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Seasonal dependent suitability 
of physical parameterizations 
to simulate precipitation 
over the Himalayan headwater
Ankur Dixit 1*, Sandeep Sahany 1,2, Saroj Kanta Mishra 1 & Michel D. S. Mesquita 3

The Himalayan ecosystem is fragile and needs robust management strategies for sustainability of 
natural resources such as water and vegetation. Therefore, reliable precipitation estimation becomes 
quite important from operational and regulation standpoints. It is crucial for numerous activities 
including policy/planning, agriculture, reservoir operations, disaster management, and others. 
In addition, reliable information on temporal variability of precipitation is also crucial for various 
applications such as agricultural and hydrological. The western Himalaya receives two distinct 
weather systems during summer and winter. Summer is responsible (largely) for rainfall and winter 
is for snowfall. Therefore, we hypothesize that there may not be a single set of parameterization 
schemes that can represent well both the weather systems. To investigate, we set up the WRF 
modeling system and performed six experiments with a combination of three microphysics (MP3, 
MP3, and WSM6) and two cumulus schemes (KF, and BMJ). It was found that the precipitation along 
the Himalayan foothills (near to basin terminal) is underestimated in four out of six experiments. 
Only experiments with BMJ cumulus scheme along with WSM6 and MP8 microphysics were able 
to show a considerable amount of precipitation along these foothills. It was noted that all six 
experiments showed high precipitation in the upstream region and over the mountain peaks and 
ridges in North-Western Himalaya. For DJF, each experiment was found to have large biases and none 
of them represented the observation with high confidence. However, the selection of observation 
reference data itself is a challenging task because of data paucity in this region. Therefore, the closest 
experiment to the most appropriate observation was selected as the reliable configuration (MP8_KF: 
MP8 microphysics and KF cumulus scheme) for DJF precipitation simulation. In this study we have, for 
the first time, reported the role of seasonal sensitivity for the climate scale simulations as we found 
that different schemes were suitable for different weather systems.

The rapid warming of planet Earth leads to the redistribution of water resources in different parts of the world1–8. 
The Himalayan region is among the most fragile and vulnerable to these changes as it hosts the largest amount of 
water and serves millions in several countries downstream9–12. Understanding this region’s complex weather is 
a challenge because of the rugged topography-induced mesoscale variations13 ⁠ ⁠. These topography induced vari-
ations have a significant impact on precipitation. The topography in this region also acts as a barrier to control 
the cold and dry air advection from central Asia14 along with limiting the airflow exchanges between the Tibetan 
Plateau (TP) and Indo-Gangetic Plains (IGP)15.

Complex interactions of synoptic-scale, mesoscale, and local scale processes over these rugged terrains often 
produce extreme events16. To quantify these events, we need numerical models to resolve these interactions and 
represent the physical processes reliably. Several studies17–19 have been conducted using limited observation 
datasets focusing on large-scale features. However, data paucity remained a significant challenge in this region 
for validating the numerical models. The remoteness of the region and accession difficulty make it less viable 
for frequent data collection campaigns or observatories. As a result, this region always suffers from a lack of 
observations or incomplete/unreliable observational records20–23. ⁠
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Gridded precipitation datasets from in-situ and satellite [such as Tropical Rainfall Measuring Mission 
(TRMM)24–26, Climate Research Unit (CRU)27 and the Asian Precipitation—Highly-Resolved Observational 
Data Integration Towards Evaluation (APHRODITE)28] are often found to be inconsistent28–30 and amount of 
precipitation is not always coherent, probably because of the missing regional features and local terrain induced 
processes. It was also found that gridded datasets considerably underestimate the precipitation over Beas and 
Sutlej basin for extreme events31.

Regarding numerical models, the high-resolution, convection-permitting simulations (using RCMs) have 
demonstrated significant improvement to reproduce the local features and precipitation patterns over complex 
varying terrain32,33. Therefore, dynamical downscaling serves as an essential tool to capture the local processes 
and high-resolution precipitation features. The key challenge with dynamical downscaling is to select appropri-
ate convection, microphysics, and other physical parameterization schemes. The types of hydrometeors in the 
microphysics parameterization scheme and their interchange mechanism between different phases are critical for 
any numerical prediction model to produce reliable precipitation. These interconversions among phases could 
lead to significant biases and uncertainties in the convection and microphysical processes. Therefore, choosing an 
appropriate microphysics and convection scheme is of utmost importance while using dynamical downscaling. 
There have been several studies looking at the sensitivity of available schemes (for convection and microphysics) 
over India, however, most of them are done for specific events or set of events34–36 and a very few modeling studies 
have been conducted for long term (at least a year) using dynamical downscaling in the Himalayan region5,14,23,37.

Rajeevan et al. and Reshmi Mohan et al. found that the Thompson microphysics scheme worked well for 
convective precipitation over the south Indian region38,39. However, Rajeevan et al. found that thunderstorm 
production is different for different microphysics even when initial and boundary conditions are similar38. Collier 
and Immerzeel and Karki et al. used Morrison microphysics14,40. Tiwari et al. found that Thompson is producing 
more snow in comparison to Morrison or WSM6 microphysics parameterization, whereas Morrison generated 
more graupel than the rest of the two parameterizations19. They also found Thompson and Morrison similar in 
maximum precipitation distribution compared to WSM6 during the winter. However, WSM6 produced more 
precipitation on the downwind slopes of terrain, whereas Thompson and Morrison produced more snow on 
the mountain top19. WSM6 is also reported to be working well for mesoscale convective systems for the Indian 
summer monsoon41–43. WRF single-moment scheme 3 (WSM3) was also used44, which is a relatively simpler 
scheme (in comparison to Thompson) and classifies hydrometeors into three forms (vapor, cloud water/ice, and 
rain/snow).

Li et al. suggested that Thompson scheme with KF cumulus parameterization worked well for the Beas basin23. 
Norris et al. used Thompson microphysics and KF cumulus to produce 36 years long downscaled precipitation 
using Climate Forecast System Reanalysis (CFSR) over Central Himalaya and Karakoram37. The same set of 
microphysics and cumulus is utilized (to reproduce two extreme events associated with contrasting extratropical 
cyclones) after finding no significant qualitative or quantitative variations by changing the microphysics param-
eterization to produce snowfall in high mountains45. However, Dimri and Chevuturi studied sensitivity among 
different microphysics schemes and found that the Eta microphysics scheme outperformed the others to repro-
duce the winter-time storm simulation (though the comparison was not made with the Thompson scheme)34. 
These contrasting reports make the sensitivity check an essential step, especially in long-term simulations.

Samson et al. compared KF and BMJ for long-term experiments over the tropical Indian Ocean and found 
that KF overestimates the cyclonic activities than BMJ46. Mukhopadhyay et al. did a long-term simulation for 
Indian monsoon precipitation using KF, BMJ, and GD cumulus schemes47. They found that BMJ outperformed 
the other two to produce a reasonable mean monsoon pattern. They also found that BMJ simulated a reasonable 
heating profile and moisture instability in the atmosphere along with a seasonal evaporation and condensation 
cycle. Chawla et al. assessed the reproducibility of WRF for extreme rainfall events through several experiments 
and found BMJ as the best candidate for the cumulus scheme48. Srinivas et al. performed WRF simulation for 
ten ISM seasons (2000–2009) using KF, BMJ, and GD cumulus schemes49. They found that BMJ has the least dry 
bias, KF has a moist bias, and GD has a higher dry bias. They also reported that BMJ could reasonably reproduce 
low, moderate, and high rainfall, possibly because of better simulation of surface pressure, temperature, and 
geopotential, low and upper atmospheric flow fields. Besides, Ratnam et al. reported that KF cumulus and WSM3 
microphysics are most suitable to simulate ISM50. Dimri and Chevuturi reported that KF cumulus scheme is 
sensitive and suitable to produce western disturbances34. ⁠ ⁠

Referring to the various sensitivity studies, it is found that enough evidences indicate that BMJ has better 
reproducibility for ISM, especially in longer time scales. KF performs reasonably well for western disturbances 
and other extreme events. KF is also reported to be a suitable cumulus scheme to produce ISM rainfall. Albeit, 
no parameterization scheme is universally outperforming others to produce reliable intensity and pattern of pre-
cipitation. Hence, a sensitivity analysis aiming to identify suitable microphysics and cumulus scheme is necessary 
for investigating the physical mechanisms of precipitation events or long-term precipitation.

This study chose three microphysics (MP3, MP8, and WSM6) and two cumulus (KF and BMJ) parameteri-
zation schemes to show the one-year-long precipitation reproducibility using WRF-ARW. We performed six 
experiments as a combination of these microphysics and cumulus schemes. These six experiments are further 
compared with the gridded precipitation dataset. We obtained various gridded datasets (IMD, APHRODITE, 
TRMM, and PERSIANN-CDR) and compared their applicability in this region to be used as an observation. We 
have also investigated the seasonal sensitivity for summer and winter season along with the annual cycle. This 
study’s overall objective is to determine the suitability of microphysics and cumulus parameterization schemes 
for a region where two different weather systems influence the annual precipitation cycle.
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Study area
The Beas basin lies in India’s Himachal Pradesh state and is bounded by outer, middle, and greater Himalayan 
ranges (Fig. 1). The Beas river (originates from Beas Kund, Rohtang Pass near Manali city in Western Himalaya) 
is a major tributary of the Indus river system that holds a significant role for water availability in downstream 
regions (parts of Punjab and lower Himachal Pradesh).

The study region lies in the lower Himalayan zone that has sharp variation in topography that is why experi-
ences varying climate conditions spatio-temporally. The observed mean annual runoff is reported as 200 m3 s−1, 
primarily contributed through the monsoon season (55%) and minicule from the winter (~ 7%)51. The tempera-
ture goes above 20 °C during summer and below 2 °C during winters. The region receives two weather systems—
western-disturbances (WDs) and Indian summer monsoon18,52–54⁠⁠. WDs occur in winter and are primarily respon-
sible for solid precipitation in this region that contributes significantly to the river systems in this region. The 
Indian summer monsoon occurs in the summertime and mainly precipitate in form of water. The mean annual 
precipitation is reported as 1217 mm of which ~ 70% occurs through summer monsoon (July–September)51.

This region is very diverse in land-cover and rugged topography, varying from 826 to 6545 masl53. Approxi-
mately 12.6% of this region is glacier-covered. Varying topography and diverse land-cover makes this region 
more diverse to receive various precipitation forms (often solid and liquid) due to the significant temperature 
difference within short distance.

The study region is spread though remote highly mountainous terrain, i.e. more than 20% area above 
4800 masl, having the highest peak more than 6500 masl. The natural vegetation in the region varies from 
deciduous to alpine, as per topographical variation in the upper reaches of the basin. In the lower reaches or 
downstream agriculture and horticulture practices are followed for livelihood, having apple as one of the primary 
cultivation. The natural cover of snow and ice varies as per altitude and season, having maximum extent dur-
ing winter and minimum during summer. The snowcover variability is related to the wintertime precipitation 
and crucial to provide water to the Beas river during summer and autumn. The challenge of modelling studies 
over such region is insufficient or unreliable reference datasets. There are very limited observatories because of 
the inaccessibility of the regions. Moreover, no reliable datasets is yet been established as a standard to be used 
undoubtedly, therefore, the observation reference is always critical for such study regions.

Data and methods
WRF is a non-hydrostatic model that can solve the numerical simulations for atmospheric processes55. It is widely 
used for dynamic downscaling and atmospheric simulations. WRF consists mainly two parts, the dynamical core 
and parameterizations. The parameterizations have multiple schemes that vary in their complexity, applicability, 
performance, and computational cost.

Figure 1.   Beas basin with basin boundary, underlaid by Digital Elevation Model (SRTM 90 m). The highest and 
lowest elevation within the basin boundary is approximately 6545 masl and 826 masl, respectively. The sky blue 
region represents the glaciers in the domain. Glaciers in this region cover approximately 12.6% area. This figure 
is produced using the student trial version of ArcGIS Pro Version 2.8, provided by ESRI (URL to access: https://​
www.​esri.​com/​en-​us/​arcgis/​produ​cts/​arcgis-​pro/​trial).

https://www.esri.com/en-us/arcgis/products/arcgis-pro/trial
https://www.esri.com/en-us/arcgis/products/arcgis-pro/trial
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Model configuration and setup.  WRF with three nested domains was set up, the outer-most covers the 
whole Himalaya, the middle covers whole of the North-West ranges of Himalaya, and the inner-most concen-
trate over the study area (Fig. S1). The outer (d01) domain was defined at a grid size of 25 km with 184 grid 
points in the west–east and 165 grid points in the south–north. The middle (d02) domain, covering 174 grid 
points in the west–east direction and 153 grid points in the south–north direction, was defined at 10 km. The 
inner (d03) domain was defined with 3 km of grid size covering 72 grid points in the west–east direction and 75 
grid points in the south–north direction. The vertical column was divided into 39 levels. The vertical layers are 
the vertical coordinates in the WRF modelling system.

The initial and lateral boundary conditions were initialized using ERA-Interim (ERA-I) data by European 
Centre for Medium-Range Weather Forecasts (ECMWF) that has been customized and availed by National Cen-
tre for Atmospheric Research (NCAR) (ds627.0|DOI: https://​doi.​org/​10.​5065/​D6CR5​RD9). Model was initialized 
with the conditions of 01 October 2002 and ran until 01 January 2004. All three domains were initialized with 
initial conditions, having boundary condition updation for only d01 at an interval of 06 h. Domains d02 and 
d03 obtained the boundary values from d01 in a fashion of 2-way interactions. The timeframe of simulations 
was selected based on the hydrological data availability since the output obtained from WRF needed to fed a 
hydrological model to compare simulated discharge against observed.

Table 1 describes the various options used in this study for physical parameterizations and other model 
attributes. We chose RRTM for the longwave radiation scheme and Dudhia to parameterize shortwave radiation. 
The Noah-MP land surface model was used for the land surface processes and land–atmosphere interactions. 
Sea Surface Temperature (SST) was updated every 6-h interval, obtained from ERA-I. Also, adaptive time-
stepping was activated to avoid the Courant–Friedrichs–Lewy (CFL) condition failure that is often inevitable 
for extended simulations, especially in regions like this (highly varied topography). The topography data was 
obtained from USGS.

We used three microphysics schemes, MP356, MP857, and WSM658, and two convection schemes, KF59 and 
BMJ60, to perform six experiments. These options were selected not just based on their performance reported in 
the literature but also to accommodate the heterogeneity in terms of their complexity, inter-phase conversion pro-
cess, particle distribution, profile adjustment method, convection trigger function, and other important factors.

Microphysics schemes.  MP3 is a single-moment bulk-microphysics scheme that divides water content 
into three hydrometeors: water vapor, cloud water/ice, and rain/snow. This scheme is simpler and requires fewer 
computational resources, making it a good choice for climatic simulations. The ice number concentration is 
assumed to be a function of temperature, while ice crystal number concentration is assumed to be a function 
of ice.

WSM6 is a single-moment bulk-microphysics scheme that can predict the mixed-phase amount of hydro-
meteors. This scheme divides the mixing of different phases into six variables water vapor, cloud water, cloud 
ice, snow, rain, and graupel. Snow number concentration is a function of temperature, however total number 
concentration is a constant. The distribution of particles is assumed to be an exponential.

MP8 is a double-moment bulk-microphysics scheme that uses six hydrometeors to predict mixed-phase 
interconversions. Snow number concentration is a function of temperature, while graupels are assumed to be a 
function of total mass and size distribution parameters. Rain and ice number concentration are prognostic and 
calculated during the mixing phase.

Cumulus schemes.  The Kain–Fritsch (KF) is a deep and shallow convection scheme. This mass flux scheme 
relaxes the environment through downdraft and CAPE removal. This scheme can incorporate small-scale con-
vection processes to initiate the convection and develop further into deep convection. It is sensitive to the vertical 
updraft. It includes cloud, rain, ice, and snow detrainment with cloud persistence over a convective time scale61.

Table 1.   List of WRF options used in this study.

Model attributes Options used

Solver ARW​

Number of domains (grid spacing) 3; d01 (30 km); d02 (10 km); d03 (3 km)
2-way nesting

Microphysics scheme MP3, MP8 and WSM6

Convection scheme Kain–Fritsch and BMJ

Longwave radiation scheme RRTM

Shortwave radiation scheme Dudhia

Planetary boundary layer YSU

Land surface Noah MP

Surface layer option Monin–Obukhov Similarity scheme

SST (update frequency) ERA-Interim (6-hourly)

Adaptive time step True

Number of land categories 24

https://doi.org/10.5065/D6CR5RD9
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The BMJ scheme is a profile adjustment scheme based on climatological vertical moisture profiles for different 
environments. It has deep and shallow convective profiles with no explicit updraft or downdraft and no cloud 
detrainment. This scheme is sensitive towards the available moisture into the vertical profiles.

Observation datasets.  This region has sparse data availability making model verification a difficult and 
challenging task62. We performed intercomparison of a few available gridded datasets and observations. We 
obtained gridded products from various sources as reference dataset such as TRMM, APHRODITE, CHIRPS, 
GPCP, PERSIANN-CDR, IMD, and CPC (Table 2). Firstly, we checked the validity and applicability of these 
datasets in this region with available observation (IMD: Indian Meteorological Department) and other literature 
reports. After picking up the most pertinent observation over this region, we compared the formulated experi-
ments’ outcome with the observation. Furthermore, the in-situ observed precipitation data (7 locations) was 
also used to assess the accuracy of these experiments in terms of distribution reproducibility, however at a given 
location.

We compared the performance of six experiments, a combination of three microphysics and two convec-
tion schemes (MP3 and KF, MP3 and BMJ, MP8 and KF, MP8 and BMJ, WSM6 and KF, WSM6 and BMJ. 
These experiments will be referred as MP3_KF, MP3_BMJ, MP8_KF, MP8_BMJ, WSM6_KF, and WSM6_BMJ 
hereafter). Apart from microphysics and convection, the rest of configurations remained similar throughout 
these experiments. In the next section (section “Results”), we will describe the results, followed by discussion 
(section “Discussion and conclusion”), and conclusion. The quantile-to-quantile mapping was used to assess 

Table 2.   List of observation datasets used in this study.

Dataset Gridsize

IMD 0.25 × 0.25

TRMM 0.25 × 0.25

Aphrodite 0.25 × 0.25

Chirps 0.5 × 0.5

GPCP 2.5 × 2.5

PERSIANN-CDR 0.25 × 0.25

CRU​ 0.5 × 0.5

CPC 0.5 × 0.5

Table 3.   Performance metrics for ANN of the simulations with observation.

WSM6_KF WSM6_BMJ MP8_KF MP8_BMJ MP3_KF MP3_BMJ MP8KF_WSM6
MP8BMJ_
WSM6

M 0.23 0.25 0.26 0.3 0.23 0.25 0.28 0.30

R(Pearson) 0.37 0.44 0.39 0.5 0.37 0.4 0.44 0.50

R(Spearman) 0.53 0.6 0.55 0.64 0.54 0.56 0.61 0.64

(MB)R 0.22 0.28 0.28 0.34 0.22 0.24 0.31 0.33

ME 1.13 1.99 − 0.11 1.53 0.34 0.71 0.95 1.77

RMSE 10.27 10.83 8 9.55 9.25 9.73 8.88 9.48

KGE(2009) 0.14 − 0.04 0.39 0.15 0.3 0.24 0.3 0.13

KGE(2012) 0.28 0.18 0.39 0.32 0.34 0.34 0.37 0.27

Table 4.   Performance metrics for DJF of the simulations with observation.

WSM6_KF WSM6_BMJ MP8_KF MP8_BMJ MP3_KF MP3_BMJ MP8KF_WSM6
MP8BMJ_
WSM6

M 0.3 0.29 0.33 0.37 0.34 0.35 0.35 0.35

R(Pearson) 0.77 0.76 0.65 0.78 0.75 0.79 0.76 0.8

R(Spearman) 0.58 0.55 0.55 0.57 0.52 0.57 0.51 0.49

(MB)R 0.28 0.28 0.34 0.36 0.32 0.35 0.38 0.36

ME 4.68 4.48 2.88 3.03 3.38 3.2 3.296 3.52

RMSE 12.66 13.43 9.26 9.66 10.39 10.73 10.64 11.42

KGE(2009) − 2.23 − 2.23 − 0.98 − 1.19 − 1.4 − 1.4 − 1.39 − 1.61

KGE(2012) − 1.69 − 1.57 − 0.7 − 0.75 − 0.96 − 0.84 − 0.93 − 1.054
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the precipitation distribution for the simulations. Tables 3, 4, 5 enlists the various accuracy metrics related to 
agreement, correlation, error, and efficiency indices. These metrics were estimated to investigate the consistency 
of the simulation’s performance. Taylor diagram was used to show the skill score of the simulated precipitation 
against observation. It also included the normalized standard deviation and correlation (both, pattern correla-
tion and temporal correlation).

Results
Observation precipitation data.  Figure 2 shows the total annual precipitation in domain d03 during 
2003 for various observational datasets, including IMD, TRMM, APHRODITE, CHIRPS, GPCP, PERSIANN-
CDR, CRU, and CPC. APHRODITE showed the higher precipitation along the diagonal (south–east to north–
west) of the region, which is eventually the Himalayan foothills (Fig. 2b) and often receives higher rainfall due 
to steep topographical barrier. These foothills receive precipitation primarily through Indian Summer Monsson 
(ISM)  that eventually dominates the annual cycle (ANN). Consequently, a similar precipitation pattern was 
found for JJAS (Supplementary Fig. S2). TRMM also showed a similar pattern (higher diagonal precipitation) 
but a relatively broader feature for both ANN and JJAS (Fig. 2c and Supplementary Fig. S2c). PERSIANN-CDR 
showed a much weaker pattern along these foothills and failed to show these patterns, shown by APHRODITE 
and TRMM (Fig. 2b–d and Supplementary Fig. S2b–d). CHIRPS, CRU, GPCP, and CPC are wholly failed to 
show these precipitation features for ANN and JJAS (Fig. 2e–h and Supplementary Fig. S2e–h). CHIRPS, CRU, 
GPCP, and CPC are available at relatively coarser (0.5°) resolution that could be one reason behind these data-
sets’ failure to show this precipitation features.

This region receives precipitation during winter (DJF), mostly in the form of snow and falls over higher peaks 
and ridges. TRMM showed higher precipitation during DJF over the higher elevation and ridges (Supplementary 

Table 5.   Performance metrics for JJAS of the simulations with observation.

WSM6_KF WSM6_BMJ MP8_KF MP8_BMJ MP3_KF MP3_BMJ MP8KF_WSM6
MP8BMJ_
WSM6

M 0.12 0.21 0.19 0.2 0.06 0.12 0.22 0.24

R(Pearson) 0.27 0.33 0.45 0.32 0.12 0.24 0.43 0.36

R(Spearman) 0.47 0.49 0.45 0.48 0.37 0.33 0.48 0.48

(MB)R 0.14 0.24 0.2 0.24 0.08 0.15 0.23 0.27

ME − 3.83 − 1.19 − 3.95 1.19 − 4.35 − 3.78 − 2.56 − 0.000418

RMSE 9.76 9.66 9.08 12.94 10.56 10.18 8.69 10.22

KGE(2009) − 0.06 0.28 0.04 0.21 − 0.2 − 0.03 0.18 0.36

KGE(2012) 0.08 0.31 0.2 0.28 − 0.11 0.02 0.31 0.36

Figure 2.   Total annual precipitation (for domain d03) during 2003 for (a) IMD, (b) APHRODITE, (c) TRMM, 
(d) PERSIANN-CDR, (e) CPC, (f) CHIRPS, (g) CRU and (h) GPCP.
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Fig. S3c). PERSIANN-CDR also showed this pattern but relatively weaker than TRMM (Supplementary 
Fig. S3c,d). APHRODITE also showed relatively weaker winter-time precipitation compared to TRMM and PER-
SIANN-CDR in the regions of higher elevation, especially the ridges of Beas basin (Supplementary Fig. S3b–d). 
CHIRPS, CRU, GPCP, and CPC are failed to show any pattern for DJF precipitation (Supplementary Fig. S3e–h). 
Considering these outcomes, we chose to reject CHIRPS, CRU, GPCP, and CPC as reference datasets as they 
failed to show any dominant precipitation features of ANN, JJAS, and DJF. We also inspected the gridded data 
from the Indian Meteorological Department (IMD) which is produced for the entire Indian region using 6955 
observational stations63,64. However, we did not find any pattern at all for ANN, JJAS (over the Himalayan foot-
hills), or DJF (over the higher peaks and ridges) (Fig. 2a, Supplementary Figs. S2a and S3a). IMD interpolated 
the sampled points for the entire Indian region. However, lack of sufficient observation points over the higher 
elevations could warrant the deterioration of the product’s quality for the Himalayan region. The Himalayan 
region stations are located mostly in valleys and lower elevations and not in the higher elevations that are a 
flashpoint of high precipitation during winter.

Going forward, we could rely on TRMM or APHRODITE for reliable observations among selected data-
sets because of their relatively better performance. However, TRMM seems to be underestimating the precipita-
tion compared to the APHRODITE (Fig. 2b,c) over some region in the south–east of the domain d03 and north 
of the Beas basin. TRMM also reported underestimating extreme and heavy precipitation events65,66 over the 
Himalayan region. At the same time, APHRODITE is reported to perform well over the Himalayan region67. 
APHRODITE is also reported to be well representing the temporal variations in precipitation68. The dependence 
on APHRODITE dataset for reliable observation is increasing rapidly, especially in the Himalayan region23,68–70. 
Mishra et al. also relied on APHRODITE for observation in Himalaya and Tibbet highlands to assess this region’s 
climatic change71. In line with the trend, we have also relied on APHRODITE for observation in this study, 
thereby further analysis will show only APHRODITE data as a reference dataset.

Lastly, we have compared the in-situ station observed precipitation with the gridded observation for stations 
named Banjar, Bhuntar, Janjheli, Larji, Manali, Pandoh, and Sainj. The Q–Q plot between in-situ observation and 
gridded observation (shown in Fig. 3) suggests that APHRODITE, TRMM, CPC, and IMD have precipitation 
distribution more closer to the in-situ observation than the rest of the gridded observation. However, CPC and 
TRMM has poorer correlation than APHRODITE and IMD. The correlation coefficients for APHRODITE and 
IMD are closer but spatial variability and precipitation distribution suggest APHRODITE to be a better choice.

Cumulus and microphysics sensitivity.  Total precipitation for 2003 during ANN (Fig. 4), JJAS (Sup-
plementary Fig. S5), and DJF (Supplementary Fig. S4) are shown along with the observation data from APH-
RODITE (APHRO hereafter). Figure 4, and Supplementary Figs. S4 and S5 show WRF simulated precipitation 
using a different combination of cumulus and microphysics scheme (six in total) named as MP3_KF, MP3_BMJ, 
MP8_KF, MP8_BMJ, WSM6_KF, and WSM6_BMJ.

Annual precipitation.  Figure 4 depicts total annual precipitation for all six experiments along with observation 
APHRO. The diagonal precipitation feature along the Himalayan foothills (near to basin terminal) is underesti-
mated by four (MP3_KF, MP3_BMJ, MP8_KF, and WSM6_KF) out of six experiments. Only WSM6_BMJ and 
MP8_BMJ were able to show a considerable amount of precipitation along these regions. Observation showed 
the highest precipitation at the south–east end of this diagonal  feature, captured well by all the experiments 
being WSM6_BMJ highest and MP8_KF the lowest. However, all six experiments showed a higher amount of 
precipitation in the upstreams region; the peaks and ridges of the High mountains in North-Western Himalaya. 
Though these features are missing in the observation but it is well known that almost each gridded observation 
underestimate the winter precipitation in the Himalayan region, however, due to lack of sufficient information, 
we relied on the dataset widely accepted and reported as reasonable in this region.

The average daily precipitation of APHRO for the Beas basin is 3.4 mm day−1. MP8_KF (3.3 mm day−1) 
showed the best match to the daily average, followed by MP3_KF (3.7 mm day−1). Rest of the experiments shown 
an overestimation of the daily average value, being highest for WSM6_BMJ (5.4 mm day−1). We also found a 
similar observation in quantile to quantile distribution plot (Q–Q plot) that MP8_KF is the best match to the 
observation’s precipitation distribution (Fig. 5). The rest of the experiment showed a significant overestimation 
of the observation (Fig. 5). The null hypothesis of significance test (that mean of observation-experiment pair 
are equal) fails to reject the hypothesis (p > 0.05) for WSM6_KF, MP8_KF, MP3_KF, and MP3_BMJ that showed 
non-distinctiveness of values for these simulations in comparison to the observation, however, based on p-value 
and t-value MP8_KF was the most correlated with the observation and turned out to be the best choice for ANN 
(results are aligned with Li et al., 2017)23; followed by MP3_KF.

DJF precipitation.  Most of the precipitation received at high peaks/ridges occurred during winter (DJF), mostly 
in the form of solid precipitation (Supplementary Fig. S4). Unfortunately, none of the observations could cap-
ture this precipitation pattern at all. Hence, it is quite challenging to say about these experiments’ validity and 
accuracy for winter-time precipitation. The precipitation during DJF at high peaks happens due to WDs. The 
sudden rise of eastward winds from far west over lofty peaks causes a high downfall of solid precipitation. This 
orographic induced precipitation is wholly missed in observations due to the lack of observation sites at these 
remote and high-altitude locations.

WSM6_KF (~ 6.4 mm day−1) and WSM6_BMJ (~ 6.2 mm day−1) were found to have maximum precipitation, 
however, MP8_KF, MP3_BMJ, and MP8_BMJ showed relatively lesser precipitation. MP8_KF (4.6 mm day−1) has 
the average value closer (than rest of the experiments) to the observation (1.75 mm day−1), though overestimated 
by a large amount (also evident in precipitation times series in Fig. 6). Furthermore, the Q–Q plot shows that 
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winter precipitation distribution is highly overestimated by all six experiments (Fig. 5b). MP8_KF is the best 
choice out of these experiments that have frequency distribution not as skewed as others. However, there is no 
significant correlation found between the experiments and observation.

JJAS precipitation.  Supplementary Fig. S5 depicts the total precipitation during JJAS for all six experiments, 
along with observation (APHRO). APHRO shows the higher precipitation in the downstream regions (Sup-
plementary Fig. S5a) that is poorly constructed in WSM6_KF, MP3_KF, MP8_KF, and MP3_BMJ. However, 
WSM6_BMJ and MP8_BMJ were found to show some pattern in the downstream regions, similar to the obser-
vation. The precipitation during JJAS is underestimated by all the simulations, except MP8_BMJ that overesti-
mated slightly. The JJAS precipitation has fallen mostly over the foothills and plains just before the ramped up 
topography. The topography induced updraft could have fallen the mass in their way over these hills due to rapid 
changes in the parcel’s thermodynamic characteristics before it could overcome these hills to precipitate the 

Figure 3.   Quantile–Quantile plot (Q–Q plot) between WRF simulated precipitation and APHRODITE for 
2003. WRF simulated experiments (WSM6_KF, WSM6_BMJ, MP8_KF, MP8_BMJ, MP3_KF, and MP3_BMJ) 
are plotted against Aphrodite precipitation for ANN (a), DJF (b), and JJAS (c). The blue dots are quantile to 
quantile plot, whereas green dots are scatter plot. Red line is the regression line corresponding to the quantile–
quantile plot. Black line is the reference line.
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moisture beyond. The reason is that windward slopes and higher peaks in this region received higher precipita-
tion compared to leeward slopes.

Four (MP3_KF, MP3_BMJ, MP8_KF, WSM6_KF) out of six experiments failed to show the precipitation 
features in downstream foot-hills at the basin terminal and windward slopes of high peaks, therefore showed an 
average precipitation of ~ 3 mm day−1 which is much lower in comparison to APHRO (~ 7 mm day−1). However, 
WSM6_BMJ (~ 5.6 mm day−1) and MP8_BMJ (~ 8 mm day−1) were relatively closer to the APHRO than others. 
The Q–Q plot also suggests WSM6_BMJ slightly underestimated but better than the rest, followed by MP8_BMJ 
that showed slight overestimation (Supplementary Fig. S5g). Since WSM6_BMJ is slightly underestimating and 
MP8_BMJ is slightly overestimating, we used these two experiments and found that the ensemble of these two 
matches well with the APHRO than these experiments individually.

Accuracy and goodness of fit (GoF).  Figure 7 shows the Taylor diagram with spatial (Fig. 7a,c,e) and 
temporal correlation (Fig. 7b,d,f) for ANN (Fig. 7a,b), JJAS (Fig. 7c,d), and DJF (Fig. 7e,f) precipitation. These 
diagrams show normalized standard deviation on the x-axis and y-axis, a correlation on the arc, and skill con-
tours inside. For ANN, WSM6_BMJ was found to have minimum standard deviation and higher correlation 
(pattern correlation), and a high skill score for precipitation pattern. Therefore, WSM6_BMJ turned out to have 
best match with the observed precipitation pattern. The ensemble of WSM6_BMJ and MP8_BMJ has a little 
higher correlation along with slightly higher standard deviation. Concurrently, considering the temporal cor-
relation, MP8_KF was the best choice as lying on the line of reference standard deviation. However, few experi-
ments (including ensembles) showed a slightly higher correlation than MP8_KF but have higher normalized 
standard deviation, that makes them less favorable choices.

For DJF, MP8_KF was found to have the least normalized standard deviation, along with a higher skill score 
than most of the experiments, however, with weak correlation (pattern as well as temporal) in comparison to 
others. Overall, MP8_KF could be considered reasonable because of its lesser deviation and better skill score. 
For JJAS, WSM6_BMJ showed the highest pattern correlation and skill score, along with the least normal-
ized standard deviation. The ensemble of MP8_BMJ and WSM6_BMJ followed WSM6_BMJ closely. However, 
Ensemble of MP8_BMJ and WSM6_BMJ was the best choice considering the temporal correlation, followed by 
WSM6_BMJ and then MP8_BMJ.

Tables 3, 4, 5 enlists some statistical measures, including error and efficiency coefficients that confirm the 
previous observations drawn from the Taylor diagram. MP8_KF was found to have significantly lesser ME and 
RMSE for both ANN and DJF. KGE (2009) and KGE (2012) were also slightly on the higher side than others 
in the case of MP8_KF. For JJAS, ME was least for WSM6_BMJ and RMSE for MP8_KF (closely followed by 
WSM6_BMJ and WSM6_KF), excluding ensembles. However, KGE (2009) and KGE (2012) showed the highest 
efficiency for WSM6_BMJ except for the ensemble of MP8_BMJ and WSM6_BMJ.

Therefore, we have observed that MP8_KF was performing well for the DJF as well as ANN for temporal 
variability. However, WSM6_BMJ was found to be performing well for JJAS. We have also found the suitability 
of MP8_KF to produce precipitation in this region23 in the literature. To understand the contradiction over the 

Figure 4.   (a) Annual mean observed precipitation from APHRODITE. WRF simulated annual mean 
precipitation over d03 during 2003: (b) WSM6_KF, (c) MP3_KF, (d) MP8_KF, (e) WSM6_BMJ, (f) MP3_BMJ, 
and (g) MP8_BMJ. The red color numbers at the right top corner is the areal-temporal average precipitation in 
mm/day.
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Figure 5.   Quantile Quantile plot (Q–Q plot) between WRF simulated precipitation and Aphrodite for 2003. 
The WRF simulated experiments (WSM6_KF, WSM6_BMJ, MP8_KF, MP8_BMJ, MP3_KF, and MP3_BMJ) are 
plotted against Aphrodite precipitation for ANN (a), DJF (b), and JJAS (c). The blue dots are quantile to quantile 
plot, whereas green dots are scatter plot. Red line is the regression line corresponding to the quantile–quantile 
plot. Black line is the reference line.
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JJAS period, we will further discuss the results for JJAS and find out the possible causes for the different sensitiv-
ity over the JJAS period.

Discussion and conclusion
We further discussed results for JJAS only because of two reasons. Firstly the observation is more reliable for JJAS 
than DJF. Secondly, we tried to explore the reasoning behind the performance of WSM6_BMJ for JJAS compared 
to MP8_KF, provided that MP8_KF was considered the best set for ANN and DJF.

Cumulus parameterization.  The inner-most domain is at a convection-permitting scale; hence convec-
tion is assumably resolved. Therefore, the explicit cumulus parameterization is off for d03. However, the outer 
(d01) and middle (d02) domains are parameterized using KF and BMJ convection schemes. We found that KF 
was working well for DJF and ANN with MP8 microphysics. However, BMJ was found to be most suitable with 
the WSM6 microphysics scheme for JJAS.

Convective parameterization scheme must include three important characteristics, i.e., trigger function, clo-
sure assumption, and vertical distribution. The different definitions of these characteristics in various schemes 
lead to a different outcome for convective systems. BMJ is categorized as a convective adjustment scheme as it 
relaxes the temperature and moisture profiles instantaneously if a column has instability and sufficient resolved 
vertical motion. Thereby the BMJ scheme is sensitive to the available moisture in the atmosphere. The instability 
is removed by adjusting these profiles (temperature and moisture) towards empirically derived climatological 
reference profiles. BMJ also allow this reference profile to vary for the different convective environment (cloud 
efficient parameter). BMJ also parameterizes the effects of shallow convection.

KF is a mass flux, low-level control convective scheme that describes deep and shallow convection with 
downdraft and a Convective Available Potential Energy (CAPE) removal timescale72,73 ⁠ ⁠ ⁠(Strensud 2009). Its trig-
ger function is based on the grid resolved large-scale vertical motion (to overcome the cap) as it follows parcel 
theory that says a parcel must be lifted to its level of free convection for deep convective systems to develop. 
Thereby, the KF scheme is sensitive to the updraft to remove the water vapor from the atmosphere to achieve 
stability. KF is also sensitive to the lapse rate in the lower half of the cloud layer.

The moisture in the atmosphere and strong vertical updraft leads to instability. To understand the instability 
in the atmosphere, CAPE, Lifted Condensation Level (LCL), and Level of Free Convection (LFC) is computed 
(shown in Fig. 8) for domain d02 over the area overlapping with d03. We found that BMJ has relatively higher 
CAPE at 550 hPa than KF (Fig. 8c,d) along with more convective activity at these levels, however, KF was found 
to have higher CAPE in upper levels. Figure 8a,b shows the CAPE values and their distribution for all grids in 
d02 overlapping with d03. KF was found to have relatively higher deep convective events in comparison to BMJ, 
however, LCL and LFC are also high for KF. Higher CAPE, in general, relates to the high instability in the atmos-
phere that may produce a higher amount of convective rain. The lower LCL and LFC are also other parameters 
to indicate the order of instability in the atmosphere. Lower LCL means lower buoyancy is required to uplift the 
bubble to initiate the convection process. Lower LFC indicates the lower cloud base. Therefore, lower LCL and 
LFC, along with higher CAPE, should easily overcome the thermodynamical barrier to develop deep convection.

We found BMJ to have lower LCL and LFC, which means it has a lower cloud base, and less buoyancy is 
required for the convective process. BMJ was also found to have slightly higher Spatio-temporal average verti-
cal velocity at middle levels (Fig. 9). However, KF has relatively higher LCL and LFC, lesser CAPE, and lesser 
Spatio-temporal average vertical velocity at middle levels. Moreover, we found KF to have higher CAPE in higher 
levels (Supplementary Fig. S9). These observations certainly denote a higher order of instability leading to the 
convection process in BMJ at middle levels. KF and BMJ both have high LFC for some points that are reaching 
the model top (Fig. 8e). Probably it is just showing the no convective activity over particular grids at a particular 
time. KF has a relatively higher number of such points denoting the lesser convective activity. However, KF has 
higher CAPE at upper levels, probably referring to the lesser in number but more deep convective events. KF 
scheme is susceptible towards the vertical motion and lapse rate specifically.

In the mountainous regions like Himalaya, air parcel is lifted due to the steep uprising slopes that change 
the parcel thermodynamics because of change in temperature due to lapse rate and mass exchange with the 
environment. Hence, quickly develop the convection and precipitate over the down slopes. These convective 
events may transform into deep convection if moisture-laden winds uprisen from steep hills with considerably 
high speed. The topographical barrier induced convection process in KF falls the most of the moisture over the 

Figure 6.   The daily precipitation for year 2003 for Aphrodite and two out of six WRF experiments (MP8_KF 
and WSM6_BMJ). x-axis shows days from January to December and y-axis shows amount of precipitation.
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Figure 7.   Taylor plots using spatial (a,c,e) and temporal correlation (b,d,f) between WRF experiments 
(WSM6_KF, WSM6_BMJ, MP8_KF, MP8_BMJ, MP3_KF, and MP3_BMJ) and Aphrodite precipitation for 2003. 
Taylor plots are showing correlation, normalized standard deviation, and contours as skill score for ANN (a,b), 
DJF (c,d), and JJAS (e,f).
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southward slopes of Himalaya, resulting in intense convective precipitation. The strong formation and downfall 
of convection often result in dislocated overestimated precipitation74. This is consistent with our results for d02 
(shown in Supplementary Figs. S10 and S11). Supplementary Figures S10 and S11 showed that most of the con-
vective precipitation concentrated over the southward slopes of the Himalayas for KF. On the contrary, BMJ has 
more of a distributed pattern. One of the reasons could be the higher vertical wind in BMJ. The higher vertical 
wind could have helped parcels overcome some of the higher peaks and precipitate the moisture towards the 
plateau and northern slopes. We also found that KF has poor pattern correlation (indicates dislocated precipi-
tation) and considerably underestimated the observation. BMJ has a relatively higher pattern correlation and 
underestimated/overestimated the precipitation slightly. Despite having higher area-averaged precipitation, KF 
underestimated the JJAS precipitation for the basin, probably because of the intense dislocated precipitation with 

Figure 8.   The maximum available CAPE for each gridpoint over d03, subsetted with d02, for MP8_BMJ, MP8_
KF, WSM6_BMJ, and WSM6_KF (a–d). (a) Shows maximum CAPE over all vertical levels, for each gridpoint 
and timesteps. (b) Shows CDF for the values shown in (a). (c) Shows shows maximum CAPE at 550 hPa vertical 
level, for each gridpoint and timesteps. (d) Shows CDF for the values shown in (c). (e) Shows LFC and (f) shows 
LFL over each gridpoint and each timestep for these experiments.
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KF (Consistent with Ratna et al.)74 along the Himalayan hills. Therefore, BMJ was found to have simulated the 
convective processes more reliably than KF over the study region.

We also found that BMJ has a relatively moist profile than KF, probably because of the key difference in their 
convection trigger. BMJ triggers convection when it has adequate moist sounding, however, KF activates convec-
tion if it has sufficient grid resolved vertical motion, in addition to their common trigger factors of CAPE and 
convective cloud depth threshold. The little push required to overcome the cap in KF could be achieved through 
orographic uplift and hence develops strong convective activities that fall some of the moisture immediately to 
relax the instability. The excess downfall due to these over-convective activities remove sufficient moisture from 
the atmosphere, and less moisture is available to pass on to the model dynamics for advection. BMJ requires 
sufficiently high moist sounding to activate convection that makes the moisture available in the atmosphere to 
pass on before it reaches the threshold and adjusted to the reference profile. BMJ also lacks evaporative downdraft 
cooling, however, KF emulates this process along with the multiple vertical levels. This downdraft cooling adds 
to the moisture removal process in KF from lower clouds and lower levels.

Microphysics.  The superior performance of MP8_KF for ANN aligns with Li et al. that say MP8 performs 
superior to the relatively simpler MP3 scheme23. However, the performance of different set of cumulus and 
microphysics schemes for summer and winter precipitation is an essential information, especially when working 
with hydrological or agricultural applications. For further investigation of seasonal dependence, we investigated 
the lateral boundary conditions (LBC) for domain d03. We analyzed the vertical cross-section (of MP8_KF, 
MP8_BMJ, WSM6_KF, and WSM6_BMJ) of d02 at the boundaries of d03. The idea is to look for the mete-
orological conditions that are fed to d03 through d02. Figure 10 shows that d03 received more water vapor for 
WSM6_BMJ than others (except some lower levels of MP8_BMJ) from all four lateral boundaries during JJAS.

Figure 9.   The areal and temporal averaged U (b,e), V (c,f), and W (a,d) wind components varying with vertical 
levels. These averaged wind components over vertical levels are shown for WRF experiments; MP8_BMJ, MP8_
KF, WSM6_BMJ, and WSM6_KF.



15

Vol.:(0123456789)

Scientific Reports |         (2023) 13:4756  | https://doi.org/10.1038/s41598-023-31353-w

www.nature.com/scientificreports/

Figure 10.   The JJAS-averaged vertical cross section of QVAPOR mixing ratio for d02 at d03 boundaries. Gray 
shaded area shows mountains. (a–d) shows actual average mixing ratio for WSM6_BMJ at east (a), west (b), 
north (c), and south (d) boundaries. Further, mixing ratio is shown for MP8_BMJ–WSM6_BMJ (e–h), MP8_
KF–WSM6_BMJ (i–l), and WSM6_KF–WSM6_BMJ (m–p) for vertical cross section of east (e,i,m), west (f,j,n), 
north (g,k,o), and south (h,l,p) boundaries.

Figure 11.   The JJAS-averaged vertical cross section of relative humidity for d02 at d03 boundaries. Gray shaded 
area shows mountains. (a–d) shows actual average mixing ratio for WSM6_BMJ at east (a), west (b), north (c), 
and south (d) boundaries. Further, mixing ratio is shown for MP8_BMJ–WSM6_BMJ (e–h), MP8_KF–WSM6_
BMJ (i–l), and WSM6_KF–WSM6_BMJ (m–p) for vertical cross section of east (e,i,m), west (f,j,n), north 
(g,k,o), and south (h,l,p) boundaries.
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Similarly, relative humidity is also found to be higher for WSM6_BMJ (Fig. 11). MP8_KF received lesser 
water vapor and relative humidity from its boundaries in comparison to WSM6_BMJ (Figs. 10i-l and 11i-l). It 
could have led WSM6_BMJ to have relatively more water vapor in vertical levels in d03. Higher mixing of water 
vapor leads to the higher relative humidity in d03 and have relatively moist profile that helps BMJ to develop 
the convection.

BMJ and KF have different mechanisms to redistribute the moisture and thermal profile, resulting in different 
convective profiles. The different convective profiles can produce hydrometeor’s concentration that is not the 
same, even when it passes on to the same microphysics scheme. These different mixing profiles lead to different 
precipitation patterns.

We have looked into the area-averaged mixing ratio of hydrometeors produced under these four experiments 
(MP8_KF, MP8_BMJ, WSM6_KF, and WSM6_BMJ) for domain d02 and d03. Figure 12 shows the area-averaged 
simulated radar reflectivity (dbz), water vapor mixing ratio (QVAPOR), rainwater mixing ratio (QRAIN), snow 
mixing ratio (QSNOW), ice mixing ratio (QICE), graupel mixing ratio (QGRAUP), cloud water mixing ratio 
(QCLOUD) and relative humidity (rh) for d03. The same for d02 is shown in Supplementary Fig. S8. We did 
not found much difference in the pattern of mixing ratio for d02 and d03 except dbz. Warm and cold rain pro-
cesses mostly parameterize the estimation of these hydrometeors’ mixing ratio production rate in WSM6 and 
MP8 bulk microphysics schemes. WSM6 is a single moment while MP8 is a double moment that means WSM6 

Figure 12.   Area-averaged mixing ratio (dbz, QVAPOR, QRAIN, QICE, QGRAUP, and QCLOUD) over d03. 
Mixing ratios are shown as they varying over model levels with time for MP8_KF, MP8_BMJ, WSM6_KF, and 
WSM6_BMJ. The unit of mixing ratio is g/kg.
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has a prognostic equation for mass mixing ratio, but MP8 has a number concentration definition in addition to 
the mass mixing ratio. The definition of number concentration is important for the hydrometeor distribution. 
In WSM6, number concentration is defined by the process that is responsible for producing the mixing ratio. 
However, MP8 assumes generalized gamma distribution for cloud water. The different approach to parameterize 
the microphysical processes and different values to the parameters is responsible for the different production of 
different hydrometeors, given the similar mass. During early cumulus formation, only warm rain processes are 
involved with condensation as a dominant process75 and produce cloud water with almost similar mass produc-
tion rates. However, even the similar cloud water (obtained from a similar convection profile) lead to dissimilar 
cloud water distribution because of their different distributions for total number concentration.

The domain d02 passes on different moisture profile to d03, as we have noticed that BMJ has higher water 
vapor and relative humidity in d02. The higher water content and relative humidity lead to more cloud water 
droplet formation in d03 for BMJ. Since cloud water distribution is not similar in WSM6 and MP8, so even similar 
mass production does not lead to the same amount of cloud water droplets because WSM6 and MP8 have dif-
ferent distributions for total number concentration. In d03, MP8_KF/MP8_BMJ and WSM6_KF/WSM6_BMJ 
have different cloud water mixing profiles (Fig. 12) despite having similar microphysical processes because of 
the compound effects from the previous domain. These cloud water droplets interact with each other through 
collision and coalesce to produce rainwater (autoconversion), hence a larger number of the cloud water droplets 
produces more rainwater, as we found for MP8_BMJ and WSM6_ BMJ (Fig. 12). Therefore, for the warm rain 
processes, the convection scheme seems to be more sensitive to the liquid hydrometeor’s production rate as we 
found that BMJ has more cloud water droplets leading to a higher rainwater production rate.

Unlike warm rain processes, cold rain processes seem to be more sensitive to the specific microphysics scheme 
(Fig. 12) for solid hydrometeor’s production rate. The formation of snow, ice, and graupel is significantly different 
in MP8_KF/MP8_BMJ and WSM6_KF/WSM6_BMJ. Cloud ice formation occurs from cloud water when reach-
ing below freezing point. It started with cloud ice nucleation and is followed by deposition and homogeneous 
freezing of cloud water. Ice nucleation is a major contributor in WSM6 to produce cloud ice but not in MP875. 
The graupel and snow form from ice through the autoconversion process. The different autoconversion process in 
MP8 and WSM6 leads to higher snow mixing in MP8 while high mixing of graupel in WSM6 (Fig. 12). However, 
cloud ice is significantly higher in WSM6 than MP8 due to the difference in their production/reduction rate 
calculation (Fig. 12). Since WSM6 is a single moment scheme, the number concentration of cloud ice is signifi-
cantly different from that of MP8 and is a function of the cloud ice mixing ratio. Also, the snow versus ice particle 
size threshold is very important for the cold phase conversion process. WSM6 has a threshold value of 500 μm 
while MP8 has this threshold of about 150 μm. The very high threshold of WSM6 (compared to MP8) allows this 
scheme to develop considerably large ice particles. Snow can be removed by the rain collecting snow, melting 
process, sublimation, or conversion to graupel. The snow threshold to graupel conversion is similar (500 kg m−3) 
in both the schemes, but other processes can significantly contribute to the different production rates.

Cold rain processes are, in general, dominant during the winter season and important to determine the winter 
precipitation. MP8 seems to have a more realistic cloud ice distribution, as WSM6 has an excessively high mixing 
of cloud ice. MP8 has also captured more dominant simulated radar reflectivity for the thunderstorms during 
winter. Han et al. also found that MP8 produces better winter thunderstorms due to the better representation of 
cold rain processes and more realistic size distribution of solid hydrometeors76. These observations are consistent 
with our results, as we also found MP8_KF to be performing better for DJF.

Conclusion.  MP8_KF is found to be better than the rest of the experiments to simulate precipitation for 
ANN and DJF. However, for JJAS, WSM6_BMJ simulates better variance, pattern correlation, temporal correla-
tion and skill score than MP8_KF that makes WSM6_BMJ a more favorable option to simulate JJAS climate. 
The superior performance of MP8_KF is well reported in the literature in alignment to our outcome for ANN, 
however seasonal dependence is  reported in our study for the first time.

The key conclusions from this study are as follows.

•	 MP8_KF was found to be the best combination of microphysics and cumulus parameterization schemes to 
reproduce annual cycle and wintertime precipitation.

•	 WSM6_BMJ showed better reproducibility for the precipitation during ISM.
•	 MP8_KF showed high dislocated (concentrated over the leeward slopes) convective rainfall, however, WSM6_

BMJ was found to be more distributed over the region.
•	 BMJ had a relatively moist vertical profile than KF.
•	 WSM6 produced a higher concentration of ice particles than MP8.
•	 Sensitivity analysis for climate runs should be an essential step to understand the applicability of different 

schemes under different seasons.
•	 The lack of literature on seasonal sensitivity of parameterizations, especially on climate timescales, neces-

sitates sensitivity experiments, particularly for agricultural and hydrological applications.

Based on our findings, we recommend to use the ensemble weighted MP8_KF and WSM6_BMJ to simulate 
the multi-year climate simulations as per following over the study region

MP8WSM_BMJ_ensW (t) =

{

MP8_KF (t) if t /∈ JJAS

WSM6_BMJ (t) if t ∈ JJAS
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To simulate the seasonal forcing for downstream impact modeling, two different set of schemes are proposed 
for summer and non-summer seasons as per above equation. We also highlight this study is done over the 
selected region, and may not necessarily be directly applicable to other parts of the world. However, the insight 
gained from this study is that over regions influenced by more than one weather systems, the weighted ensem-
ble approach may add more value to the downscaled simulations and hence to the high-resolution forcing for 
impact assessment studies.

Data availability
The datasets generated and analysed during the current study are available from the corresponding author on 
reasonable request. The input datasets are available in public domain.
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