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Network‑level analysis of ageing 
and its relationship with diseases 
and tissue regeneration 
in the mouse liver
Manisri Porukala  & P. K. Vinod *

The liver plays a vital role in maintaining whole‑body metabolic homeostasis, compound 
detoxification and has the unique ability to regenerate itself post‑injury. Ageing leads to functional 
impairment of the liver and predisposes the liver to non‑alcoholic fatty liver disease (NAFLD) and 
hepatocellular carcinoma (HCC). Mapping the molecular changes of the liver with ageing may help to 
understand the crosstalk of ageing with different liver diseases. A systems‑level analysis of the ageing‑
induced liver changes and its crosstalk with liver‑associated conditions is lacking. In the present study, 
we performed network‑level analyses of the ageing liver using mouse transcriptomic data and a 
protein–protein interaction (PPI) network. A sample‑wise analysis using network entropy measure was 
performed, which showed an increasing trend with ageing and helped to identify ageing genes based 
on local entropy changes. To gain further insights, we also integrated the differentially expressed 
genes (DEGs) between young and different age groups with the PPI network and identified core 
modules and nodes associated with ageing. Finally, we computed the network proximity of the ageing 
network with different networks of liver diseases and regeneration to quantify the effect of ageing. 
Our analysis revealed the complex interplay of immune, cancer signalling, and metabolic genes in the 
ageing liver. We found significant network proximities between ageing and NAFLD, HCC, liver damage 
conditions, and the early phase of liver regeneration with common nodes including NLRP12, TRP53, 
GSK3B, CTNNB1, MAT1 and FASN. Overall, our study maps the network‑level changes of ageing and 
their interconnections with the physiology and pathology of the liver.

Ageing is an inevitable complex process altering a multitude of cellular processes. Several studies employing 
animal models across different organs have outlined the general hallmarks of ageing related to epigenetic modifi-
cations, cellular senescence, altered intercellular communication, telomere shortening, nutrient sensing deregula-
tion, mitochondrial dysfunction, stem cell exhaustion, loss of proteostasis, genomic instability, which culminate 
in the loss of tissue  homeostasis1. The complexity of ageing process is further heightened by the interconnected 
feature of some of these  processes2. Different factors are suggested to cause or contribute to ageing, including 
DNA damage, free radical (ROS) accumulation and metabolic  dysfunction3. The oxidative theory of ageing 
proposes macromolecular damage by the products of metabolism and inefficient repair.

Molecular pathways involving IGF1/GH and mTOR have been implicated in the ageing  process4,5. Caloric 
restriction and mTOR inhibition by rapamycin slow down many age-dependent processes and extends  lifespan6,7. 
With the advent of high-throughput techniques, biological processes underlying the initiation and progression 
of ageing can be unfolded at the systems level. However, most studies focused on identifying DEGs and patterns 
of gene expression in ageing to characterize the transcriptomic  changes8–10. The upregulation of inflammatory, 
immune and stress response genes has been reported in different microarray and RNA-Seq experiments of ageing 
in  mice11,12. The inflammaging theory postulates ageing accrues  inflammation13. Tissue-wise transcriptomics 
study across multiple age groups in mice shows distinct gene expression signatures in different organs, with the 
liver undergoing extensive changes over time compared to other  tissues9. The liver is an important metabolic 
organ that plays a vital role in synthesizing plasma proteins, clotting factors, triglycerides, cholesterol, glycogen, 
and  detoxification14,15. Therefore, understanding how ageing rewires the regulatory network of the liver is crucial.
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The impairment of structure and function of liver tissue with ageing exacerbates the risk of liver diseases and 
affects its regeneration potential after  damage16. Non-alcoholic fatty liver disease (NAFLD) is the commonly seen 
pathological condition of the liver that evolves into non-alcoholic steatohepatitis (NASH), cirrhosis and hepa-
tocellular carcinoma (HCC). The progression of NAFLD to NASH and further to HCC is favoured by increased 
inflammation in old  age13. Interwinding nature of liver ageing and age-related diseases may create a futile cycle 
of each fuelling the other, leading to a transition from chronological ageing to pathological ageing. In addition to 
increasing the disease risks, ageing also delays regeneration after partial hepatectomy (PH)16. Most of the studies 
designed to understand liver diseases were dealt independently of each other and without involving the intrinsic 
process of  ageing17. Delineating the shared mechanisms inherent to the ageing process and age-related disease 
shows a road ahead, thereby suggesting therapeutics for liver diseases that are influenced by age.

Network-based approaches can be applied to understand the dynamic changes in gene expression patterns 
with lifespan and to study the crosstalk between ageing and ageing-related diseases. This provides a systems-
level understanding and helps to map dynamical changes. The PPI network provides a scaffold to integrate gene 
expression data and study the statistical and topological properties of the network in the context of liver ageing 
and its related diseases. The usage of the PPI network helps to distinguish direct and indirect control compared 
to the correlation-based co-expression network.

In this work, we studied how the statistical properties of the liver network change with ageing by integrating 
the PPI network and mRNA expression profiles of mouse liver samples across ten different age groups available 
from Tabula Muris  Consortium10. Network entropy quantifying randomness offers a new perspective for study-
ing ageing and diseases. We show that entropy of the liver network increases with ageing, indicating the increase 
in randomness due to network disruption by genomic alterations. We computed the local entropy measure to 
identify genes and pathways associated with ageing. The genomic alterations in ageing may either increase 
or decrease the randomness of the local connectivity patterns (change the probability of interactions)18–20. A 
decrease in entropy signifies specific signaling interactions with higher weights, while an increase in entropy 
signifies the unpredictable nature of interactions. To gain further insights, we integrated the DEGs between 
young and different age groups with the PPI network to identify core modules and nodes that show changes 
in local and global topological network measures with ageing. Finally, we computed the network proximity of 
the ageing network with different networks of liver diseases and regeneration to study the effect of ageing. The 
workflow of the study is shown in Fig. 1.

Methods
Network entropy‑based approach to analyze liver ageing:. Transcriptomics data (bulk RNA-Seq) 
of mouse liver tissue with age groups 3, 6, 9, 12, 15, 18, 21, 24, and 27 months was obtained from GEO with 
accession number GSE132040 (Tabula Muris Consortium). Each age group has 3–4 replicate samples. The raw 
count data was normalized using variance stabilizing transformation (VST)21. An entropy-based approach was 

Figure 1.  The workflow to study the network-level changes of ageing and its association with tissue 
regeneration and diseases in the mouse liver.
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used to integrate the gene expression data with the PPI network. Mouse-specific STRING PPI network (10,596 
nodes and 86,074 edges) with interaction confidence-score cut-off ≥ 0.9 was used as the initial PPI network. A 
network characterised by a specific number of nodes, edges and edge weights is considered an instance in an 
ensemble of large number of networks with similar features. This system has two sets of observables related to 
degree sequence and distribution of edge weights. The entropy metric of a network is given by calculating the 
maximum entropy of the ensemble satisfying the given constraints (with the identical topological and spatial 
structure of the network) rather than the original network (see supplementary methods)20. For integration of 
gene expression and PPI network, nodes in the PPI network are assigned with their corresponding gene expres-
sion values specific to a particular sample. The edges connecting nodes are weighted as the distance between 
gene expression values. The edge weights are converted to a distribution by partitioning them into number of 
bins equal to the square root of number of nodes in the network. While building the network, nodes with zero 
gene expression value are removed from the network. Hence, the final network which is subjected to entropy 
maximization differs from the original PPI network and is sample-specific. Therefore, the static PPI network 
evolves when it is integrated with sample-specific gene expression.

Further, the network entropy of a sample can be used to derive the entropy associated with a single node 
that takes the form of Shannon entropy (local entropy) (see Supplementary Methods). The Wilcoxon rank sum 
test was applied to identify nodes showing significant differences (FDR < 0.05) in entropy between groups of 
samples at the single-node level. This analysis was performed by considering samples of 3–6 months old mice as 
the younger age group and samples of 24–27 months old mice as the older age group. The pathway enrichment 
analysis of nodes that display significant differences in single-node was performed using  Enrichr22 to obtain 
significantly affected pathways (adjusted p-value < 0.05).

Graph theoretical analysis of ageing PPI network. Unlike the previous approach, which integrates 
sample-specific gene expression with the PPI network for entropy calculation, we alternatively constructed the 
age group-wise networks to compare the local and global network measure changes with ageing. For this, DEGs 
comparing 3 months old mice with 18, 24 and 27 months old were used for building individual PPI networks. 
DEGs identified using the DESeq2 pipeline were integrated with STRING PPI (confidence-score cut-off ≥ 0.9) 
to build individual networks for comparison. Each PPI network was further expanded by including the first 
neighbours of DEGs, and this network was considered for all the downstream analyses.

Each PPI network was analyzed using the CytoHubba plugin in Cytoscape 3.9.023. A PPI network is assumed 
to be an undirected network G = (V, E) with V as set of nodes and E as set of edges connecting the nodes. Cyto-
Hubba identifies essential hub nodes and subnetworks within the PPI network using various local and global 
 metrics24. Each of these metrics is associated with a function F which assigns every node v a numeric value F(v). 
A node u is awarded a higher rank compared to another node v if F(u) > F(v). A local ranking method only 
considers the relationship between the node and its direct neighbours to calculate the score. On the other hand, 
a global ranking method assigns a score to a node based on its relationship with the entire network.

For local measure, we used Maximal Clique Centrality (MCC), which is based on the concept of a clique 
that emphasizes the highly connected clusters within a network. A clique C in a network is a subset of nodes 
(C ⊆ V) such that every pair of nodes is connected. Further, if such a clique cannot be extended by adding one 
or more other nodes (for any x ∈ V\C, C ∪ {x} is not a clique), it becomes a maximal clique. MCC score for a 
node v is given as

where S(v) is the collection of maximal cliques C which contains v, and (|C| − 1)! is the product of all positive 
integers less than |C|. Therefore, a node with a higher MCC score implies that it is part of larger cliques or many 
smaller cliques or both.

In addition to the connectivity of a node, its spatial position in the network also influences the communica-
tion among other nodes. To capture the nodes that regulate the information flow within the network, we used 
two shortest path-based global measures, Bottleneck centrality (BN) and Betweenness centrality (BW), for each 
node. Bottlenecks are considered to act as bridges holding crucial functional and dynamic properties in the 
 network25. While the BN(v) score of node v is based on the shortest path trees of all other nodes in the network, 
BW(v) is based on the number of shortest paths between every pair of nodes traversing the node v. Scoring of 
BN(v) for a node v begins with the construction of tree Ts of shortest paths from a node s to all other nodes in 
the network, followed by enumeration of the number of these shortest paths going through node v. This process 
is iterated for all s ∈ V. A node v in the shortest path tree Ts is considered as a bottleneck if more than |V(Ts)|

4
 of 

the paths in the tree cross  it26, where |V(Ts)| is the number of nodes in the tree. Finally, BN(v) of node v is scored 
as the number of such shortest path trees where it is considered as a bottleneck and is given by

where ps(v) =
{

1, if number of paths from s to V(Ts)\ v throughv >
|V(Ts)|

4
0, otherwise

.  

Betweenness centrality BW(v) of node v in the connected component C(v) containing v is the sum of fraction 
of shortest paths between every pair of nodes s and t traversing through v, σst(v), to the total number of shortest 
paths between every pair of nodes s and t, σst, and is given by

MCC(v) =
∑

C ǫ S(v)

(|C| − 1)!

BN(v) =
∑

s ǫ V

ps(v),



4

Vol:.(1234567890)

Scientific Reports |         (2023) 13:4632  | https://doi.org/10.1038/s41598-023-31315-2

www.nature.com/scientificreports/

Further, the densely connected components of the network that are likely to form molecular complexes were 
identified using the Molecular Complex Detection (MCODE)27 program’s default settings in Cytoscape. MCODE 
clusters with scores ≥ 5 were further analysed by using  Enrichr22 for pathway enrichment.

Network‑based proximity analysis. Gaining insights into the interconnectedness of disease genes with 
ageing within the PPI network helps to understand the risk of ageing. If disease modules in an interactome 
overlap or are significantly closer to ageing modules, then perturbations due to ageing may affect pathways in 
disease or drive its progression. Proximity analysis was performed to study the associations between the ageing 
liver and each of the perturbed liver conditions (liver regeneration post-PH, NAFLD, HCC, acute liver dam-
age by  CCl4 and chronic liver damage by  CCl4). The association between two conditions was quantified using a 
network proximity  metric28:

where d(a, b) represents the shortest path length between gene a from condition A and gene b from condition 
B in the interactome.

The significance of this distance metric was evaluated using the Z-score of permutation test by randomly 
selecting nodes from the whole network with degree distributions similar to that of the nodes in the two sets. 
Z-scores were calculated by permutation tests of 1,000 repetitions as follows:

where dm and σm are the mean and standard deviation of the permutation test.
Candidate gene lists for ageing and other conditions were selected from different studies with similar mouse 

strains (Table 1). DEGs between 3 and 27 months old mice were considered as signatures of ageing for proxim-
ity analysis. We also performed proximity analysis using DEGs from different age groups, including 12, 18 and 
21 months, for comparison. Candidates for different phases of liver regeneration were considered by taking 
the union of DEGs of early-phase (1, 4, 10 h post-PH compared to pre-PH), mid-phase (36, 44, 48 h post-PH 
compared to pre-PH), and late-phase (1- and 4-weeks post-PH compared to pre-PH). We also included DEGs of 
sham-operated control samples at different phases, i.e., early-phase (1, 4, 10 h post sham surgery) and mid-phase 
(48 h post sham surgery). Candidate genes for NAFLD and HCC (DEGs between healthy control and disease) 
were pooled from their respective studies (Table 1). The proximity analysis was performed using the high con-
fidence mouse-specific STRING PPI network (confidence score ≥ 0.9). Two conditions with Z-score <  − 1.5 and 
FDR < 0.05 were considered significantly proximal. To infer the biological significance of proximity of ageing 
signatures with other conditions, the shortest path connecting each pair of DEG sets was identified as depicted 
in Fig. 2.

Results
Alteration in network entropy with ageing in the mouse liver. We used the network entropy meas-
ure to study ageing. The sample-wise gene expression was integrated with the PPI network. The estimation of 
network entropy from the liver gene expression data shows that entropy increases in old age (18–21 months) 

BW(v) =
∑

s �=t �=vǫC(v)

σst(v)

σst
.

< dCAB >=
1

||A|| + ||B||

(

∑

a∈A

minb∈Bd(a, b)+
∑

b∈B

mina∈Ad(a, b)

)

,

ZdAB =
dAB − dm

σm
,

Table 1.  Datasets used to define the list of candidate genes for different liver associated conditions.

Liver condition Accession no. Experimental mouse model Age of mice during sample collection Strain

Aging GSE132040 Age group spanning 3–27 months 3, 6, 9, 12, 15, 18, 21, 24, 27 months old C57/BL6J

Regeneration and sham-operated control GSE95135 12–14 weeks old mice 3 months old C57/BL6J

NAFLD
GSE148080 Normal diet beginning at 8 weeks followed by 8–16 weeks of 

normal diet/high sucrose diet 8 months old C57/BL6J

GSE184019 Normal diet at 8 weeks followed by 3 weeks of normal diet/
high sucrose diet. Samples collected at 11 weeks 3 months old C57/BL6J

HCC

GSE132728 Single dose of DEN at 2 weeks followed by weekly twice dose 
of  CCl4 from 8 to 24 weeks 6 months old C57/BL6J

GSE89689
Single dose of DEN at 2 weeks followed by first dose of  CCl4 
dose 4 weeks later. Further weekly dose of  CCL4 for 15 weeks. 
Final samples were collected 10 weeks after the last dose of 
 CCl4

8 months old C57/BL6J

Acute damage  (CCl4) GSE167033
8–10 weeks old mice were administered with  CCl4. Samples 
were collected 2 and 8 h post treatment, 1, 2, 4, 8, 16 days 
post treatment

2–3 months old C57/BL6/N

Chronic damage  (CCl4) GSE167216 8–10 weeks old mice were treated with  CCl4 twice a week for 
2, 6, 12 months 4, 8, 12 months old C57/BL6/N
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compared to the young (3–6 months) mice (Fig. 3A). This is in agreement with other studies that used a simi-
lar approach to study the progression of ageing in the context of skeletal muscle and T-lymphocytes20,29. The 
18–21 months is a tipping point after which entropy slightly decreases in the oldest age group (24–27 months). 
This reveals that the liver tissue undergoes network disorganization with ageing, increasing the disorderness 
or randomness. We also performed local differential entropy analysis between young and old age groups to 
identify nodes showing significant increase in randomness. We identified 684 nodes with significantly differing 
single node entropies (Wilcoxon Rank sum test q-value < 0.05, absolute difference in median > 0.03) between 
young (3m–6m age) and oldest age (24m–27m) groups. The pathway enrichment of these genes revealed that 
Complement and coagulation cascades, Cytokine–cytokine receptor interaction, Xenobiotics metabolism, ster-
oid hormone biosynthesis, NFKβ signalling pathway, PI3-AKT signalling pathway, and MAPK signalling are 
significantly affected (Table 2). The entropy-based approach captures relevant pathways associated with ageing.

The top-ranking nodes based on increase in entropy belong to the cytochrome P450 superfamily (CYP7B1, 
CYP2D9, CYP2F2, CYP2C29) and UDP-glucuronosyltransferases (UGT2B5, UGT2B36 and UGT2B1), which 
are linked to drug metabolism and steroid hormone synthesis (Fig. 3B). The entropy increase is observed with 

Figure 2.  The flowchart to identify proximity genes between two conditions A and B. The shortest path 
connecting each pair of genes was identified. The nodes (A1, A2…An and B1, B2…Bm) can be directly 
connected or through an intermediate node. C represents common nodes between two conditions.

Figure 3.  Network entropy-based analysis of liver ageing network. (A) Boxplot showing the change in network 
entropy across different age groups. Sample-wise entropy is calculated and is normalized by number of nodes 
in its corresponding network. (B) Network of top 50 nodes with significant change in local entropy and their 
neighbours. Top nodes are colored in red and the edges connecting them are shown with red dashed lines. Edges 
between neighbours are not shown.
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FGG, FGB and VTN, which are associated with ECM and wound healing. VTN encodes for a secreted pro-
tein vitronectin that inhibits the membrane-damaging effect of the terminal cytolytic complement pathway 
(endothelial cells)30. TDO2 shows an increase in entropy and is linked to changes in tryptophan and kynurenine 
(Kyn). Tryptophan metabolism controls the inflammation-associated decline in age-related tissue homeostasis 
(inflammaging)31.

Fatty acid oxidation genes ACSL1, ACADVL, ETFDH, ACOX2, HADHA, HSD17B4 and fatty acid transport 
gene SLC27A2 show an increase in entropy. The involvement of mitochondrial and peroxisome genes linked to 
fatty acid oxidation suggests an interplay between peroxisome-mitochondria in liver  ageing32. CREB3L3, which 
cooperates with PPARA to regulate the expression of genes involved in fatty acid metabolism, also shows an 
increase in entropy (Fig. 3B). On the other hand, the entropy of lipid synthesis genes FASN, SREBF1, FADS1 and 
AACS and lipid transport gene LDLR decrease with ageing. Interestingly, the entropy of PGRMC1 and INSIG2 
that regulate hepatic de novo lipogenesis via SREBF1 increases. Similarly, PLIN2, a gene associated with the 
metabolism of intracellular lipid droplets (LDs), also shows an increase with ageing.

Further, genes of glutathione metabolism show a change in entropy with ageing. Glutathione S-transferase 
(GSTs) GSTP1 shows an increase in entropy, while GSTM1 shows a decrease in entropy. GSTs are the Phase-II 
enzymes that protect the cells against damage induced by electrophiles and products of oxidative stress. They 
are shown to have anti-ageing  effect33. GPTX1, which catalyzes the reduction of hydrogen peroxide  (H2O2) by 
GSH, also shows an increase in entropy along with GCLC, an essential gene for GSH synthesis. RARRES2, which 
encodes a chemoattractant protein (Chemerin) secreted by the liver, shows a decrease in entropy with ageing. 
Chemerin is a modulator of immune response by promoting the chemotaxis of numerous immune cell types 
and it has a role in pathophysiological conditions including HCC and  NAFLD34.

The overlap of entropy-based genes with DEGs between 3- and 27-months old mice shows only a few over-
laps indicating that genes identified based on statistical properties of the underlying network are unique (Sup-
plementary Fig. S1A). We also compared the entropy-based candidate genes with the curated mouse immune 
 genes35 (Supplementary Fig. S1B). The entropy-based analysis also identifies distinct immune-ageing genes 
compared to DEG analysis with a small overlap. This suggests that ageing is characterized by global changes 
in the immune system. Non-overlapping 454 genes also include genes related to neurodegeneration (DNAHs) 
and protein digestion and absorption (Collagens). Immune markers unique to entropy-based analysis include 
genes VTN, FGB and FGG.

Core gene expression modules associated with ageing. We also alternatively explored the ageing 
gene expression changes at the network level by integrating DEGs and PPI network. We expanded the network 
to include the first neighbours of DEGs. The PPI network built from DEGs comparing extreme age groups (3 
and 27 months) and their first neighbours resulted in 38,764 edges connecting 3770 nodes. Similarly, we also 
constructed an ageing network for other age groups (18, 21 and 24 months) for comparative analysis. We first 
clustered genes based on network topology to identify densely connected regions using MCODE.

The modular analysis of the liver ageing network (3 and 27 months) shows that genes corresponding to 
pathways such as Ribosome, Proteasome and Oxidative phosphorylation are associated with top-scoring clus-
ters (Fig. 4). These pathways are also found in the 18- and 24-months old mice ageing network (Supplementary 
Tables S1 and S2). Signalling pathways (mainly Wnts) regulating pluripotency of stem cells emerged as a signifi-
cant pathway in the oldest 27-month age group. The clusters from 18 to 24-month networks are also associated 
with cell cycle, DNA repair, p53 signalling pathway and senescence. The enrichment of top clusters shows the 
relationship to NAFLD, basal cell carcinoma, neurodegenerative diseases, and viral infection.

Table 2.  Pathway enrichment of nodes that showing significant change in entropy (FDR < 0.05) between 
young (3–6 months) and old (24–27 months) mice with absolute mean difference greater than 0.03.

S. no. KEGG pathway Overlap p-value Adj p-value

1 Complement and coagulation cascades 18/88 8.46E−10 2.42E−07

2 Cytokine–cytokine receptor interaction 30/292 8.91E−08 1.27E−05

3 Primary immunodeficiency 10/36 2.33E−07 2.15E−05

4 Metabolism of xenobiotics by cytochrome P450 13/66 3.01E−07 2.15E−05

5 Chemical carcinogenesis 15/94 6.66E−07 3.81E−05

6 Steroid hormone biosynthesis 14/89 1.87E−06 8.88E−05

7 PI3K-Akt signaling pathway 31/357 2.17E−06 8.88E−05

8 Pathways in cancer 39/535 8.15E−06 0.000291

9 Pentose and glucuronate interconversions 8/34 1.48E−05 0.000471

10 MAPK signaling pathway 25/294 2.93E−05 0.000796

11 Cholinergic synapse 14/113 3.16E−05 0.000796

12 Drug metabolism 14/114 3.49E−05 0.000796

13 Th1 and Th2 cell differentiation 12/87 3.94E−05 0.000796

14 T cell receptor signaling pathway 13/101 4.01E−05 0.000796

15 Fatty acid degradation 9/50 4.33E−05 0.000796
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We also identified critical nodes based on local and global network measures. Topological analysis of the 
ageing network based on local (MCC) and global (Bottleneck and Betweenness) metrics show that RPS27A and 
TRP53 are critical nodes in the network (Table 3). Other nodes of global importance in the network include 
AKT1, SRC, CTNNB1, and EGFR, while genes associated with proteosome (PSMB2, PSMA6, PSMB4, PSMA1, 
PSMB1, PSMA3, PSMD12, PSMC1, PSMD3, PSMA4, PSMD4) are locally important. It is also observed that 
RPS27A and TRP53 are not only the nodes of global and local importance nodes in the extreme age group but 
also form the early signs of ageing (Table 3).

Relationship between ageing and pathways associated with liver diseases and regenera‑
tion. Ageing can increase the susceptibility to liver diseases like HCC and NAFLD and affect the ability of the 
liver to regenerate after damage. We hypothesized that this might arise due to shared or related pathways associ-
ated with liver diseases and regeneration. We performed network proximity analysis using condition-specific 
DEGs to study the relationship between ageing and perturbations that influence liver function. The network 
distance was quantified using the mouse PPI network. We found significant proximities between ageing and 
liver-related pathologies such as NAFLD, HCC and acute and chronic damage by  CCl4 by integrating DEGs and 
mouse PPI network (Fig. 5). The proximity distance decreases with an increase in the age of mice.

Proximity analysis between ageing and the early phase of liver regeneration (1, 4, and 10 h post-PH) shows 
that older age groups are significantly proximal to the liver regeneration module. This proximity may influence 
the liver regeneration process in ageing. Ageing is shown to delay liver regeneration post-PH. However, the 
mid and late phases of liver regeneration associated with cell cycle and termination phases, respectively, are not 
significantly proximal to the ageing module (Fig. 5). Therefore, proximity analysis captures and quantifies the 
impact imposed by ageing on regeneration at the network level. The early phase of sham-operated control is 

Figure 4.  Top five MCODE clusters of the ageing network obtained using the DEGs between 3 and 27 month 
old mice and their first neighbours. Pathway enrichment of clusters are shown along with the gene information. 
Hub nodes/genes are highlighted with green border.

Table 3.  Hub nodes of liver ageing network based on local and global network measures.

Network measure 3 vs 18 months 3 vs 24 months 3 vs 27 months

MCC

NDUFB7, NDUFB9, NDUFAB1, NDUFB8, 
NDUFA5, NDUFA6, NDUFV2, NDUFB10, 
NDUFA12, NDUFB5, NDUFA8, NDUFS8, 
NDUFS7, NDUFA9, NDUFA10, NDUFV1, 
NDUFS1, NDUFS3, UQCRFS1, NDUFS2, 
UQCRC1, UQCRC2, COPS3, COPS4, COPS2, 
COPS5

PSMD1, PSMC3, PSMC6, PSMD11, PSMC5, 
PSMD12, PSMC1, PSMD3, PSMB7, PSMA5, 
PSMB5, PSMA2, PSMD6, PSMA1, PSMB3, 
PSMB2, PSMB10, PSMA3, PSMA6, PSMA4, 
PSMA7, PSMB4, PSMB6, PSMB1, PSMD4, PSMB8, 
PSMA8, PSMB9, CDC6 RELA, CCND1, UBA52, 
UBC, UBB, RPS27A, TRP53, CCNB1, CDK1

PSMB2, PSMA6, PSMB4, PSMA1, PSMA3, 
PSMD12, PSMC1, PSMD3, PSMA4, PSMD4, 
PTEN, RELA, UBB, UBC, UBA52, RPS27A, CDK1, 
TRP53

Bottleneck AKT1, SRC, EGFR, CTNNB1, TRP53, RAC1, JUN TRP53, ESR1, AKT1, CTNNB1 PTEN, UBA52, RPS27A, TRP53, AKT1, SRC, 
CTNNB1, ESR1

Betweenness AKT1, SRC, EGFR, CTNNB1, TRP53, ESR1, RAC1 RPS27A, TRP53, ESR1, AKT1, CTNNB1, KRAS, 
SRC, RHOA

RPS27A, TRP53, AKT1, SRC, CTNNB1, EGFR, 
ESR1
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also proximal to the older age compared to the young age. This is consistent with the observation that the early 
phase of sham-operated control and liver regeneration is  similar36. Further, the proximity of the mid-phase of 
sham-operated control to the ageing network increases compared to the early phase.

To probe the qualitative picture of proximity analysis, we identified nodes falling in the shortest path between 
every ageing gene and all candidate genes of other conditions (Fig. 2). This resulted in 2101, 2112, 1791, 2075 
and 2322 nodes in the pairwise comparisons: ageing and regeneration, ageing and NAFLD, ageing and HCC, 
ageing and acute damage, ageing and chronic damage, respectively. Nodes from each comparison were col-
lectively projected onto the PPI network (Fig. 6A). The connectivity pattern suggests that ageing is connected 
to different conditions through intermediate nodes between condition-specific DEGs. We observed a common 
theme of 926 proximal molecular players connecting ageing with different liver conditions emerges (Fig. 6B). 
This converges on important KEGG pathways such as pathways in cancer, proteoglycans in cancer, Epstein-Barr 
virus infection, PI3K-Akt signalling pathway and MAPK signalling pathway (Fig. 6C). GRB2, SOS, RAS, RAF and 
ERK1/2, are the important molecular players present in the top pathways associated with the common theme. 
GSK3B is another interesting candidate gene common across ageing, NAFLD and HCC (Fig. 7). It is upregulated 
in NAFLD and downregulated in HCC. GSK3B connects different conditions via CTNNB1. TRP53 signalling 
pathway also connects ageing to liver-associated conditions. This may control cell cycle entry by regulating 
genes such as CCND1, CDKN1A and GADD45A (Fig. 8). Both GSK3B and TRP53 interaction is also part of 
the common theme. The overlap of 926 genes with curated mouse-specific immune genes shows that 366 genes 
are common (Supplementary Fig. S2), with NFKβ as a key transcriptional factor. NFKβ regulates innate and 
adaptive immunity and is the master regulator of inflammatory  responses37. We also identified NLRP12 as a 
common candidate gene that plays the role of a mitigator of inflammation. It is upregulated in the early phase of 
liver regeneration while downregulated in ageing, NAFLD, and acute and chronic liver damage.

In addition to the immune system, we also explored other common relationships between ageing and differ-
ent liver conditions. Lipid (FASN, HMGCR, SREBF1) and bile acid synthesis (CYP27A1) genes are differentially 
expressed in ageing and liver regeneration. FASN, HMGCR and SREBF1 are upregulated in ageing. Mitochondrial 
fatty acid β-oxidation (FADS1, HADHA, HADHB, ACSL1, ACADVL, CPT2, ECI2) also shows this differential 
pattern. CREB3L3 is differentially expressed across conditions. It is upregulated in liver regeneration and down-
regulated in ageing. PCSK9, which plays a role in cholesterol homeostasis, is downregulated in the early phase 
of regeneration and upregulated in ageing and NAFLD. It protects the liver against steatosis and liver injury. On 
the other hand, ANGPTL4, which facilitates the accumulation of TAG by inhibiting LPL, is downregulated in 
ageing while it is upregulated in liver regeneration.

Ageing also influences amino acid metabolism. Genes of one carbon metabolism (DHFR, MTHFD1, BHMT, 
SHMT1/2, MAT1A, MTR, TYMS) are affected across conditions. S-adenosyl-methionine (SAM) metabolism 
controlled by MAT1 is significantly upregulated in liver regeneration compared to ageing and is downregulated 
in HCC. MAT1 regulates the production of SAM from methionine, which is required for methylation reac-
tions inside the cell. In NAD metabolism, NAMPT is upregulated in ageing, while NNMT is upregulated in 

Figure 5.  Network proximity of ageing with different liver-associated conditions: early (Regen_early), mid 
(Regen_mid) and late (Regen_late) phases of liver regeneration, early and mid-phases of sham-operated control, 
NAFLD, HCC, Acute and chronic liver damages. The proximity is explored for different age groups (12, 18, 21 
and 27 months). Text in the tiles represents proximity distance. *Indicates FDR < 0.05 and Z-score < − 1.5.
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regeneration and downregulated in NAFLD and HCC. Genes involved in BCAA catabolism, glutamine catabo-
lism (GLS2), aspartate synthesis (ASS1), and Tryptophan metabolism (TDO2) are also affected across different 
liver conditions.

Discussion
Ageing can lead to functional impairment of liver and predisposes the liver to NAFLD and HCC. The liver has 
a unique ability to regenerate itself post-injury and help in whole-body metabolic homeostasis and compound 
detoxification. Mapping the molecular changes of the liver with ageing may help to understand how ageing 
influences liver function and predisposes the liver to different pathological conditions. A systems-level analysis 
of the ageing-induced liver changes and its crosstalk with the pathology of liver diseases is lacking. In the pre-
sent study, we performed a network-level analysis of liver ageing using transcriptomic data of ageing and the 
PPI network. We used network entropy measure to identify nodes and pathways that show significant entropy 
changes in ageing. Further, we also performed the topological analysis of the ageing network by considering 
the nodes differentially expressed in ageing and their first neighbours to identify the core modules of ageing. 
This framework was also used to study the proximity of the ageing network with liver regeneration and disease 

Figure 6.  Overlap of proximity nodes obtained in the pairwise comparison of ageing and different liver 
associated conditions. (A) Crosstalk (interactions) between nodes of different liver-associated conditions are 
shown using the PPI network. The common theme comprises of nodes that are present in all comparisons. 
Nodes that are neither part of common theme nor specific to a condition are shown in grey. A node that is a 
DEG in at least one condition is shown by triangle and first neighbour (FN) of DEG is shown by circle. (B) Venn 
diagram showing the number of nodes overlapping between different pairwise comparisons. (C) The pathway 
enrichment of 926 genes in the common theme is shown.
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networks. We showed proximity measure provides insights into the interconnection between ageing and liver-
associated conditions.

We observed an increase in entropy with ageing liver with the subtle difference between old and oldest groups 
(Fig. 3). The entropy-based approach captured the relevant pathway-level changes linked to ageing and helped 
identify novel candidate genes. The entropy change is driven by the selected group of genes belonging to the 
immune, complement and coagulation cascade, lipid metabolism, cytochrome P450 and UDP-glucuronosyl-
transferases. Immune and lipid metabolism-related changes have been reported in  ageing12,16. The candidate 
genes were filtered based on entropy changes. We provide experimental evidence available from the literature 
for the involvement of candidate genes in ageing or its related liver diseases. Top novel candidate genes with 
high entropy values include VTN, FGB and FGG, which are associated with changes observed in fibrosis under 

Figure 7.  Interacting partners of candidate gene, GSK3β, present in the common theme.

Figure 8.  Interacting partners of candidate gene, TRP53, present in the common theme.
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chronic liver damage  condition38. We hypothesize that transcriptional remodelling of the liver during ageing 
can affect the integrity of the membrane and increase the susceptibility to fibrosis. Ageing is shown to increase 
the susceptibility to fibrosis in response to high-fat diet  feeding39. We also found genes of the complement sys-
tem (C6, C8, C8A, C8B) that are part of the membrane attack complex changing with ageing (Fig. 3B). There is 
increasing evidence that complement systems may play a role in  ageing40.

Our analysis also revealed the PGRMC1-INSIGs-SREBF1 axis in controlling the lipid levels in ageing 
(Fig. 3B). PGRMC1 knockout leads to the buildup of fatty acids and predisposes mice to  NAFLD41. PGRMC1 
forms complex with INSIG1 and is associated with cleavage of SREBF1 via  SCAP41,42. Deletion of INSIG2 also 
results in the activation of SREBF1 and de novo lipid  synthesis43. Age induced hepatic steatosis is alleviated 
in INSIG2 elevated  condition44. Another candidate gene, PLIN2, also controls the activation of SREBP-1 and 
SREBP-245. Its expression is shown to be altered in age-related diseases, including fatty  liver46,47. Fat accumulation 
is negatively correlated with the decrease in mitochondrial mass with  ageing48. Further, ageing is shown to affect 
lipid homeostasis by controlling the phosphorylation of CEBPα/β49 and changing the nucleosome occupancy at 
the foci of PPAR  targets50. We found that PPARA can also be affected through CREB3L3, the knockout of which 
results in severe fatty  liver51. CEBPβ is implicated in the activation of SREBF1 transcription in  liver52. RARRES2 
(Chemerin) is another candidate ageing gene, which is also induced in NAFLD and Hepatitis B-related HCC. 
These observations suggest that ageing may increase susceptibility to liver diseases.

The network topology-based analysis of the ageing network revealed the involvement of ribosomes and pro-
teasomes, which reflects the changes in the proteostasis capacity of cells with  ageing53. The module associated 
with oxidative phosphorylation in the ageing network (Fig. 4) reflects the change in mitochondrial metabolism 
with  ageing3. We found Wnt pathway as an ageing module, which controls cell renewal, tissue regeneration and 
the development of  HCC54. Further, TRP53 was identified as a critical node based on local and global graph 
theoretical measures. It has relevance in ageing as it can promote repair, survival, or elimination of damaged 
 cells55. TRP53 optimally balances tumor suppression and  longevity56. The decline in the function of TRP53 is 
observed in various tissues of the mouse with ageing, which can contribute to increased mutation frequency 
and  tumorigenesis57. Other critical nodes include AKT1, SRC, CTNNB1 and EGFR, which are related to cancer 
signalling. CTNNB1 encodes a β-catenin protein responsible for controlling gene expression in the Wnt signal-
ling pathway. EGFR also shows an increase in entropy, and its expression is correlated with liver steatosis in 
mice and  human58.

The PPI network analysis of ageing and different liver conditions also shows the proximity of ageing genes to 
different liver conditions, including NAFLD, HCC, liver damage and repair (Fig. 5). The common theme shared 
between conditions maps to immune-related pathways, pathways in cancer and metabolic changes. MAPK, PI3K-
AKT, Ras, Wnt and NFκB signalling are common pathways across conditions (Fig. 6C). Studies on extended 
lifespan by pharmacological intervention suggested that anti-ageing effects are mediated by targeting the canoni-
cal MAPK  pathway59. With ageing, there is an upregulation of MEK1, which triggers translation by phospho-
rylating its downstream target  eIF4E59. Increased activity of eIF4E has been shown to promote tumorigenesis, 
thus implicating ageing effects on  cancer60. GSK3β is a common node across conditions. Ageing is shown to 
inhibit GSK3β  function61 and this, in turn, affects the liver regeneration  potential62. Inhibition of GSK3β acts 
as a protective role against lipid accumulation in NAFLD. GSK3β can regulate cell proliferation by controlling 
the growth-inhibitory activity of CEBPα and negatively regulates many oncogenic signalling pathways, such as 
the Wnt/β-catenin  pathway63. We found GSK3B-CTNBB1 interaction as part of the common theme (Fig. 7), 
which is linked to HCC development and NAFLD. There is also a mechanistic link between inflammation 
and the development of HCC mediated by NFKβ  signalling64. NASH condition exhibits morphological condi-
tions related to infiltration of lymphocytes and neutrophils, hepatocyte death and activation of liver resident 
macrophages Kupffer cells, creating an environment favourable for compensatory hepatocyte proliferation that 
further drives  hepatocarcinogenesis65. Further, the priming phase of liver regeneration after PH depends on the 
activation of NFKβ66.

We observed lipid metabolism as a common theme across ageing and liver-associated conditions. Induced 
alteration in lipid metabolic genes in ageing may increase susceptibility to NAFLD and affect liver regeneration. 
Both lipid overloading and deficiency can affect the liver regeneration ability. Fine-tuning lipid levels by transport, 
biosynthesis and oxidation is crucial for liver  regeneration67. A high fat diet impairs liver regeneration through 
IKKβ overexpression and subsequent NFKβ  inhibition68. The aberrant activation of FASN plays a major role in 
the development of HCC and its level is also shown to increase during the induction of  senescence69.

In amino acid metabolism, one-carbon metabolism is altered across conditions, and it plays a crucial role in 
maintaining tissue homeostasis and  longevity70,71. It generates various metabolites that are building blocks of 
nucleotide synthesis, methylation, and redox reactions. Oncogenic signalling hijacks the one-carbon metabo-
lism to support proliferation and  survival72. Genetic disruption of MAT1 inhibits liver  regeneration73. MAT1 
expression is reduced in different liver pathologies, including NAFLD and HCC. Hepatic methionine is depleted 
in mice that developed NAFLD, and administration of methionine and choline-deficient diet led to alterations 
in the expression of lipid metabolism  genes74,75. Metabolomics analysis of ageing shows the levels of serine and 
methionine decrease in  liver76. These highlight the importance of one-carbon metabolism in liver function and 
pathology. Further, BCAA is altered across conditions, and loss of BCAA catabolism promotes HCC develop-
ment and  progression77. However, this is not suppressed in liver  regeneration73. BCAA metabolites are also 
altered in aged  liver3.

In summary, our study maps the network-level changes of ageing and dissects the crosstalk between dif-
ferent conditions, including regeneration and diseases in the mouse liver. We uncovered the local and global 
changes in immune response, cancer signalling and metabolism with ageing and identified novel candidate 
genes. We showed the proximity of the liver ageing network to liver-condition-specific networks and identified 
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the interconnections through common pathways. This explains how ageing increases susceptibility to different 
disease conditions and affects the capacity of the liver to regenerate.

As an initial study, we used the bulk sequencing data to generate a liver tissue-specific PPI network in dif-
ferent contexts for comparison. The bulk changes can be due to cell composition changes or alterations in the 
gene expression of each cell in the population. The single-cell data will further help to refine the interactions 
in a cell-type specific manner. Nevertheless, our study provides the initial framework for single-cell network 
analysis of liver ageing and its related diseases. We will also extend our analysis pipeline to human liver aging, 
transplantation, and associated pathologies.

Data availability
All the datasets are freely available and can be downloaded from https:// www. ncbi. nlm. nih. gov/ geo/ using the 
given accession numbers in Table 1.
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