
1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:5728  | https://doi.org/10.1038/s41598-023-31275-7

www.nature.com/scientificreports

A novel dataset and efficient deep 
learning framework for automated 
grading of renal cell carcinoma 
from kidney histopathology images
Amit Kumar Chanchal 1,6, Shyam Lal 1,6*, Ranjeet Kumar 2*, Jin Tae Kwak 3,6 & Jyoti Kini 4,5,6*

Trends of kidney cancer cases worldwide are expected to increase persistently and this inspires 
the modification of the traditional diagnosis system to respond to future challenges. Renal Cell 
Carcinoma (RCC) is the most common kidney cancer and responsible for 80–85% of all renal tumors. 
This study proposed a robust and computationally efficient fully automated Renal Cell Carcinoma 
Grading Network (RCCGNet) from kidney histopathology images. The proposed RCCGNet contains a 
shared channel residual (SCR) block which allows the network to learn feature maps associated with 
different versions of the input with two parallel paths. The SCR block shares the information between 
two different layers and operates the shared data separately by providing beneficial supplements to 
each other. As a part of this study, we also introduced a new dataset for the grading of RCC with five 
different grades. We obtained 722 Hematoxylin & Eosin (H &E) stained slides of different patients and 
associated grades from the Department of Pathology, Kasturba Medical College (KMC), Mangalore, 
India. We performed comparable experiments which include deep learning models trained from 
scratch as well as transfer learning techniques using pre-trained weights of the ImageNet. To show the 
proposed model is generalized and independent of the dataset, we experimented with one additional 
well-established data called BreakHis dataset for eight class-classification. The experimental result 
shows that proposed RCCGNet is superior in comparison with the eight most recent classification 
methods on the proposed dataset as well as BreakHis dataset in terms of prediction accuracy and 
computational complexity.

Kidney cancer is currently considered to be the leading cause of cancer and Renal Cell Carcinoma (RCC) is the 
most common among all kidney cancer cases. Statistics and  estimate1,2 indicate increasing new cases of kidney 
cancer worldwide and therefore there is an essential need of a fast and precise cancer detection system to deal the 
future challenges. Figure out the stage and grade of the renal tumor is an important prognostic parameter for the 
diagnosis of kidney cancer. Identification of the stage is more about the tumor size, location, and how far cancer 
has been spread to the nearby lymph nodes, whereas the cancer grade describes how different or abnormal the 
cancerous cells look compared to normal healthy cells under the microscope. With the proper knowledge of stage 
and grade, the pathologists get an idea that how quickly it will grow and how much it will spread to the other 
parts of the body, and the doctor can plan the treatment accordingly. The manual grading of complex histologic 
patterns of surgical slides is a tedious task and it is prone to contradictions and errors hence it requires highly 
specialized pathologists. A fully automated and precise method of grading of kidney cancer from histopathology 
images is in high demand for identifying malignant tumors. According to Fohrman’s 4-tier grading system used 
by Hong et al.3, the Grade-1 nuclei are of tubuler structure and uniform and it is very similar to normal nuclei. 
Grade-2 nuclei have slightly irregular contour compared to normal nuclei. Grade-3 nuclei have more irregular 
contour. Grade-4 nuclei have pleomorphic cells, mitoses, multilobate with the Grade-3 feature. Another method 
of grading system by WHO/international society of urologic pathology (ISUP)4, where Grade-1 to Grade-3 tumor 
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is decided based on nuclear prominence whereas Grade-4 is recognized by the presence of those cells showing 
extreme nuclear pleomorphism. The ISUP nucleolar grading system has been shown superior to the traditional 
Fuhrman grading system by Delahunt et al.5 and recommended as the main basis for grading by pathologists. 
Visualization of nuclear morphology, nucleolar prominence, and nuclear membrane irregularities of different 
grades of renal tumor is presented in Table 1.

The application of deep learning to analyze the histopathological images of kidney, breast, liver, prostate, 
colon, and other organs include a number of tasks such as nuclei detection and segmentation, characterization 
of subtypes of cancer, and grading. A few recent works applied convolutional neural networks and emphasis on 
kidney cancer and grading. For example, RCC  classification6 exploits pre-trained ResNet-34 and directed acy-
clic graph classifier for three subtypes of RCC on TCGA data. Another common  method7 adopts ResNet-18 for 
the classification of five related subtypes of RCC. The  method8, designed a lasso regression-based classification 
model to differentiate the associated grades of clear cell RCC. The  works9–11 utilize the transfer learning tech-
niques for the analysis of breast cancer histopathology images and transfers ImageNet weight on a deep learning 
model like  ResNet5012,  DenseNet12113,  Inceptionv314, and Inception  ResNetv215. A three-layer convolutional 
neural  network16 is designed to detect invasive tumors on breast histopathology data. For binary classification 
of breast cancer,  DBN17 used principal component analysis for the extracted features through an unsupervised 
pre-training. The works  BHC18 and  BreastNet19 employ efficient CNN modules namely small SE ResNet, CBAM, 
attention module, and residual block for multi-class classification of BreaKHis data. These efforts have inspired 
the further design of end-to-end trainable deep learning networks.  LiverNet20 employs atrous spatial pyramid 
pooling block in addition to attention and residual module used in previous work. The work by Hameed et al.21 
leverages the strength of inception and residual connections, and the applied method is computationally efficient 
using depth-wise separable convolution. The concept of attention in deep learning has been widely explored 
in recent decades. To focus on the most informative component of the input images, the attention or gating 
mechanism is incorporated in diverse application domains.  CBAM22 composed of cascaded channel attention 
and spatial attention module that extended the idea of attention in both dimensions. The average pooled and 
max pooled features are utilized to produce activation map in CBAM. In two steps called squeeze and excitation, 
 SENet23 scaled the globally pooled information with the given input to highlight the channel activation map. 
The proposed method utilizes global information of each channel in a very simple manner for giving atten-
tion to the most relevant morphological features of RCC. Recently, the shuffling of channels within a layer was 
exploited for efficient model design in convolutional neural network. The shuffle operation  proposed24,25 is a 
stack of channel shuffle units and group convolution, and works better under smaller computational budgets. To 
meet different target complexities, these techniques effectively utilize many convolution groups and the advan-
tages of adjustment of channels. Some  works26,27 adopts shuffle unit and applied various attention mechanism 
to the shuffled version of multiple sub-features. The idea is effective since it enables sufficient communication 
across channels and helps in object detection by information communication between sub-features. The use of 
lightweight transformers, self-attention mechanisms, and ensemble learning strategies are the innovative ideas 
reported  in28–30 which show effectiveness on various medical image modalities. The effect of transfer learning and 
vision  transformer31 is also studied and comparable experiments are performed. Inspired by the above-related 
work, this study proposes an end-to-end trained deep learning model for grading of clear cell RCC from kidney 
histopathology images.

Most of the previous work focused on transfer learning techniques and using pre-trained weights of the 
ImageNet dataset. There is no publicly available dataset for grading of clear cell RCC. Pre-trained ImageNet 
weights transfer powerful texture features, in spite of this for improved classification accuracy, it is required to 
give more attention to its nucleolar morphology and prominence. The proposed method is intended to show how 

Table 1.  Visualization of different grades of renal tumor (normal to Grade-4 from left to right).

Normal (Grade-0) Grade-1 Grade-2 Grade-3 Grade-4

     

The cells of the proximal tubules 
have central nuclei and very acido-
philic cytoplasm

Nucleoli are basoph
Nucleoli are seen as eosinophilic 
at 400× magnification but not very 
prominant at 100× magnification

Nucleoli conspicuous and eosino-
philic at 100× magnification

Pronounced nuclear pleomor-
phism

Cells are well arranged and are 
normal in number

Nucleoli are not visible even 400× 
magnification Nucleoli are seen as 
eosinophilic at 400× magnification 
but not very prominant at 100× 
magnification

Slightly irregular contour com-
pared to normal nuclei

Clearly visible tumors were graded 
as grade-3

Rhabdoid or sarcomatoid dif-
ferentiation

A normal glomerulus structure Morphology is very similar to 
normal nuclei

Grade-3 nuclei have a more 
irregular contour compared to 
normal nuclei

Contains tumor giant cells
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deep learning can be applied effectively to differentiate kidney histopathology images into five categories namely 
Normal/Non-cancerous (Grade-0), Grade-1, Grade-2, Grade-3, and Grade-4. Compared with previous work, 
our approach stands out due to the following reasons (1) instead of shuffling, the proposed method shares the 
information between different layers. (2) A part of the previous layer feature map is used as a skip connection to 
the next higher-order layer. (3) Sharing of inter-channel information with two different paths can be viewed as 
a beneficial supplement to each other and it produces rich local variations. (4) The proposed CNN block can be 
combined with other deep learning techniques to further advance the performance. The proposed work addresses 
the limitations of previous methods. Our contribution in this study is as follows: 

1. A most accurate and efficient end-to-end fully automated deep learning architecture is proposed for grading 
renal tumors from H &E stained kidney histopathology images.

2. This study proposes a novel CNN block called shared channel residual (SCR) block which shares the infor-
mation between different layers and strengthens the local semantic features at multiple stages within the 
network. This block contributes maximally to the proposed method.

3. A new benchmark RCC dataset of H &E stained kidney histopathology images is created for grading of 
renal tumors, obtained from the Department of Pathology, KMC Mangalore, Manipal Academy of Higher 
Education (MAHE), Manipal, Karnataka, India.

4. Comparable experiments performed on multiple organ histopathology datasets include transfer learning 
methods, deep learning networks trained from scratch, and Vision Transformer (ViT) method. The proposed 
RCCGNet requires reduced computational resources and outperforms the eight most recent benchmark 
models in terms of prediction accuracy.

The methodology of the proposed work has been pipelined as shown in Fig. 1. The workflow of this paper is 
as follows: “Methods” section describes the proposed novel dataset, training, implementations along with the 
proposed model. “Results” section compares the results of the proposed RCCGNet with other state-of-the-art 

Figure 1.  Grading pipeline of proposed RCCGNet.
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classification techniques, and “Discussion” section includes the impact of important components of the proposed 
network through an ablation study, statistical analysis, and computational complexity analysis.

Methods
Dataset and image processing. The introduced KMC kidney histopathology dataset includes non-can-
cerous (Grade-0) and cancerous (Grade-1 to Grade-4) images of the Renal Clear Cell Carcinoma. These images 
were collected from October 2020 to December 2022 as a part of a clinical study at Department of Pathology, 
Kasturba Medical College (KMC) Mangalore, Manipal Academy of Higher Education (MAHE), Manipal, Kar-
nataka, India. This project was approved by the institutional ethics committee Kasturba Medical College (KMC), 
Mangalore, protocol no-IEC KMC MLR 02/2022/57. The conducted research reported in this article involving 
human participants was in accordance with the ethical standards of the institutional and/or national research 
committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. 
Regarding data, informed consent from all the patients was obtained for conducting the experiments, and the 
personal details were protected.

The samples were collected by surgical (open) biopsy (SOB) of kidney tissue, stained with hematoxylin and 
eosin (H &E). These histopathology slides are classified into Normal/Non-cancerous (Grade-0), Grade-1, Grade-
2, Grade-3, Grade-4 and labeled through a careful clinical study in the department of pathology in KMC. The 
procedure used by the pathologists here is the most commonly used paraffin procedure. The complete preparation 
procedure includes steps such as fixation, dehydration, clearing, infiltration, embedding, and  trimming32. After 
the preparation process, the pathologist visually identified the tumoral areas in each slide under a microscope. 
An olympus BX-50 system microscope with a relay lens and a magnification of 3.3× coupled to a olympus digital 
color camera DP-22 is used to obtain digitized images from the kidney tissue slides. This camera uses a 1/1.8” 
colour CCD (Charge-Coupled Device) with pixel size 3.69 × 3.69 and a total pixel number of 1920 × 1440 × 3. 
This dataset has been annotated by a group of pathologists at KMC, Manipal. Pre-setting was kept automatic 
and except for the selection of area, everything was the same for all images. Non-overlapping square patches 
were extracted and resized to a size of 224 × 224 and normalized to zero mean and unit variance before passing 
them through deep learning architecture for training and testing. The entire dataset is splitted into training and 
test sets. Approximately 80% of the total images were considered for training, while the rest 20% for the test. 
The validation set was created by cropping non-overlapping regions of training patches. The data augmentation 
techniques, horizontal and vertical flipping were used on training set to further increase the diversity. After 
random cropping and data augmentation, 3442 patches belonging to five classes were obtained as training set. 
Out of these, 693 patches are of Normal/Non-cancerous grade, 708 patches belong to grade-1 cancer, 648 patches 
belong to grade-2 cancer, 735 patches belong to grade-3 and, 648 patches belong to grade-4 kidney cancer. 
Data augmentation on the test set has not been applied and model evaluation performed on an original test set. 
The details of the grade distribution of the proposed data are presented in Table 2. To verify the validity of the 
proposed RCCGNet on the proposed novel dataset, we also analyzed the performance of the RCCGNet on the 
BreaKHis dataset. BreaKHis  dataset19 is a well-established publicly available breast cancer histopathology dataset 
used in various state-of-the-art deep learning models.

Training and implementation. The proposed RCCGNet and all comparison model were implemented on 
a Dell-G4G3NSM workstation with 8 GB NVIDIA QUADRO P4000 GPU and 64 GB RAM. All of our training 
processes performed on Python-3, TensorFlow 2.4.0, Keras an open source platform. Experimentation of our 
RCCGNet consists of three stages: training, testing and validation. For a given range of hyperparameters, the 
network was trained and measured the performance based on the test set.

The proposed RCCGNet model is more efficient with the Adam optimizer, with the default learning rate of 
0.001. Three important parameters namely reduced learning rate, model checkpoint and early stopping were 
used effective training. Reduced learning rate helps to schedule the learning rate with the progress of training. 
We can choose a measure that we would like to monitor like validation accuracy, validation loss, etc. For our 
purpose, we monitored validation accuracy, and if it is not improving in 5 successive epochs with a minimum 
change of 0.0001, this callback reduces the current learning rate. The new learning rate will be half of the previous 
learning rate and this process continues till the last epoch. Another callback is model checkpoint, which helps 
in saving the model weight, which is the best fit for our data. Validation accuracy is continuously monitored 
and the model checkpoint saves the best weight on the provided file path. The early stopping method helped 
to decide the total number of epochs that we trained the model for given data. Less training probably leads to 

Table 2.  Proposed dataset grades distribution.

Type Training patches Test patches

Grade0 162 41

Grade1 108 27

Grade2 99 25

Grade3 96 24

Grade4 112 28

Total 577 145
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underfitting, while excessive training may cause overfitting. After 65 epochs there is no improvement in perfor-
mance has been observed for all reference models. In this way, all reference models and proposed model were 
trained for 65 epochs. Another hyper parameter is batch size, larger batch size allows to parallelize computations 
to a greater degree but lead to poor generalization. The proposed model giving satisfactory results for batch size 
4. The important controlling hyperparameter that we tuned is shown in Table 3. The python implementation 
code is available at https:// github. com/ shyam fec/ RCCGN et.

Loss function and evaluation metrics. The process of optimizing loss function quantifies the error 
between the output of the network and the corresponding labels. Cross-entropy loss followed by sigmoid acti-
vation is called sigmoid cross-entropy loss which is used for two-class classification problems. Similarly, cross-
entropy loss followed by softmax activation is called softmax cross-entropy that is useful for multiclass classifica-
tion problems. Here, softmax cross-entropy loss function is used for the classification of kidney histopathology 
images into five categories namely Normal/Non-cancerous (Grade-0), Grade-1, Grade-2, Grade3, and Grade-4. 
Equation (1) is a standard cross-entropy formula used  in33, where yi is target value and f (x)i indicates output of 
activation function equivalent to probability of each class.

For an input vector xi with length equal to the number of classes c, x = (x1, x1, . . . xc) ∈ R
c , the output func-

tion of the softmax wφ(xi) can be expressed in Eq. (2) and here the c = 5 to divide the probability map into five 
classes.

The term 1
∑c

j=1 e
φTj xi

 is used to normalized the output to 1 and � is the parameter of softmax  classifier34.

For evaluating the model, four different performance metrics namely Accuracy, Precision, Recall, and 
F1, (β = 1)35,36 were used. The model predictions are finally grouped into four, namely True Positive (TP), False 
Positive (FP), True Negative (TN), and False Negative (FN). The performance metrics can be expressed in terms 
of these four groups as in Eqs. (3), (4), and (5).

Proposed architecture. Recently, deep learning and artificial intelligence-based system achieved new 
heights with the development of a highly optimized algorithm which leads to encouraging results in the field 
of digital pathology. The proposed Renal Cell Carcinoma Grading Network (RCCGNet) comprises of three 
foremost stages that are (1) data preparation; (2) shared channel residual (SCR) block; (3) finally, grading phase 
where the network differentiates the five different grades of renal tumors by using a softmax non-linear activa-
tion function. The proposed model is designed by integrating SCR block, Conv2D, and fully connected layers to 
extract the features from the kidney histopathology images. The structure of the proposed RCCGNet for grading 
of RCC from kidney histopathology images has been shown in Fig. 2.

(1)Cross Entropy Loss = −

C
∑

i=1
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(3)Acc =
TPcount + TNcount

TPcount + TNcount + FPcount + FNcount

(4)Pre =
TPcount

TPcount + FPcount
,Re =

TPcount

TPcount + FNcount

(5)F1 score =
2.TPcount

2.TPcount + FPcount + FNcount

Table 3.  Details of hyper parameters.

Optimizer Adam with initial learning rate of 0.001

Batch size 4

Convolution filter 16, 32, 64

Total epochs 65

Reduce learning rate Factor = 0.5, patience = 5, min-delta = 0.0001, monitor-validation acc.

Early stop Patience = 30, min-delta = 0.0001, monitor-validation acc., restore-best-weights

https://github.com/shyamfec/RCCGNet
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Shared channel residual block. This section describes the designed architecture of the proposed shared 
channel residual (SCR) block. The SCR block employed in the proposed RCCGNet contains convolutional lay-
ers, a new and efficient method of sharing the information between two different layers, a simple gating mecha-
nism to focus on the most relevant morphological features of RCC, and a residual connection. The first stage of 
the SCR block accepts an input, which undergoes a convolution operation. After that, both the input and the fea-
ture map obtained after the convolution operation are divided into two groups channel-wise. In the next step of 
operation, group-1 of the lower layer information is concatenated with group-2 of the higher layer feature map. 
Similarly, group-1 of higher layer information is also concatenated with group-2 of lower layer data. In this way, 
the SCR block with two concatenated layers forms two parallel paths and gives the advantage of skip connection 
with the enhanced features by sharing the channel between two layers. The proposed SCR network is different 
from previous  work24–27 which shuffles the channel within a layer, whereas the SCR block shares the information 
between two different layers. The resultant feature of the SCR block is the combination of lower-order features 
and higher-order features. Further, the SCR block allows to learn feature maps associated with different versions 
of the input with two parallel paths and one skip connection. Following are the advantages of the proposed SCR 
block over the other related existing methods. (1) The proposed method is scalable since the feature map can be 
split into any number of groups and also it can be shared with any higher-layer feature map. The architecture, in 
this study, is designed especially for grading of RCC histopathology application. (2) SCR block can be incorpo-
rated into any other deep learning architecture to improve accuracy. (3) Information sharing between different 
layers, a part of the previous layer data is used as a skip connection which strengthens the local semantic features 
at different stages of the network. (4) There is no additional computational complexity involved in sharing the 
information between two different layers.

Mathematical representation of the proposed SCR block. In Fig. 3, the input feature map X is trans-
formed to Y by convolution operation, which is expressed in Eq. (6), where Ftr(3×3) is a convolutional operator 
of kernel size (3 × 3).

The kernel K = [k1, k2, k3 . . . kC] is an optimizable feature extractor, applied at each channel and each image 
position. kc refers to the Cth kernel of K. Here C = 16, 32, and 64 channels are used at three different stages of the 
network. Y is the result of convolution operation ( ∗ ) of input feature map X with kernel K represented in Eq. (7).

Equation (8) represents convolution of a single feature map in X.

where kc =
[

k1c , k
2
c . . . k

C
c

]

 , X =

[

x1, x2, x3 . . . xC
]

 , yc ∈ R
H×W , and ksc is a single channel of kc.

Now X and Y are divided into C11,C12 , C21,C22 channel-wise, where C11,C12,C21,C22 ∈ R
H×W×C/2 are 

shown below in Eqs. (9) to (12).

(6)X ∈ R
H×W×C

Ftr(3×3)
−→

Y
∈ R

H×W×C

(7)Y =

[

y1, y2 . . . yC
]

= X ∗ K

(8)yc = kc ∗ X =

C
∑

s=1

ksc ∗ x
s

Figure 2.  Structure of the proposed RCCGNet for grading of renal cell carcinoma from kidney histopathology 
images.
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The lower order features and deeper layer features are shared and concatenated at three different stages of 
the network and represented using the below-mentioned Eqs. (13), and (14), where © represents concatenation 
operation

(9)C11 =

[

x1, x2, x3 . . . x
C
2

]

(10)C12 =

[

x
C
2
+1, x

C
2
+2, x

C
2
+3 . . . xC

]

(11)C21 =

[

y1, y2, y3 . . . y
C
2

]

(12)C22 =

[

y
C
2
+1, y

C
2
+2, y

C
2
+3 . . . yC

]

Figure 3.  Shared channel residual block.
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.

The concatenated features are fed to a sequence of operations called Conv2D, Batch Normalization (BN), and 
Rectified Linear Unit (ReLU) and presented in Eqs. (15), (16).

A kind of gating mechanism is also deployed effectively and uniquely in the SCR block to focus on the most 
relevant morphological features of RCC and enable contextual information for the network while producing 
predictions. XSC is given as input to average pooling where the kernel used is (H ×W) , so that it is possible 
to extract the global information of each channel. The resulting feature is convoluted point-wise followed by 
sigmoid activation. The sigmoid activation assigns scores to each channel according to the relevance of global 
content associated with the channels. This way, it is giving attention to highly variable nuclear features present 
in different grades of kidney histopathology images. The extracted global feature calculated from Eqs. (17) and 
(18) is multiplied by input gating signal XSC and YSC respectively, and represented in Eqs. (19) and (20).

The final output of the SCR block expressed in Eq. (21) is obtained by adding original input X to the output 
generated by the gating mechanism.

Results
The performance of the proposed RCCGNet is compared with the models that uses transfer learning approach 
as well as deep learning model trained from scratch. Transfer learning methods applies the pre-trained weights 
of ImageNet dataset. This study includes examination of most recent models through two different organ his-
topathology datasets called KMC kidney dataset and BreaKHis dataset. ResNet50 network (2016)12; Inception-
ResNetV2 (2016)15; and NASNet (2018)37; utilizes transfer learning approach, where all the layers are frozen 
except the few top layers. A global average pooling layer, a dense layer, and a softmax layer were added in place 
of the final stage of the above models and used to fine-tune the model. The comparision table also includes 
models, Shufflenet (2018)24, BHCNet (2019)18, BreastNet (2020)19, and LiverNet (2021)20, which are end-to-end 

(13)XConcat =C11©C22 =

[

x1, x2 . . . x
C
2 , y

C
2
+1 . . . yC

]

(14)YConcat =C11©C22 =

[

y1, y2 . . . y
C
2 , x

C
2
+1 . . . xC

]

(15)XSC =ReLU
[

Ftr(3×3)(XConcat)
]

(16)YSC =ReLU
[

Ftr(3×3)(YConcat)
]

(17)Xint =σ
[

ftr(1×1)

[

Avg . PoolH×W {XSC}
]]

∈ R
1×1×C

(18)Yint =σ
[

ftr(1×1)

[

Avg . PoolH×W {YSC}
]]

∈ R
1×1×C

(19)Xout =Xint × XSC

(20)Yout =Xint × YSC

(21)Out = Xout + Yout + Input(X)
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trained deep learning networks. The comparison table contains a Vision Transformer (2021)31, where an image 
is interpreted as a sequence of patches and processed by a standard transformer encoder. Models trained from 
scratch does not have any pre-trained weights and all weights and biases were randomly initialized. Experimental 
results indicate that transferring ImageNet weights to classify the RCC images is not much beneficial. The data 
preparation phase, morphology, and histopathologic structure of RCC images are completely different from the 
ImageNet dataset. It would probably be more advantageous if it is possible to transfer the features of histopa-
thology data. Embedding efficient and lightweight CNN module as  in18–20 gained satisfactory improvement over 
transfer learning techniques. Table 4 shows performance of different models for grading kidney tissues from 
KMC kidney histopathology dataset.

To avoid any biased advantage we used a diverse set of quality metric which is precision, recall, F1 score, and 
accuracy which includes class-wise and overall score of the model. Overall accuracy is not the average of class-
wise accuracy, it is model accuracy based on total TP, TN, FP, and FN instances belonging to all classes. These 
values are calculated using scikit-learn library in python and it is possible that the overall metric is lower than the 
lowest metric of an individual class. For KMC kidney dataset the proposed RCCGNet achieve 90.14% classifica-
tion accuracy which is best among any comparison model. Precision, recall, and F1-score values of the proposed 
RCCGNet are 89.78%, 89.60%, and 89.06% respectively. Resnet-50 and InceptionResNetV2 utilizes transfer 
learning technique shows poor performance among all comparision models. Figure 4 shows the learning curves 
of the proposed RCCGNet. In Fig.4a,b, training curves and validation curves are very close to each other. This 
indicates training data best represents the validation data. The model which has training and validation curves 
closer to each other is robust during testing. The performance of a classifier can also be described by the confu-
sion matrix itself. Figure 4c is the classification report of the proposed model expressed in terms of the confusion 
matrix. Out of 142 instances in the test set proposed model predicts 128 cases correctly which is the maximum 
compared to any reference models. In Grade-0 and Grade-3 case there is minimum misclassified samples in the 
proposed model. Receiver operating characteristic (ROC) curve and area under the curve (AUC) indicates how 
much a classification model is capable to distinguish different grades. It is possible that some model which is not 
the best-performing model can perform better for a particular class. The average AUC of the proposed model 
is best compared to all reference models. The ROC-AUC curve of five best-performing state-of-the-art models 
using one versus rest approach is shown in Fig. 4d–h. To verify the validity of RCCGNet on proposed kidney 
KMC dataset, experiments conducted on a well established BreaKHis histopathology dataset having eight classes, 
including all the breast cancer subcategories. Table 5 shows performance of different models for classification 
of breast tissues from BreaKHis histopathology dataset. For BreaKHis dataset, the proposed RCCGNet achieve 

Table 4.  Performance metrics comparison of proposed model with other competitive model (KMC kidney 
dataset).

Metrics

Transfer learning approach End-to-end trained deep learning networks

Grade
ResNet50 
(2016)

IncResV2 
(2016) NASNet (2018)

ShuffleNet 
(2018)

BHCNet 
(2019)

BreastNet 
(2020)

LiverNet 
(2021) ViT (2021)

RCCGNet 
(proposed)

Precision

0 0.8478 0.8260 0.9523 1 0.9743 0.9210 0.9523 0.9743 0.9756

1 0.8076 0.8095 0.8571 0.9523 0.8181 0.9230 0.92 0.8260 0.8846

2 0.5937 0.6 0.7666 0.6451 0.75 0.6666 0.6896 0.8421 0.9047

3 0.7272 0.75 0.4827 0.6 0.75 0.8333 0.7142 0.5666 0.7241

4 0.7037 0.6071 0.9259 0.96 0.96 1 1 0.8709 1

Overall 0.7360 0.7185 0.7969 0.8315 0.8508 0.8688 0.8552 0.8160 0.8978

Recall

0 0.9512 0.9268 0.9756 0.9756 0.9268 0.8536 0.9756 0.9268 0.9756

1 0.7777 0.6296 0.4444 0.7407 1 0.8888 0.8518 0.7037 0.8518

2 0.76 0.84 0.92 0.8 0.84 0.96 0.8 0.64 0.76

3 0.3809 0.4285 0.6666 0.7142 0.5714 0.7142 0.7142 0.8095 1

4 0.6785 0.6071 0.8928 0.8571 0.8928 0.8571 0.8928 0.9642 0.8928

Overall 0.7097 0.6864 0.7799 0.8175 0.8462 0.8547 0.8469 0.8088 0.89606

F1 Score

0 0.8965 0.8735 0.9638 0.9876 0.9500 0.8860 0.9638 0.9500 0.9756

1 0.7924 0.7083 0.5853 0.8333 0.9 0.9056 0.8846 0.76 0.8679

2 0.6666 0.7 0.8363 0.7142 0.7924 0.7868 0.7407 0.7272 0.8260

3 0.5 0.5454 0.56 0.6521 0.6486 0.7692 0.7142 0.6666 0.84

4 0.690 0.6071 0.9090 0.9056 0.9259 0.9230 0.9433 0.9152 0.9433

Overall 0.7093 0.6869 0.7709 0.8186 0.8434 0.8541 0.8493 0.8038 0.8906

Accuracy

0 0.9366 0.9225 0.9788 0.9929 0.9718 0.9366 0.9788 0.9718 0.9859

1 0.9225 0.9014 0.8802 0.9436 0.9577 0.9647 0.9577 0.9154 0.9507

2 0.8661 0.8732 0.9366 0.8873 0.9225 0.9084 0.9014 0.9154 0.9436

3 0.8873 0.8943 0.8450 0.8873 0.9084 0.9366 0.9154 0.8802 0.9436

4 0.8802 0.8450 0.9647 0.9647 0.9718 0.9718 0.9788 0.9648 0.9788

Overall 0.7464 0.7183 0.8028 0.8380 0.8661 0.8591 0.8662 0.8239 0.9014
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90.09% classification accuracy. Precision, recall, and F1-score values of the proposed RCCGNet are 90.62%, 
88.42%, and 88.90% respectively. On BreaKHis dataset also the proposed RCCGNet is best perfoming model, 
this suggests that the proposed model is generalized independent of the dataset.

Discussion
The core idea of RCCGNet lies in the proposed shared channel residual (SCR) block. The SCR block shares the 
channel with the next higher-order layer. The proposed model contains two paths of shared information with 
a simple gating mechanism, residual connections, convolutional, and fully connected layers. To measure the 
effectiveness of the main components of RCCGNet, these components are detached from the proposed model 
and made different variations of proposed model. These variations were trained in the same environment. Visual 
performance of each variation using intermediate features and activation map was compared with the proposed 
RCCGNet where all the important modules jointly worked. Comparison of intermediate features with and with-
out channel sharing between layers for KMC kidney dataset is shown in Fig. 5 . Visual comparison of different 
CNN variations using activation map for KMC kidney dataset is shown in Fig. 6.

SCR block without channel sharing. SCR block without channel sharing is a simple version of the pro-
posed model. It has also two parallel paths and one skip connection. As discussed in Fig. 3, the first stage of the 
SCR block accepts an input that undergoes a convolution operation. In the simplified version both the input and 
feature map obtained after the convolution operation goes straight to the gating block without channel sharing. 
To verify the validity of the channel sharing method in the proposed SCR block, the extracted intermediate 
features of the proposed model, where the information is shared with the higher-order layer and a version of 
the proposed model which does not share the information between layers were analyzed and compared. The 
second stage of both CNN versions produces 32 feature maps, out of which 4 feature maps of both cases are ana-
lyzed. These four intermediate features are of four different grades. In most cases, nuclear boundaries are more 
clear and expressive when produced by sharing information between channels. The shape and size of nuclei are 
important parameters in grading cancerous tissue. The proposed method produces visible and sharp boundaries 
which help the model to learn the class representative features. The effect of channel sharing between layers can 

Figure 4.  Learning curve of RCCGNet on intoduced KMC kidney dataset. (a) Training and validation accuracy 
of proposed model. (b) Training and validation loss of proposed model. (c) Confusion matrix of proposed 
model. (d–h) Receiver operating characteristic (ROC) curve of five best-performing state-of-the-art models 
using one versus rest approach.

Table 5.  Overall quality comparison of proposed model with other competitive model (BreakHis dataset-
Eight Class).

Metrics

Transfer learning approach End-to-end trained deep learning networks

ResNet50 (2016) IncResV2 (2016) NASNet (2018)
ShuffleNet 
(2018) BHCNet (2019)

BreastNet 
(2020) LiverNet (2021) ViT (2021)

RCCGNet 
(proposed)

Precision 0.7309 0.7678 0.7147 0.7897 0.8671 0.7868 0.8361 0.7415 0.9062

Recall 0.6726 0.7642 0.7362 0.7507 0.8446 0.7313 0.7979 0.7083 0.8842

F1 Score 0.6954 0.7549 0.7026 0.7579 0.8504 0.7492 0.8156 0.7170 0.8890

Accuracy 0.7384 0.7879 0.7755 0.8018 0.8823 0.7988 0.8529 0.7956 0.9009
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Figure 5.  Comparison of intermediate features with and without channel sharing between layers.

Figure 6.  Visual comparison of different CNN variations using activation maps (red: very high probability 
score regions, orange: medium probability score regions, light blue: low probability score regions).
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be observed in Fig. 5. The visuals of intermediate features also indicated that the proposed SCR block better seg-
regates the object and background region. Without channel sharing, 2.3% drop in test accuracy were observed. 
Further, a drop in the value of F1 score, recall, and precision was also observed, which are 2.3%, 2.24%, and 
3.06% respectively. From these observations, it is clear that in the proposed SCR block, inter-channel informa-
tion sharing boosts the grading scores and effective utilization of this module in the proposed work was found 
through this ablation study.

Effect of gating mechanism. Attention block helps the model to separate the most relevant nuclear 
region from background regions. The effect of removing the attention block can be seen in Fig. 6 of RCCGNet 
variation CNN-2. It also improves the network performance as the proposed RCCGNet produced higher values 
for both the datasets. Thus, the contribution of the attention block can not be ignored and it’s imperative to 
include it in the proposed new block.

Comparision of activation maps of different variations. The proposed model is composed of sev-
eral blocks. This part demonstrates the visual performance of the aforementioned blocks using activation maps 
produced with the help of gradient-weighted class activation mapping (Grad-CAM). The classification model 
in deep learning assigns a probability score to the final stage of the classifier based on extracted critical features. 
An activation map is a simple and straight-forward visualization technique to show the assigned probability to 
the relevant regions. How well each variation of the proposed model segregate the tissue regions from back-
ground pixels can be visualized by using activation maps shown in Fig. 6. Activation maps produced in CNN-1, 
where the model is not sharing inter-channel information, high probability regions are less, and some critical 
nuclear regions are missed to assign any probability. In CNN-2, where the gating mechanism is absent, it assigns 
some probability scores to irrelevant regions for some grades, which is not desirable. False-positive cases are 
maximum in CNN-2 compared to any other variations. Total number of detected nuclei are more in CNN-2 
compared to CNN-1. In CNN-3, the complete SCR block is absent. The effect of removing the proposed SCR 
block can be observed in CNN-3 variation. Only few tissue regions get identified in the CNN-3 variation and 
the total detected nuclei are less compared to any other variations. Many relevant nuclear regions are assigned by 
lesser probability scores which results the number of partially detected nuclei being more in CNN-3. Whereas 
the proposed RCCGNet, where all the important components jointly worked, segregates tissue regions from 
background pixels better than compared to all other versions. The number of not detected and partially detected 
nuclei are very less in number in the proposed RCCGNet. In the RCCGNet, most of the tissue regions are clearly 
identified with high probability scores for all grades of images.

Figures 5 and 6 shows that the proposed RCCGNet is the best performing combination among all modifica-
tions made in the base model. This ablation study helps us to choose the best performing combination among all 
variations. The three important components togetherly making the proposed RCCGNet very effective in feature 
extraction with minimum computational complexity.

3-fold cross validation. To avoid any possible overfitting issue the proposed model and all reference mod-
els are tested using 3-fold cross-validation. Three folds of each class images were made to accomplish this. Mod-
els are trained for the first run using fold 2 and fold 3 and tested using fold 1. Model are trained in the second 
run using folds 1 and fold 3 and tested in fold 2. Similarly, for third run the models are trained using fold 1 and 
fold 2 and tested using fold 3. Table 6 lists the average outcomes of all three runs for the proposed model and the 
benchmark models. The suggested model produces nearly identical results to those shown in Table 4.  ResNet12 
and  ShuffleNet24 show considerable variations in the result of Tables 4 and 6.

Statistical analysis. Depicting data using box plot is a standard method where it distribute the whole data 
points between five regions. It is a very good measure to check the dispersion of data between minimum to 
maximum via first quartile, median, and second quartile. Accuracy, F1 score values of different models on both 
datasets is presented using box plot in Fig. 7. Each of the boxes in the box plot contains a grade-wise score and 
overall score of a model. Performance variability of the grade-wise and overall score depends on the statisti-
cal distribution of values obtained by all classification models for both datasets. Box plot shows that metrics, 
accuracy and F1 score of RCCGNet, the median value, first quartile value, and third quartile value are higher 
compared to the reference models.

Computational complexity analysis. The computational complexity of all the classification models is 
expressed in terms of total trainable parameters and floating-point operations (FLOPs). These values for pro-
posed RCCGNet and all reference models are shown in Table 7. The proposed RCCGNet uses 0.3651 million 
parameters which is the least among all reference models except BHCNet. BHCNet has marginal difference in 
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trainable parameter compared to proposed RCCGNet and it uses 0.3034 million parameters. NASNet uses least 
number of FLOPs. InceptionResNetv2 uses highest number of trainable parameters and FLOPs.

Conclusion. This work designed a fully automated deep learning framework called a Renal Cell Carcinoma 
Grading Network (RCCGNet) for the detection of malignancy levels of renal cell carcinoma (RCC) in kidney 
histopathology images. This paper is the first to propose an end-to-end automatic grading of kidney cancer 
from kidney histopathology images that were not yet focused on. In addition, we also introduced a novel kidney 
cancer dataset validated by skilled medical experts. Extraction of a class-specific representative set of features 
was possible due to the effective utilization of inter-channel information exchange at three different resolutions 
within the network. Residual connection, Information sharing between different layers, and gating mechanism 
in shared channel residual network were attributed to the distinguishing performance. We explicitly performed 
data augmentation techniques to handle the class imbalance problem. The performance of the proposed RCCG-
Net was evaluated by the most preferred quality metrics and achieved 90.14% of accuracy, and 89.06% F1-score 
on the proposed KMC kidney dataset, and on the BreakHis dataset, the proposed RCCGNet achieved 90.09% 
of accuracy, and 88.90% F1-score. Experimental results show that the proposed RCCGNet has the potential 
to grade five different grades associated with kidney cancer histopathology images with better accuracy. Our 
approach is generalized and effectively works on multiple organ histopathology datasets. It reduces the need 
for extensive computational complexity. In the future, we will focus on the considerable extension of the kidney 
dataset and other pathological datasets.

Table 6.  3-Fold cross validation average quality metrics comparison of proposed RCCGNet with other 
competitive models (KMC kidney dataset).

Metrics

 Transfer learning approach  End-to-end trained deep learning networks

Grade
ResNet50 
(2016)

IncResV2 
(2016) NASNet (2018)

ShuffleNet 
(2018)

BHCNet 
(2019)

BreastNet 
(2020)

LiverNet 
(2021) ViT (2021)

RCCGNet 
(proposed)

Precision

0 0.7917 0.8754 0.8891 0.8360 0.8963 0.9522 0.9345 0.8974 0.9390

1 0.6759 0.7307 0.6851 0.6919 0.8017 0.8241 0.8511 0.7606 0.9320

2 0.6795 0.6635 0.7829 0.7921 0.8840 0.7792 0.8305 0.8185 0.9361

3 0.6755 0.6215 0.7057 0.6499 0.8414 0.7588 0.8033 0.6980 0.8933

4 0.7369 0.7955 0.8904 0.7668 0.9390 0.8167 0.8765 0.8233 0.9475

Overall 0.7119 0.7373 0.7906 0.7473 0.8725 0.8262 0.8592 0.7996 0.9296

Recall

0 0.8475 0.8124 0.8621 0.8816 0.9803 0.8913 0.9018 0.9014 0.9607

1 0.6814 0.7555 0.7925 0.6962 0.8592 0.7925 0.8148 0.7703 0.8888

2 0.6920 0.7265 0.6968ara> 0.7333 0.7884 0.8031 0.9115 0.7904 0.9357

3 0.4583 0.575 0.6833 0.55 0.8 0.7333 0.7916 0.7083 0.9416

4 0.7930 0.7064 0.8711 0.8432 0.8644 0.9007 0.8646 0.8146 0.8931

Overall 0.6944 0.7152 0.7812 0.7408 0.8585 0.8242 0.8569 0.7970 0.9240

F1 Score

0 0.8127 0.8414 0.8746 0.8569 0.9365 0.9203 0.9152 0.8993 0.9490

1 0.6710 0.7355 0.7253 0.6935 0.8286 0.8053 0.8301 0.7645 0.9035

2 0.6792 0.6537 0.7306 0.7612 0.8283 0.7858 0.8668 0.8037 0.9327

3 0.5249 0.5710 0.6881 0.5952 0.8193 0.7430 0.7881 0.7016 0.9148

4 0.7631 0.7428 0.8805 0.8002 0.9001 0.8491 0.8702 0.8171 0.9190

Overall 0.6902 0.7089 0.7798 0.7415 0.8625 0.8207 0.8541 0.7972 0.9238

Accuracy

0 0.8877 0.9153 0.9308 0.9168 0.9626 0.9569 0.9544 0.9432 0.9709

1 0.8754 0.8989 0.8824 0.8850 0.9335 0.9292 0.9376 0.9113 0.9653

2 0.8892 0.8639 0.9184 0.9209 0.9445 0.9263 0.9513 0.9334 0.9763

3 0.8725 0.8696 0.8988 0.8753 0.9418 0.9156 0.9294 0.9002 0.9709

4 0.9044 0.9057 0.9542 0.9197 0.9626 0.9390 0.9502 0.9293 0.9695

Overall 0.7146 0.7268 0.7924 0.7589 0.8726 0.8336 0.8615 0.8088 0.9265
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Data availibility
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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