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Interplay between hopping 
dimerization and quasi‑periodicity 
on flux‑driven circular current 
in an incommensurate 
Su–Schrieffer–Heeger ring
Souvik Roy 1, Sudin Ganguly 2* & Santanu K. Maiti 1

We report for the first time the phenomenon of flux‑driven circular current in an isolated Su–
Schrieffer–Heeger (SSH) quantum ring in presence of cosine modulation in the form of the Aubry–
André–Harper (AAH) model. The quantum ring is described within a tight‑binding framework, 
where the effect of magnetic flux is incorporated through Peierls substitution. Depending on the 
arrangements of AAH site potentials we have two different kinds of ring systems that are referred to 
as staggered and non‑staggered AAH SSH rings. The interplay between the hopping dimerization and 
quasiperiodic modulation leads to several new features in the energy band spectrum and persistent 
current which we investigate critically. An atypical enhancement of current with increasing AAH 
modulation strength is obtained that gives a clear signature of transition from a low conducting phase 
to a high conducting one. The specific roles of AAH phase, magnetic flux, electron filling, intra‑ and 
inter‑cell hopping integrals, and ring size are discussed thoroughly. We also study the effect of random 
disorder on persistent current with hopping dimerization to compare the results with the uncorrelated 
ones. Our analysis can be extended further in studying magnetic responses of similar kinds of other 
hybrid systems in presence of magnetic flux.

The localization phenomenon has always been an active field of  research1–5 in the discipline of condensed mat-
ter physics since its prediction by P. W. Anderson in 1958. The interest in this topic gets increased day by day 
with the development of different kinds of fascinating systems, spanning over a wide branch of physics. In his 
pioneering  work1, Anderson showed that for a one-dimensional atomic system with ‘uncorrelated’ site energies, 
all the energy eigenstates are completely localized irrespective of the disorder strength. Such a system is rather 
quite trivial, as on one hand the critical disorder strength Wc is zero (W measured the strength of disorder), and 
on the other hand, we do not have any specific control over it. Interesting behavior arises when a restriction is 
imposed on the site energies, to make the system a ‘correlated’ disordered  one6–10. So far, various kinds of cor-
related systems have been used in different areas, and among many, the most common and versatile example of 
such a system is referred to as Aubry–André–Harper (AAH)  model11–21.

For a one-dimensional tight-binding (TB) AAH chain with nearest-neighbor hopping (NNH) integral t, it 
is well established that there exists a sharp transition at a finite critical point Wc = 2t11,13,14. For W < Wc , all the 
states are fully conducting, while they become absolutely localized when W > Wc . At W = Wc , critical states are 
obtained. In this case, the mixing of conducting and localized states is not available, and thus, mobility edge does 
not  appear13,14. The existence of non-zero critical point leads to different atypical signatures in physical properties 
and during the last several years an enormous amount of work has been done in different areas starting from 
electron transport, spin selective transport phenomena, controlled light propagation, and to name a  few22–25.

Now, a basic question may arise about how a physical system behaves when a further restriction is given which 
is already subjected to an AAH type of modulation. The additional restriction can be imposed with the inclusion 
of dimerized hopping integrals. The one-dimensional lattice with such hopping integrals is the simplest example 
of a non-trivial topological system and is well-known as the Su–Schrieffer–Heeger (SSH)  model26–30. Individually 
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the systems with AAH modulation, and, the SSH lattices have been investigated extensively, but studies consider-
ing both these effects are relatively scarce. Motivated by these facts, in the present paper we explore the interplay 
between the hopping dimerization and quasi-periodicity on electronic localization and on a specific physical 
phenomenon which is the magnetic response of non-interacting electrons in a mesoscopic ring in presence of a 
magnetic flux φ . The inclusion of magnetic flux in an isolated conducting mesoscopic ring generates a circular 
current, and once this current is established it never vanishes even when the flux gets removed. Such a fascinating 
magnetic response is referred to as flux-driven persistent current and was first proposed more than three decades 
ago by Büttiker, Imry, and  Landauer31. After this proposal, a substantial amount of theoretical and experimental 
work has been  done32–47, and a wealth of literature knowledge has already been developed on this topic. But 
no attempt has been made so far considering an AAH SSH ring. As the flux-driven circular current is directly 
involved with the variation of energy levels with flux φ , from the analysis of energy band spectrum and persis-
tent current, the combined effect of AAH modulation of dimerized hopping integrals can be well understood.

We describe the AAH SSH ring within a tight-binding framework and include the effect of magnetic flux, 
commonly referred to Aharonov–Bohm (AB)  flux48,49, through Peierls substitution. Two different kinds of NNH 
integrals, t1 and t2 , are taken into account (see Fig. 1), like what is used in the 1D SSH model, and depending 
on the specific arrangement of AAH site potentials we have two different configurations that are referred to as 
‘non-staggered’ and ‘staggered’ AAH SSH rings. In this communication, we critically investigate the critical 
roles played by t1 and t2 in both these cases. Determining the energy eigenvalues of the TB Hamiltonian matrix 
of the ring system, we compute flux-dependent circular current using the well-known derivative  method32,41 
under different input conditions. For the sake of completeness, we also study the behavior of persistent current 
in the presence of random disorder in SSH rings. The key findings that emerge from our detailed numerical 
analysis are as follows. (1) The energy band structure gets significantly modified. A reasonable enhancement of 
the slopes of some energy levels with respect to φ occurs with the increase of the AAH modulation strength. It 
is directly reflected in the current spectrum. A clear indication of transition from a low conducting phase to a 
high conducting one is seen, which is in complete contrast to the literature knowledge. (2) The current amplitude 
can be monitored selectively by regulating the phase factor associated with the AAH modulation, keeping all 
the other parameters constant. (3) Filling factor plays an important role to get the circular current. Both for the 
staggered and non-staggered cases, the current shows large values near the half-filled band case. (4) The hopping 
dimerization leads to the co-existence of localized and extended energy levels, though the ring is described with 
only NNH integrals and this feature is observed irrespective of the nature of the disorderedness, that is correlated 
(AAH) or uncorrelated (random). The localization behavior of any energy eigenstate is described in terms of the 
inverse participation ratio (IPR)50–56. Our analysis may provide a new route of expecting anomalous physical 
phenomena in such hybrid systems where both AAH and SSH effects are included.

With the above brief introduction in “1Introduction” section, In “2Quantum ring, tight-binding Hamilto-
nian and theoretical prescription” section we present the ring geometry, its Hamiltonian, and the theoretical 
prescription for calculating the results. All the essential findings are critically discussed in “3Numerical results 
and discussion” section. Finally, in “4Closing remarks” section, the summary of the work is given.

Quantum ring, tight‑binding Hamiltonian and theoretical prescription
In this section, we illustrate the ring geometry, corresponding Hamiltonian in the tight-binding framework, and 
the theoretical prescription for calculating energy eigenvalues and flux-driven persistent current.

Quantum ring and the TB Hamiltonian. The schematic view of the ring geometry that is used to inves-
tigate magnetic response in presence of AB flux φ is shown in Figure 1. The ring is formed by N unit cells, where 
each unit is composed of two different atoms, represented by red and cyan balls. We label these balls as α and β 
sites respectively, for the simplification of the description. The quantum system is simulated within a TB frame-
work and it reads as,

(1)

H =
∑

n

εα,nc
†
α,ncα,n +

∑

n

εβ ,nc
†
β ,ncβ ,n

+
∑

n

(

t1e
iθ c†α,ncβ ,n + t1e

−iθ c†β ,ncα,n

)

+
∑

n
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t2e
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)

Figure 1.  AAH ring with dimerized hopping integrals, threaded by a magnetic flux φ.
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where n is the unit cell index and it runs from 1 to N, and c†α(β),n , cα(β),n are the usual fermionic operators. t1 
and t2 represent the intra- and inter-cell hopping integrals, respectively. Due to the AB flux φ , a phase factor 
θ is introduced in the hopping terms called the AB phase, and it is expressed  as32,41 θ = 2πφ/(2N) (2N being 
the total number of sites in the ring). The flux φ is measured in the unit of the elementary flux-quantum φ0 
( = ch/e , c, h and e are the fundamental constants). εα,n and εβ ,n are the site energies at the sites α and β of nth 
unit cell, respectively. A cosine modulation in the form of the AAH model is introduced in the site energies. We 
can express them  as12–14: εα,n = Wα cos(2πbn+ φν) and εβ ,n = Wβ cos(2πbn+ φν) , where Wα(β) is the cosine 
modulation strength at the site α(β) . φν is the phase factor associated with the AAH modulation and it has a 
special significance as one can tune this factor  externally15 with the help of a suitable setup. The factor b is an 
irrational number, which leads to the aperiodicity in the lattice. For our numerical calculations, we  choose13,14 
b = (1+

√
5)/2 , though any other irrational number can also be taken into account, without loss of any gen-

erality. Depending on Wα and Wβ , we have two different configurations, one is referred to as ‘non-staggered’ 
where Wα = Wβ = W  , and, the other one is called ‘staggered’ ring where Wα = −Wβ = W  . For both these 
configurations, we thoroughly investigate magnetic responses in different parameter regimes.

Another important point should be mentioned here is that a correlated disordered system is completely dif-
ferent from an uncorrelated or so-called ‘random’ disordered system. While both kinds of disordered systems 
show localization behavior, uncorrelated disorder has a much stronger effect on localization than a correlated 
one. In the present work, first, we study the correlated viz., AAH disordered systems and compare the results 
with the random disordered systems.

Theoretical formulation. Energy eigenvalues, ground state energy, and circular current. The energy ei-
genvalues Em of the ring geometry are obtained by directly diagonalizing its TB Hamiltonian matrix. Getting the 
discrete energy eigenvalues, we compute the ground state energy, at absolute zero temperature, when the ring 
contains Ne number of electrons by summing over the lowest Ne energy levels, and it  becomes32

Taking the first order derivative of the ground state energy E0(φ) with respect to the flux φ , the persistent current 
Iφ in the ring is obtained. It is defined  as32

This is the standard protocol for calculating flux-driven circular current in an AB loop and has been extensively 
used in the literature. In this method, we do not need to bother explicitly about the energy eigenstates of the 
system, as the current is obtained from the flux-dependent energy levels.

Calculation of IPR. To investigate whether the extended and localized states co-exist or not, and also to check 
the nature of individual energy eigenstates, we compute inverse participation ratios (IPRs). For any arbitrary 
eigenstate |ψp� ( =

∑

m a
p
m|m� ), the IPR is expressed  as50–53

where apm ’s are the coefficients and |m� ’s are the Wannier states. The localizing behavior of different states of an 
isolated system can be easily described by means of IPR. For an extended state, an electron contributes at all the 
lattice  sites15 and thus IPR → 0 , while for a localized state, electron gets pinned at a particular lattice site and 
hence IPR becomes  finite15. In the asymptotic limit, the maximum value of IPR for a localized state reaches unity, 
but it will be pretty hard to achieve this limiting value for a ‘finite-size’ system.

Numerical results and discussion
In what follows we present our numerical results for the AAH SSH quantum ring system under different input 
conditions, and explore the critical roles played by the hopping dimerization and AAH modulation on energy 
band spectrum, flux-driven circular current, and electronic localization phenomena. The results are arranged 
and discussed in different sub-sections. Depending on t1 and t2 , two different cases are taken into account: one 
is t1 < t2 and other is t1 > t2 . For both these cases t1 is fixed to 1 eV, whereas t2 becomes 1.5 eV and 0.5 eV, 
respectively, depending on the conditions. Unless specified, the AAH phase φν is set to zero. The other physical 
parameters are mentioned in the appropriate places.

Spectral properties. To understand the electronic properties of AAH SSH rings, we first study the behavior 
of energy eigenvalues with AB flux φ for the following cases. We first consider non-staggered and staggered AAH 
rings with no hopping dimerization as shown in Fig. 2a and b, respectively and then pure SSH ring with t1 > t2 
(Fig. 2c) and t1 < t2 (Fig. 2d). Here we take a relatively smaller ring with N = 6 , such that all the energy levels 
are seen quite clearly. Usually, for a pure AAH ring, the energy eigenspectrum splits into three  bands41. That 
splitting, however, is not prominent for both the non-staggered and staggered AAH rings with AAH modulation 
strength W = 1 eV, as is seen from Fig. 2a and b, respectively. In both these cases, apart from the band edges, all 
the energy levels exhibit finite variations with flux φ , which is the primary condition to have a non-zero flux-
driven circular current. On the other hand, the energy spectrum as a function of φ is broken into two bands for 

(2)E0(φ) =
∑

m

Em(φ).

(3)Iφ = −c
∂E0(φ)

∂φ

(4)IPRp =
∑

m

|apm|4
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the pure SSH rings (i.e. no AAH) with t1 > t2 and t1 < t2 as we observe from Fig. 2c and d, respectively. Such a 
separation of the whole energy band into two bands is the hallmark of SSH chain due to the hopping dimeriza-
tion and also seems to be present in the SSH ring. Moreover, the energy levels closer to the center of the band 
have greater slopes compared to the states located near the band edges. Thus a filling-dependent current is 
expected to be observed.

Now, let us see the effects of correlated disorder and hopping dimerization together in an AAH SSH ring. 
For that, we begin our discussion with Fig. 3, where the behavior of individual energy eigenvalues with flux φ 

Figure 2.  Dependence of energy eigenvalues as a function of AB flux φ . The first row represents the results 
of the ring subjected to only AAH modulation with W = 1 and t1 = t2 = 1 , where (a) and (b) correspond to 
non-staggered and staggered cases, respectively. The second row denotes the results of an SSH ring (without any 
AAH modulation) where (c) t1 > t2 ( t1 = 1 , t2 = 0.5 ) and (d) t1 < t2 ( t1 = 1 , t2 = 1.5 ). For all these cases, we 
set N = 6 and φν = 0.

Figure 3.  Dependence of energy eigenvalues as a function of AB flux φ for the AAH SSH rings at AAH 
disorder strength W = 1 , where first and second rows denote the results for the non-staggered and staggered 
cases, respectively. The values of N, φν , t1 and t2 for t1 < t2 and t1 > t2 remain same as taken in Fig. 2, for a clear 
comparison of the energy spectra.
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is shown. The results are obtained for the non-staggered and staggered cases under two different conditions of 
intra- and inter-cell hopping integrals. Several interesting features are obtained those are analyzed one by one 
as follows. Firstly, all the energy levels are non-degenerate and they are periodic in φ showing φ0 flux-quantum 
periodicity. Secondly, the interplay between the dimerized hopping integrals and the AAH modulation strongly 
depends on the limiting condition i.e., whether t1 is less or greater than t2 . In both these limiting conditions, 
two different kinds of energy levels are available. Few energy levels are almost insensitive to the flux φ , those 
are referred to as ‘flat’ energy levels, and the rest of the other energy levels exhibit finite variation. A non-zero 
contribution in persistent current is obtained only from the later type of energy levels since the current is directly 
proportional to the variation of energy with φ . The co-existence of zero and finite current carrying states are usu-
ally not available in conventional ring systems, and because of this mixing we can have the possibility of getting a 
transition from the high current carrying phase to the low one, and vice versa, depending on the electron filling. 
This behavior can be understood from our forthcoming discussion. Thirdly, the nature of the current carrying 
states situated towards the band center is strongly influenced by the intra- and inter-cell hopping integrals, both 
in the staggered and non-staggered cases, which we confirm through our exhaustive numerical calculations. 
We find that for the non-staggered ring, the slope of the current carrying states gets enhanced with increasing 
the correlated disorder strength W when t1 > t2 . A similar kind of behavior is also obtained for the staggered 
ring in the other limiting condition i.e., when t1 < t2 . Such a phenomenon is quite unusual since the common 
wisdom suggests that, the slope always decreases with increasing the impurity strength (yielding lesser cur-
rent). For the non-staggered and staggered rings, the common picture (viz, lowering the slope) is obtained for 
the conditions t1 < t2 and t1 > t2 , respectively. The key conclusion that we make from the energy-flux spectra 
is that the interplay between the dimerized hopping integrals and the sign of the site energies in each unit cell is 
highly important for determining the behavior of the individual energy levels.

Current‑flux characteristics. The behavior of the persistent current as a function of flux φ for the cases 
considered in Fig. 2 is shown in Fig. 4 in the half-filled limit. Here a relatively bigger ring is taken into account 
such that the number of electrons becomes quite moderate in the limit of half-filling. In Fig. 4a and b, the cur-
rents are shown for two distinct AAH modulation strengths, namely, W = 1 eV (red curve) and W = 1.25 eV 
(green curve). We set t1 = t2 = 1 eV for both the non-staggered ring (Fig. 4a) and the staggered ring (Fig. 4b) 
to capture only the essence of correlated disorder on persistent current. The usual reduction of current with 
impurity strength is obtained in Fig. 4a and b. The phase of the current (magnitude and sign) for a particular W 
and the reduction of current amplitude with the enhancement of W solely depend on the variation of ground 
state energy with respect to the AB flux φ . The ground state energy, on the other hand, is directly linked with 
the distinct energy levels. When the slopes of the successive current-carrying energy levels are opposite, mutual 
cancellation takes place, resulting in a reduction of current. Usually, the net current comes from the energy levels 
close to the topmost filled level, as the contributions of the other energy levels are almost mutually cancelled 
from each other. Thus, the filling factor plays an important role, which can be understood more clearly from 
our subsequent analysis. For a particular filling, the suppression of current, on the other hand, occurs due to the 
enhanced electron scattering at different lattice sites with W. This reduction of current with increasing disorder 

Figure 4.  Current-flux characteristics in the half-filled limit where the first row is associated with the AAH 
ring (without any hopping dimerization, t1 = t2 = 1 ), while the second row is for the SSH ring (without AAH 
modulation, W = 0 ). For the AAH ring, the results for the non-staggered and staggered cases are shown in (a) 
and (b), respectively. On the other hand, for the SSH ring, we choose t1 = 1 and t2 = 0.5 in (c) and in (d) we 
take t1 = 1 and t2 = 1.5 . The ring size N = 20 . In the first row, the red and green lines correspond to W = 1 and 
1.25, respectively.
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strength is well studied in the  literature32. To study the effect of hopping dimerization on persistent current, we 
consider SSH ring without any AAH disorder and the corresponding results for t1 > t2 and t1 < t2 are shown 
in Fig. 4c and d respectively. For t1 > t2 case, the magnitude of current is vanishingly small, whereas for t1 < t2 
case, it is only a few nA. Overall, we observe that the non-staggered and staggered AAH rings are capable of pro-
ducing large persistent current than the SSH rings. Now let us see their combined effect on the persistent current.

From the behavior of the energy levels discussed in Fig. 3, it can be guessed that some anomalous features 
might be expected in the current-flux characteristics as well. Figure 5 displays the variation of persistent cur-
rent with flux φ , for the non-staggered and staggered AAH SSH rings under two different conditions of the 
hopping integrals. The currents are computed for the half-filled band case, considering N = 20 . In each of the 
spectra, the currents are shown for two distinct AAH modulation strengths those are W = 1 eV (red curve) and 
W = 1.25 eV (green curve). For the non-staggered ring with t1 < t2 and for the staggered ring with t1 > t2 , the 
usual reduction of current with impurity strength is obtained (Fig. 5b,c). Moreover, in these two cases, the cur-
rent amplitude is also vanishingly small. But, unconventional behavior occurs in these AAH SSH rings when we 
change the condition of hopping dimerization, as clearly reflected from the spectra given in Fig. 5a and d. The 
current amplitude gets enhanced with increasing the impurity strength W. The underlying mechanism relies on 
the specific correlation of the AAH modulation, staggered and non-staggered conditions, and hopping dimeri-
zation. This gives a clear indication of transition from a low conducting phase to a high conducting one. This is 
an interesting finding of our analysis.

Variation of current with AAH modulation strength W. With the hint of getting a transition from a 
low conducting phase to high conducting one under certain physical conditions, it is indeed required a thorough 
checking of the dependence of current with the disorder strength. Before we do that for AAH SSH rings, we plot 
the behavior of persistent current as a function of AAH modulation strength (absence of hopping dimerization) 
for non-staggered and staggered AAH rings as shown in Fig. 6a and b, respectively. Here the flux φ is fixed at 
φ = 0.2 and N = 20 . As we observed in Fig. 4a and b, the usual reduction of current with disorder strength is 
clearly visible in Fig. 6a and b. For low values of W, the current is a few µ A, decreases with W and beyond W ∼ 1 , 
the current seems to be vanishingly small, and falls off to zero.

Next, we choose those two cases in which the unusual feature is seen in Fig. 5 and plot the current amplitudes 
in Fig. 7 at a typical flux by varying the AAH modulation strength W in a wide range. As we primarily focus 
on the variation of current amplitude with disorder strength, we plot the absolute value of the current with W. 
Both for the non-staggered and staggered cases, we find that beyond a critical disorder strength, the current 
amplitude gets enhanced significantly, and after reaching a maximum it decreases and eventually drops to zero 
for large enough W. From the variation of current with W, the transition from a low conducting phase to high 
conducting one is clearly seen, and it is purely due to the specific correlation in site energies and the hopping 
dimerization. Here we would like to mention one point, we have not found any compact analytical expression 
of the critical disorder strength where the current gets a maximum. Our detailed numerical calculations sug-
gest that this critical disorder strength strongly depends on the choices of intra- and inter-cell hopping integrals 
and electron filling factor. Further studies can be done to have an analytical expression for the critical disorder 

8

8

8

8

Figure 5.  Current-flux characteristics for the AAH SSH rings in the half-filled band case at two different AAH 
modulation strengths, where the red and green curves correspond to W = 1 and 1.25 eV, respectively. The first 
row represents the non-staggered [(a) t1 > t2 and (b) t1 < t2 ] case while the second row represents the staggered 
one [(c) t1 > t2 and (d) t1 < t2 ]. Here we choose N = 20 , and all other parameters are the same as given in 
Fig. 3.
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strength. Moreover, from the insets of Fig. 7a and b, we confirm that the current at W = 0 in very small, of the 
order of a few nA or even than an nA, but it is not zero. Such a small persistent current is completely due to the 
hopping dimerization of the AAH SSH ring.

Role of AAH phase on current. In this sub-section, we investigate the role of AAH phase factor φν on 
circular current. Figure 8 displays the variations of persistent current as a function of AB flux φ at three typical 
values of φν , those are represented by three different colored curves. Both for the staggered and non-staggered 
cases, a finite change in current is obtained with the modification of the phase factor φν . This is expected as the 
site energies of the ring get modified with the change of φν , which in turn, alters the energy eigenvalues and thus 
the current.

To see the response for any other values of φν , in Fig. 9, we plot the variation of current amplitude, determined 
at at a typical magnetic flux φ = 0.2 , as a function of φν by varying it continuously in a wide range. The results are 
quite interesting. Both for the staggered and non-staggered rings, an oscillatory pattern with large peaks and dips 
is obtained. It gives a clear sign that the current amplitude and conducting behavior can be regulated selectively 
by means of φν without altering any other physical parameters describing the system.

W (eV) W (eV)

Figure 6.  Magnitude of current, at a typical flux φ = 0.2 , with disorder strength W at half-filling for the AAH 
ring (in the absence of any hopping dimerization, t1 = t2 = 1 ) with N = 20 . Here (a) and (b) represent the non-
staggered and staggered rings, respectively.

W (eV)

W (eV)

W (eV)

W (eV)

0.09
9nA

nA

Figure 7.  Same as Fig. 6, in presence of the hopping dimerization (viz, for the AAH SSH ring), where (a) 
t1 = 1 , t2 = 0.5 and (b) t1 = 1 and t2 = 1.5 . Insets are included to show that current is finite at low disorder 
strengths.

W W=1.74

4

Figure 8.  Persistent current as a function of AB flux φ at different values of φν for (a) non-staggered and (b) 
staggered AAH SSH rings, in the half-filled band case, considering N = 12 . In each plot, the black, red, and 
green colors are associated with φν = 0 , π/3 , and π/2 , respectively.
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Dependence of current on N
e
. To inspect the dependence of circular current on the total number of 

electrons Ne in the ring system, in Fig. 10 we plot the absolute current at a particular flux by varying Ne in a wide 
range. Both the non-staggered and staggered rings are taken into account, like previous figures, and currents 
are computed at φ = 0.2 for each Ne , considering a relatively bigger ring with N = 60 . For smaller and higher 
numbers of electrons, currents are vanishingly small, while appreciable current is obtained for a small window 
around the half-filling. This is completely in contrast to a perfect ring or an uncorrelated/correlated disordered 
 ring41,57, and occurs due to the presence of ‘flat’ energy levels along with the levels possessing finite slopes (can 
be seen clearly from the energy-flux spectra given in Fig. 3). Thus, electron filling has an important role to have 
a non-zero current.

Effect of system size. As persistent current is a mesoscopic phenomenon, it is relevant to check how the 
current varies with the ring size. In Fig. 11 the results are shown, where the currents are computed at a typical 
flux φ = 0.2 , like in previous cases, both for the non-staggered and staggered half-filled rings. The overall enve-
lope shows a decreasing nature, as expected, but for some particular cases, current shows an increasing behavior 
with the ring size. This oscillating tendency with system size is the generic feature in mesoscale regime and it is 
directly linked with the quantum interference of electronic waves. The nature of the envelope also depends on 
the filling factor, but the fact is that, irrespective of the electron filling, the current eventually reduces to zero 
when the ring size becomes too large.

W W=1.7

74

/ /
4

Figure 9.  Absolute current at a particular flux φ ( φ = 0.2 ) with respect to the AAH phase factor φν for the 
AAH SSH ring. The ring size, filling factor, and the meaning of (a) and (b) are the same as mentioned in Fig. 8.

Figure 10.  Absolute current as a function of total number of electrons Ne at φ = 0.2 for (a) non-staggered and 
(b) staggered AAH SSH rings. Here we set N = 60.

Figure 11.  Absolute current as a function of the ring size in the half-filled limit for the (a) non-staggered and 
(b) staggered AAH SSH rings.
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Co‑existence of conducting and non‑conducting states. The co-existence of conducting and non-
conducting states is re-checked in Fig. 12 in another way by calculating inverse participation ratios of distinct 
energy eigenstates. Each spectrum of Fig. 12 represents the density plot, where the variations of energy eigen-
values and IPRs are shown as a function of the AAH modulation strength W, both for the staggered and non-
staggered AAH SSH rings, under three different hopping conditions, namely, t1 = t2 , t1 > t2 , and t1 < t2 . Several 
fascinating results are obtained from the density spectra. The first observation is that for the non-staggered ring 
with t1 < t2 (Fig. 12c) and the staggered ring with t1 > t2 (Fig. 12e), a wide gap around E = 0 persists between 
the two sub-bands, where each of these sub-band contains other multiple narrow bands with smaller gaps. The 
arrangement of the energy levels into two bigger bands is associated with the hopping dimerization, while in 
each sub-band the appearance of mini bands with smaller gaps is involved with the cosine modulation. The two 
bigger energy bands merge at a particular modulation strength for the cases with t1 > t2 and t1 < t2 , as clearly 
seen from the plots given in Fig. 12b and f. Note that these two cases, apart from the ring size, gave rise to anoma-
lous behavior, that is current increases with increasing disorder strength (see Fig. 7). This gap closing plays a vital 
role to have an anomalous signature in the current-flux spectra that we observe in Fig. 7a and d. However, for the 
cases with t1 = t2 , there is no gap around E = 0 for the lower values of W (Fig. 12a,d). For the non-staggered case 
(Fig. 12a), a small gap opens around E = 0 , but eventually, at large disorder strengths, a three-band spectrum 
is observed, which is the usual AAH effect. On the other hand, for the staggered case with t1 = t2 , once the gap 
opens for a particular W, that gap persists throughout the given W-range (Fig. 12d). In the same contexts, it 
should be noted here that we observe additional gap closings at W ∼ 4 eV in Fig. 12a, W > 3.5 eV in Fig. 12b, 
and W ∼ 5 eV in Fig. 12c. However, all the states near those gap closings are highly localized and no current car-
rying states thus exist. Therefore, near those additional gap closings, no further current enhancement will occur. 
The second important phenomenon that is seen in Fig. 12 is that, unlike a regular diagonal AAH system, all 
the energy states do not get localized beyond a critical disorder strength. It is well known that in the absence of 
hopping dimerization and without any staggered scenario, all the states get localized beyond the critical disorder 
strength 2t (if t1 and t2 are set to t). But for our dimerized AAH system, we can clearly see that the extended and 

Figure 12.  Density plot of energy eigenvalues and the IPRs of different energy eigenstates with disorder 
strength W, where the first and second rows are associated with the non-staggered and staggered conditions, 
respectively. The first column shows the results only for the AAH ring ( t1 = t2 = 1 ), whereas the rest of the 
spectra are associated with the AAH SSH ring under different conditions ( t1 > t2 and t1 < t2 ). The results are 
worked out for N = 60 and φ = 0.2.
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localized states co-exist. Moreover, this co-existence occurs at multiple energies. So, naturally, we have the pos-
sibility to get energy-dependent mobility edges. This is indeed an interesting finding.

Interplay of random disorder and hopping dimerization. In general, random (uncorrelated) dis-
orders have much stronger localization behavior than correlated ones. However, for the sake of completeness, 
we compare our results with random disordered rings. To keep the true nature of random disorder, the stag-
gered condition on the site potentials are excluded. Particularly, we consider three different hopping conditions, 
namely t1 = t2 , t1 > t2 , and t1 < t2 . The first condition corresponds to a randomly disordered ring without any 
hopping dimerization, and the other two denote SSH rings with random disorder. The random on-site poten-
tials are included in site energies ‘randomly’ from a Box distribution function of width 2W to be consistent with 
the notion of AAH modulation strength. All the results are obtained by averaging over 1000 distinct random 
configurations.

The behavior of the persistent current as a function of flux φ for t1 = t2 , t1 > t2 , and t1 < t2 are shown in 
Fig. 13a–c, respectively. Like before, two different random disorder strengths are considered, namely W = 1 (red 
curves) and W = 1.25 (green curves) and for the case of half-filled. In the absence of hopping dimerization, the 
usual reduction in the current is observed. For t1  = t2 cases (Fig. 13b,c), the magnitudes of currents are relatively 
small compared to the t1 = t2 case. But interestingly, unconventional behavior occurs, as we observed in the AAH 
SSH rings (Fig. 4a,d). In the latter two cases, the current amplitude increases with the random disorder strength 
W. Now, here we do not have any staggered scenario. And it is also known that all the energy eigenstates are 
localized irrespective of the random disorder strength. Therefore, it is the hopping dimerization that prevents 
such localization in presence of random disorder. Thus, the hopping dimerization plays a key role in the enhance-
ment of current with increasing the disorder strength both in the correlated and uncorrelated disordered cases.

In Fig. 14, the persistent current is plotted as a function of random disorder strength W for a fixed AB flux 
φ = 0.2 , for three different conditions of t1 and t2 , like previous cases. As expected, the current decreases with 
W for t1 = t2 as shown in Fig. 14a. This is consistent with our previous results for AAH rings in the absence of 
hopping dimerization (Fig. 4). For t1 > t2 (Fig. 14b), the current magnitude is relatively less compared to the 
case of t1 < t2 (Fig. 14b). However, in both cases, the current is vanishingly small for low values of W, then it 
increases with increasing W, becomes maximum and again falls off to zero for large disorder strengths as it 
should be. It is also important to note that the current magnitudes of the AAH SSH is observed to be higher 
than the random disordered cases. This is because for the random (uncorrelated) disordered cases, we average 
the currents over a large number of configurations, but for the correlated case, it is just a single configuration. 
Because of the averaging, there is more cancellation of currents due to the many negative slopes and hence the 
current magnitude is less for the random disordered cases.

Experimental feasibility: There are several proposals to realize a ring-like  geometry58–62. To realize an SSH ring, 
the different hopping integral values can be achieved either by using two different atoms in the successive  sites63 
or by arranging the atoms with different spacing in the successive  bonds64,65. The distance between two atoms 

Figure 13.  Current-flux characteristics for random disordered rings in the half-filled band case at two 
different disorder strengths, where the red and green curves correspond to W = 1 and 1.25 eV, respectively. (a) 
t1 = t2 = 1 , (b) t1 = 1 , t2 = 0.5 , and (c) t1 = 1 , t2 = 1.5 . The ring size N = 20 . The currents are averaged over 
1000 distinct random configurations.

Figure 14.  Magnitude of current, at a typical flux φ = 0.2 , with random disorder strength in the half-filled 
band case. (a) t1 = t2 = 1 , (b) t1 = 1 , t2 = 0.5 , and (c) t1 = 1 , t2 = 1.5 . The ring size N = 20 . The currents are 
averaged over 1000 distinct random configurations.
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can be manipulated with desired precision via the atom manipulation  technique66. To achieve the AAH profile 
in a ring, two counter-propagating laser beams having wave vectors k1 and k2 are  used67, where the incommen-
suration parameter is defined by the factor k1/k2 . Once the potential profile is formed, the atoms are trapped in 
those profiles and one can get an AAH ring. Together with these proposals and possibilities of realizing an SSH 
ring and an AAH ring, one may construct an AAH SSH ring experimentally.

Closing remarks
In the present work, we have essentially focused on the combined effects of hopping dimerization and cosine 
modulation in site energies, on magnetic response in an isolated AB ring. Depending on the allocation of site 
energies, two different kinds of ring systems have been taken into account those are referred to as non-staggered 
and staggered ones. Employing a tight-binding framework, we have determined energy eigenvalues, flux-driven 
circular current, and the localization behavior of different energy eigenstates under different input conditions. 
The random disordered scenario has also been discussed to compare the results with the correlated ones. The 
key findings of our analysis are as follows.

• Co-existence of ‘flat’ energy levels along with the current carrying states. Due to this mixing of zero and 
non-zero current carrying states, we get a switching from low to high current carrying phase and vice versa. 
Such a behavior is no longer obtained in traditional AB rings.

• Unlike the conventional disordered rings, here we have found current enhancement with increasing the 
impurity strength, which is a transition from a low conducting phase to a high conducting one.

• The current amplitude can be tuned selectively by means of the AAH phase φν.
• The electron filling factor plays an important role to have a net current, due to the existence of flat energy 

levels and energy levels with finite slopes. Across the half-filled band case, we get a large response.
• Current is also sensitive to the ring size, as it is a mesoscopic phenomenon. The current amplitude decreases 

with increasing the size of the ring, and for a large enough ring it reaches the vanishing limit.
• The density plot of IPRs clearly confirms the co-existence of the localized and delocalized energy levels. 

Energy-dependent mobility edges are also found.
• Like the correlated disordered cases, we have also found current enhancement with increasing the random 

disorder strength.
• The hopping dimerization is the key factor for the current enhancement with increasing the disorder strength, 

irrespective of the nature of the disorder, that is, uncorrelated or correlated.

Our analysis gives a suitable hint that the positional correlation among the constituent lattice sites along with 
the hopping dimerization plays an important role to have non-trivial signatures in electronic properties, and can 
be utilized in different sub-disciplines. Here we have provided one aspect by studying the magnetic response. 
Further studies can definitely be done in other contexts, and interesting phenomena might be expected.

Data availability
Derived data supporting the findings of this study are available from the corresponding author on request.
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