (red) with several inserts showing the numerical 
solution with indicated value of the criticality parameter cr = γ /γc (detailed plots of numerical solutions 
used for generating inserts are included in “Appendix”). In the numerical solution only γ was varied and the 
remaining parameters were the same as parameters reported in62.
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The above analytically derived single node results (13) to (15) can be directly used to estimate firing of 
interconnected networks as they express the rate of spiking as a function of a distance from criticality, and the 
criticality value can be in turn expressed through other system parameters.

A set of coupled equations for a network of multiple modes can be derived similarly to single mode set (11) 
and (12) by taking a derivative of the network Hamiltonian form (9) and appropriately changing variables. That 
gives for the amplitude Ai and the phase φi a set of coupled equations

In the small (and constant) amplitude limit ( Ai = const) this set of equations turns into a set of phase coupled 
harmonic oscillators with a familiar sin(φj − φi · · · ) form of phase coupling. But in its general form (19) and 
(20) include also phase dependent coupling of amplitudes ( cos(φj − φi · · · ) ) that dynamically defines if the input 
from j to i will either play excitatory ( |φj − φi + · · · | < π/2 ) or inhibitory ( |φj − φi + · · · | > π/2 ) roles (this is 
in addition to any phase shift introduced by the static network attributed phase delay factors δij).

Synchronized network memory of a single node sensory response
Let us start with a single unconnected mode that is excited by a sensory input. Based on the strength of excitation 
the mode can be in any of the states shown in Fig. 1, with activity ranging from small amplitude oscillations in 
linear regime, to nonlinear anharmonic oscillations, to spiking with different rates (or effective frequencies) in 
sub-critical regime, to a single spike-like transition following by silence in supercritical range of excitation. The 
type of activity is determined by the criticality parameter cr = (γ0 + γi)/γc where γc depends on the parameters 
of the system (15) and γ0 determines the level of sensory input and γi is the level of background activation (either 
excitation or inhibition). Hence, for any arbitrary ith mode

As a result, the mode i will show nonlinear oscillation with an effective frequency ωs

Next we assume that instead of a single mode we have some network of modes described by (11) and (12) 
where the sensory excitation is absent ( γ0 = 0 ) and for simplicity we first assume that all the parameters ( γi , ωi

,αi,ψi,wa
i  , and wφ

i  ) are the same for all modes and only the coupling parameters wij and δij can vary. The mean 
excitation level for the network γ1 ≡ γi ( i = 1 . . .N  ) determines the type of activity the unconnected modes 
would be operating and it may be in any of the liner, nonlinear, sub-critical or supercritical range. Of course, the 
activity of individual nodes in network (11) and (12) depends on the details of coupling (parameters wij and δij ) 
and can be very complex. Nevertheless, at it was shown in62, one of the features of the phase–amplitude coupled 
system (11) and (12), that distinguishes it both from networks of phase coupled Kuramoto oscillators and from 
networks of amplitude coupled integrate and fire neurons (or actually from any networks that are based on spike 
summation generated by neurons of Hodgkin–Huxley type or it’s derivations), is that even for relatively weak 
coupling the synchronization of some modes in network (11) and (12) may happen in a very efficient manner. 
The conditions for coupling coefficients when this synchronized state is realized and every mode i of the network 
produce the same activity pattern as sensory excited single mode, but without any external excitation, can be 
expressed for every mode i as

(19)
dAi

dt
= γiAi + A2

i

(

wa
i cos (φi − ψi)− αi

)

+
∑

j �=i

wijAj cos(φj − φi − δij),

(20)Ai
dφi

dt
= ωiAi + A2

i w
φ
i cosφi +

∑

j �=i

wijAj sin(φj − φi − δij).

(21)
dAi

dt
= (γ0 + γi)Ai + A2

i

(

wa
i cos (φi − ψi)− αi

)

(22)
dφi

dt
= ωi + Aiw

φ
i cosφi .

(23)ωs =
√

ω2
i − (γ0 + γi)2w

2
i ,

(24)wi =
w
φ
i cosφc

i

αi + wa
i cos (φ

c
i + ψi)

,

(25)φc
i = arctan





wa
i sinψi

�

α2
i − (wa

i sinψi)2



.

(26)
∑

j

wij cos(δij) = γ0,
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This is necessary (but not sufficient) condition that shows that every recurrent path through the network, 
that is every brain wave loop that do not introduce nonzero phase delays, should generate the same level of 
amplitude excitation.

Even for this already oversimplified case of identical parameters, the currently agreed lines of research proceed 
with even more simplifications and either employ constant (small) amplitude phase synchronization approach 
(Kuramoto oscillators) assuming that all δij equal to −π/2 or π/2 , or use amplitude coupling (Hodgkin–Huxley 
neuron and the like) with δij equal to 0 (excitatory) or π (inhibitory). Both of these cases are extremely limited and 
do not provide a framework for the effectiveness, flexibility, adaptability, and robustness characteristic of human 
brain functioning. The phase coupling is only capable of generating very slow and inefficient synchronization. The 
amplitude coupling is even less efficient as it completely ignores the details of the phase of the incoming signal, 
thus is only able to produce sporadic and inconsistent population level synchronization.

Of course, (26) and (27) are used as an idealized illustrative picture of critically synchronized memory state 
formation in phase–amplitude coupled network (11) and (12). In practice, in the brain the parameters of network 
(11) and (12), including frequencies, excitations, and other parameters of a single mode Hamiltonian (6), may 
be different between modes. But even in this case the formation of critically synchronized state follows the same 
outlined above procedure, and requires that for all modes total inputs to the phase and the amplitude parts ( ω̄i 
and γ̄i ) generate together the same effective frequency ωs satisfying the relation

where

Overall, the critically synchronized memory can be formed by making a loop from as few as two modes. 
Of course, this may require too large an amount of amplitude coupling and will not produce the flexibility and 
robustness of multimode coupling with smaller steps of adjustment of amplitude–phase coupling parameters. 
Figures 2 and 3 show two examples of network synchronization with effective frequencies that replicate the 
original single mode effective frequency without sensory input. Ten modes were shown with the same param-
eters of wa

i = w
φ
i =

√
5 , ψi = 2 arctan (1/3) , φc

i = arctan (1/2) , wi = 1/2 but with a set of uniformly distributed 
frequencies ωi , (with a mean of 1 and a standard deviation of 0.58–0.59). The network coupling wij and δij were 
also selected from a range of values (from 0 to 0.2 for wij and −π/2 to π/2 for δij).

Again, for phase only coupling ( δij equal to −π/2 or π/2 ) the synchronization is very inefficient and only 
happening as a result of an emergence of forced oscillations at common frequency in some parts of the network 
or in the whole network dependent on the details of the coupling parameters. The amplitude coupling of Hodg-
kin–Huxley and the like neurons is even less effective than phase-only coupling as it does not even consider 
the oscillatory and wave-like propagation nature of the subthreshold signals that contribute to the input and 
collective generation of spiking output. Therefore, expressions (28) to (30) are not applicable for HH and LIF 
models as phase information, as well as frequency dependence, is lost by those models and replaced by ad-hoc 
sets of thresholds and time constants.

Contrary to the lack of efficiency, flexibility, and robustness demonstrated by those state-of-the-art curtailed 
phase-only and amplitude-only approaches, the presented model of memory shows that when both phase and 
amplitude are operating together, a critical behavior emerging in the nonlinear system (9) gives birth to an effi-
cient, flexible, and robust synchronization characteristic of human memory, appropriate for any type of coding, 
being it either rate or time.

Application to neural networks and machine learning
The presented critically synchronized memory model based on the theory of weakly evanescent brain waves—
WETCOW60–62—has several very important properties. First of all, the presence of both amplitude wij and phase 
δij coupling makes if possible to construct an effective and accurate recurrent networks that do not require 
extensive and time consuming training. The standard back propagation approach can be very expensive in 
terms of both computations, memory requirements, and large amount of communications involved, therefore 
may be poorly suited to the hardware constraints in computers and neuromorphic devices78. However, with the 
WETCOW based model it is easy to construct a small shallow network that will replicate the spiking produced 
by any input condition using the interplay of the amplitude–phase coupling (19) to (20) and the explicit analyti-
cal conditions for spiking rate (13) and (15) as a function of criticality. The shallow neural networks constructed 
using those analytical conditions give very accurate results with very little amount of training and very little 
memory requirements.

Comparison of a schematic diagram for the typical workflow of traditional multi-layer ARCSe neural network 
with a diagram for the critically synchronized WETCOW inspired shallow neural network is shown in Fig. 4. 
For the traditional multi-layer ARCSe neural network the diagram (Left panel) includes the connection weights 

(27)
∑

j

wij sin(δij) = 0.

(28)ωs =
√

ω̄2
i − γ̄ 2

i w
2
i ,

(29)γ̄i = γi +
∑

j

wij cos(δij),

(30)ω̄i = ωi +
∑

j

wij sin(δij).
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that are approximated by varying path width. The Schematic diagram for the critically synchronized WETCOW 
inspired shallow neural network in addition to amplitude weighting factors (that again shown by varying recur-
rent path widths) has an additional phase parameter that is shown by the non-planarity of the connection paths. 
The presence of non-planarity in a single layer (shallow) amplitude-phase synchronized neural network allows 
more efficient computations, memory requirements, and learning capabilities than multi-layer deep ARCSes of 
traditional AI/ML neural networks.

The non-planarity of the critically synchronized WETCOW inspired shallow neural network shown in Fig. 4 
illustrates and emphasizes another important advantage in comparison to the traditional multi-layer ARCSe 
neural networks. It is well known that the traditional multi-layer deep learning ARCSe neural network models 
suffer from the phenomenon of catastrophic forgetting—a deep ARCSe neural network, carefully trained and 
back and forth massaged to perform some important task can unexpectedly lose its generalization ability on this 
task after additional training on a new task has been performed79–81. This typically happens because a new task 
overrides the previous weights that have been learned in the past. This means that continues learning degrades 
or even destroys the model performance for the previous tasks. This is a tremendous problem meaning that the 
traditional deep ARCSe neural network represents a very bad choice to function as a continuous learner, as it 

Figure 2.   (Top) The amplitude and phase of a single mode subcritical spiking. (Middle) The spiking of multiple 
modes with different linear frequencies ωi critically synchronized at the same effective spiking frequency (the 
units are arbitrary). The details of wavefront shapes for each mode are different, but the spiking synchronization 
between modes is very strong and precise. (Bottom) Expanded view of the initial part of the amplitude and 
phase of the mode shows the efficiency of synchronization—synchronization happens even faster than the single 
period of linear oscillations.
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constantly forgets the previously learned knowledge being exposed to a bombardment of a new information. 
As any new information added to the traditional multi-layer deep learning ARCSe neural network inevitably 
modifies the network weights confined to the same plane and shared with all previously accumulated knowl-
edge produced by a hard training work, this catastrophic forgetting phenomena is generally not a surprise. The 
non-planarity of the critically synchronized WETCOW inspired shallow neural network provides an additional 
way to encode new knowledge with a different out-of-plane phase-amplitude choice, thus preserving previous 
accumulated knowledge. This makes the critically synchronized WETCOW inspired shallow neural network 
model more suitable for the use in a continuous learning scenario.

Another important advantage of the WETCOW algorithms is their numerical stability, which makes them 
robust even in the face of extensive training. Because the system (19) and (20) describes the full range of dynam-
ics, from linear oscillations to spiking in the perfectly differentiable form, it is perfectly differentiable. They thus 
are not subject to one of the major limitations of current standard models—the non-differentiability of the spik-
ing nonlinearity for LIF (and similar) models, whose derivative is zero everywhere except at U = � , and even 
at U = � the derivatives is not just large, but strictly speaking they are not defined.

Figure 3.   (Top) The amplitude and phase of a single mode spiking in a close to critical regime. (Middle) The 
spiking of multiple modes with different linear frequencies ωi critically synchronized at the same effective 
spiking frequency that is close to critical frequency (the units are arbitrary). Similar to subcritical spiking in 
Fig. 2, the details of wavefront shapes for each mode are different, but the spiking synchronization between 
modes is very strong and precise. (Bottom) Expanded view of the initial part of the amplitude and phase of the 
mode shows the efficiency of synchronization–synchronization happens.
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MNIST digits and MNIST fashion tests
The performance and accuracy of WETCOW based learning approaches is easily demonstrated on two com-
monly used databases: MNIST82 and Fashion-MNIST83. Both the original handwritten digits MNIST database 
Fig. 5 (top) and an MNIST-like fashion product database—dataset of Zalando’s article images designed as a 
direct drop-in replacement for the original MNIST dataset—Fig. 5 (bottom) contain 60,000 training images and 
10,000 testing images. Each individual image is a 28× 28 pixels grayscale image, associated with a single label 
from 10 different label classes.

The results for our WETCOW based model for a shallow recurrent neural network applied to the MNIST 
handwritten digits Fig. 5 (top) and MNIST fashion images Fig. 5 (bottom) are summarized in Table 1. In both 
cases the networks were generated for 7× 7 downsampled images moved and rescaled to the common reference 

Figure 4.   (Left) Schematic graph of typical multi-layer neural network where connection weights are shown 
by varying path width. (Right) Schematic graph of critically synchronized WETCOW inspired shallow neural 
network, where amplitude weighting factors are again shown by varying path widths, but an additional phase 
parameter controls the non-planar recurrent paths behavior. The interplay of amplitude-phase synchronization, 
shown by a non-planarity of a shallow—comprised of a single layer of synchronized loops—neural network, 
allows more efficient computations, memory requirements, and learning capabilities than multi-layer deep 
ARCSes of traditional AI/ML neural networks.

Figure 5.   (Top) Several example images from MNIST database of handwritten digits. (Bottom) Several example 
images from MNIST-like fashion product database of Zalando’s article images designed as a direct drop-in 
replacement for the original MNIST dataset.

Table 1.   Summary of accuracy and timing results obtained by shallow learning processing of the original 
handwritten digits MNIST dataset82 and the Fashion-MNIST dataset83 using WETCOW inspired algorithm 
and test implementation based on the ideas of critically synchronized learning.

Accuracy Time Others

MNISTDigits (without training) 0.9858–0.9883 (117–142 errors per 10,000 
samples) Several seconds

MNISTDigits (with training) 0.9986 (14 errors per 10,000 samples) Several minutes 0.88–0.998 14 h for 0.9977 accuracy

MNISTFashion (without training) 0.9385 (615 errors per 10,000 samples) Several seconds

MNISTFashion (with training) 0.9742 (258 errors per 10,000 samples) Several minutes 0.444–0.897 From 1 to 50 h
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system. For each of the datasets, Table 1 shows two entries, the first corresponds to an initial construction of a 
recurrent network that involves just a single iteration, without any back propagation and retraining steps. In both 
cases this initial step produces very good initial accuracy, on par or even exceeding the final results of some of 
the deep ARCSes84, 85. The second entry for each dataset shows highest accuracy achieved and the corresponding 
training times. Both entries confirm that to achieve the accuracies that are higher than the accuracies obtained 
by any of the deep ARCSes orders of magnitude smaller training times are required.

Conclusion
This paper presents arguments and test results showing that recently developed physics based theory of wave 
propagation in the cortex—the theory of weakly evanescent brain waves—WETCOW60–62—provides both a theo-
retical and computational framework with which to better understand the adaptivity, flexibility, robustness, and 
effectiveness of human memory, and, hence, can be instrumental in development of novel learning algorithms. 
Those novel algorithms potentially allow the achievement of extreme data efficiency and adaptive resilience 
in dynamic environments, characteristic of biological organisms. The test examples based on our WETCOW 
inspired algorithms show excellent performance (orders of magnitude faster than current state-of-the-art deep 
ARCSe methods) and accuracy (exceeding the accuracy of current state-of-the-art deep ARCSe methods) and can 
be expected to be resilient to catastrophic forgetting, and will demonstrate real-time sensing, learning, decision 
making, and prediction. Due to very efficient, fast, robust and very precise spike synchronization, the WETCOW 
based algorithms are able to respond to novel, uncertain, and rapidly changing conditions in real-time, and will 
enable well-informed decisions based on small amounts of data over short time horizons. The WETCOW based 
algorithms can include uncertainty quantification for data of high sparsity, large size, mixed modalities, and 
diverse distributions, and will push the bounds on out-of-distribution generalization.

The paper presents ideas of how to extract principles, not available from current neural network approaches, 
by which biological learning occurs through wave dynamic processes arising in neuroanatomical structures, and 
in turn provides a new framework for the design and implementation of highly efficient and accurate engineer-
ing analogs of those processes and structures that could be instrumental in the design of novel learning circuits.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.

Appendix: Several examples of single mode solutions
See Figs. 6, 7, 8, 9, 10, 11, 12 and 13.

Figure 6.   The amplitude and phase of a single mode for cr = 0.125.
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Figure 7.   The amplitude and phase of a single mode for cr = 0.25.

Figure 8.   The amplitude and phase of a single mode for cr = 0.5.
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Figure 9.   The amplitude and phase of a single mode for cr = 0.75.

Figure 10.   The amplitude and phase of a single mode for cr = 0.945.
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Figure 11.   The amplitude and phase of a single mode for cr = 0.99.

Figure 12.   The amplitude and phase of a single mode for cr = 0.995.
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