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A machine learning approach 
for early prediction of gestational 
diabetes mellitus using elemental 
contents in fingernails
Yun‑Nam Chan 1,5, Pengpeng Wang 3,4,5, Ka‑Him Chun 1, Judy Tsz‑Shan Lum 1, Hang Wang 3,4, 
Yunhui Zhang 3,4 & Kelvin Sze‑Yin Leung 1,2*

The aim of this pilot study was to predict the risk of gestational diabetes mellitus (GDM) by the 
elemental content in fingernails and urine with machine learning analysis. Sixty seven pregnant 
women (34 control and 33 GDM patient) were included. Fingernails and urine were collected in the first 
and second trimesters, respectively. The concentrations of elements were determined by inductively 
coupled plasma‑mass spectrometry. Logistic regression model was applied to estimate the adjusted 
odd ratios and 95% confidence intervals. The predictive performances of multiple machine learning 
algorithms were evaluated, and an ensemble model was built to predict the risk for GDM based on the 
elemental contents in the fingernails. Beryllium, selenium, tin and copper were positively associated 
with the risk of GDM while nickel and mercury showed opposite result. The trained ensemble model 
showed larger area under curve (AUC) of receiver operating characteristic curve (0.81) using fingernail 
Ni, Cu and Se concentrations. The model was validated by external data set with AUC = 0.71. In 
summary, the results of the present study highlight the potential of fingernails, as an alternative 
sample, together with machine learning in human biomonitoring studies.

Gestational diabetes mellitus (GDM) is one of the most common pregnancy complications threatening both 
maternal and fetal  health1. The prevalence of GDM in China is 14.8%, which is the largest  worldwide2. GDM 
is known as impaired glucose tolerance during pregnancy. In healthy pregnant women, the demand of insulin 
increases to store glucose for later stages of pregnancy. However, the dysfunction of pancreatic β-cell occurred 
in GDM pregnant women resulted in insufficient of insulin and causes  hyperglycemia3. In literature, there is 
increasing evidence that certain heavy metals in pregnant women is associated with the risk of GDM. For exam-
ple, several meta-analyses have reported that increased levels of arsenic (As)4, iron (Fe)5 and cadmium (Cd)6 
were associated with the risk of GDM. However, contradictory results have been reported. For instance, two 
recently published studies evaluated the association between multi-elements and GDM. One of them reported 
that urinary Ni was positively associated with  GDM7 while another reported no significant association between 
Ni and  GDM8. More studies are required for confirming an association between heavy metals and GDM.

Studies involving nail samples (i.e., fingernails, toenails) in human biomonitoring (HBM) have proliferated 
in recent years due to the ease of collection and their biological properties compared with blood and  urine9. The 
major advantages of nails over blood and urine are that samples represent long-term accumulation; collection 
is simple, easy and non-invasive; and storage and transport are also simple, easy, and convenient. Due to the 
slow growth rate of nails, nails record exposure over periods ranging from a few weeks to more than a  year10. 
The correlation between elemental contents in nail samples and diabetes have been evaluated in various studies. 
Copper (Cu)11 and selenium (Se)12 were inversely associated with the risks of diabetes and obesity. In contrast, 
exposure to mercury (Hg) and nickel (Ni)13 increased the risk of diabetes. There has been only one study, however, 
assessing the relationship between elements in nails and GDM. That study evaluated the correlation between As 
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in toenails and the risk of  GDM14. Understanding the correlation between nail elements and GDM may promote 
the use of nails as a simple, non-invasive way of monitoring the risk for GDM in clinical applications.

Machine learning analysis is an emerging trend in the field of HBM. Conventional statistical models describe 
the features of data based on various assumptions rather than predicting the risk of disease development. In 
contrast, machine learning aims at developing models through general learning algorithms from data to predict 
 outcomes15. Machine learning has been widely applied for predicting and/or classifying different diseases based 
on elemental contents in the body. The concentration of six elements in cerebrospinal fluid was used to predict 
the risk of Parkinson’s disease using Support Vector Machine  Model16. In another study, healthy individual and 
nasopharyngeal carcinoma (NPC) patients were accurately classified according to the elemental contents in 
their blood serum. This study highlights the potential of early diagnosis of NPC. In terms of GDM prediction 
by machine learning, several biomarkers in blood have provided acceptable prediction for the risk of  GDM17–19. 
The many known risk factors of GDM, such as age, pre-pregnancy BMI and family history of  diabetes20, have also 
been proved to be valuable in the prediction of GDM using machine  learning20–22. However, these risk factors 
failed to fully elucidate the etiology of GDM. As mentioned previously, elements were associated with the risk 
of GDM. Machine learning is a good way to explore and establish the predictive value of elements together with 
conventional risk factors for the incidence of GDM. Moreover, fingernail samples used in this study reflected 
elemental contents in pregnant women well before the onset of GDM, demonstrating a great potential for early 
prediction on the risk of GDM. To the best of our knowledge, this is the first study applying machine learning 
for GDM prediction based on the elemental contents determined in fingernail samples.

The present nested case–control study aimed to demonstrate the ability of machine learning to predict GDM 
based on analysis of elements in fingernails. Twenty-seven elements were monitored in fingernails by ICP-MS 
after acid digestion. The risk of GDM was predicted by ensemble subspace model using the elemental contents 
in fingernails as well as the clinical information. The performance of optimized prediction model trained by 
fingernails elemental contents was also evaluated.

Results
Basic characteristics. The basic characteristics of control and GDM pregnant women are listed in Table 1. 
No significant associations were observed for the characteristics assessed between control and GDM group. One 
outlier was observed from the GDM patient fingernail elemental contents while four patient urinary elemental 
contents were found missing. Hence, only 33 and 30 GDM patients were included in the fingernails and urine 
statistical analyses, respectively.

Elemental contents in fingernails. The detection rates, median concentrations, and the interquartile 
ranges (IQR) of elements in fingernails are summarized in Table 2. The detection rates of beryllium (Be), arse-
nic (As), molybdenum (Mo), cerium (Ce) and mercury (Hg) were below 90%. The concentrations of Be (p 
value < 0.001), selenium (Se) (p value = 0.003), tin (Sn) (p value = 0.009) and antimony (Sb) (p value = 0.032) in 
fingernails of GDM patient were significantly higher than those of the control group while the concentration 
of nickel (Ni) (p value = 0.029) and mercury (Hg) (p value = 0.005) in fingernails of GDM patients showed the 
opposite trend.

Associations between elemental concentration in fingernails and GDM. The association between 
the elemental concentrations in fingernails and GDM was calculated by logistic regression model. Table 3 lists 
the crude odd ratio with the 95% confidence interval of each element. Among the 27 elements, Se (OR: 43.49, 
95% CI 3.54–847.67), Sn (OR: 2.32, 95% CI 1.13–5.55) and Be (OR: 1.52, 95% CI 1.23–1.97) were positively 
association with GDM. Ni (OR: 0.50, 95% CI 0.25–0.92) and Hg (OR: 0.73, 95% CI 0.58–0.89) were negatively 
associated with GDM. We further analyzed the association between elements and the risk of GDM based on the 
tertiles of elemental concentrations (Table 4). The risk of GDM increased with the concentrations of Be (OR: 
8.64, 95% CI 2.04–45.44 in the highest tertile), Cu (OR: 8.08. 95% CI 1.93–41.78 in the second tertile), Se (OR: 
4.67, 95% CI 1.23–19.73 in the highest tertile) and Sn (OR: 6.78, 95% CI 1.68–32.34 in the highest tertile). Sig-
nificant positive dose–response relationships were observed for Be (adjusted p for trend: 0.090) and Sn (adjusted 
p for trend: 0.090). The risk of GDM decreased with increased concentrations of Ni (OR: 0.020, 95% CI 0.05–0.77 
in the highest tertile) and Hg (OR: 0.21, 95% CI 0.05–0.84 in the second tertile and OR: 0.10, 95% CI 0.02–0.41 
in the highest tertile). Significant negative dose–response relationship was observed for Hg (adjusted p for trend: 
0.081).

Prediction performance of ensemble model. Machine learning analysis can help predict diseases 
including GDM. In the present study, we utilized machine learning to evaluate the correlation between multi-
element contents and the risk of GDM based on the results from the traditional statistical analysis. According to 
the logistic regression analysis shown above, Be, Ni, Cu, Se, Sn and Hg were found significantly associated with 
the risk of GDM. Due to the low detection rate of Be and Hg, they were not included in the machine learning 
algorithm to minimize the bias generated by the accumulation of larger portion of data points.

The training data set was firstly trained by SVM, KNN, DA, ensemble and NB to select the most accurate 
algorithm for further analysis. The performances of trained models were compared using the AUC of ROC. The 
average AUC of the ensemble subspace algorithm resulted in the highest AUC (0.78) with the smallest standard 
deviation among the tested algorithms. Because this indicate a higher reproducibility, it was used in further 
analysis (Supplementary Fig. S1).

In the first attempt, a single element was used to train models; the results are shown in Supplementary 
Table S5. In order to further enhance the accuracy of the trained models, multi-element models were employed 
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to improve the prediction performance. All possible combinations were evaluated by the ensemble model with 
the best results summarized in Table 5. The highest AUC obtained was 0.81 using Ni, Cu and Se as predictors. 
When Sn was added to the trained model, the AUC did not change significantly while the accuracy and sensitiv-
ity of models decreased significantly to 0.65 and 0.71 respectively. Hence, the combination of Ni, Cu and Se was 
evaluated together with the basic characteristics of participants to maximize the prediction accuracy. Finally, 
six different basic characteristics were added on top of the combination of Ni, Cu and Se to evaluate the predic-
tion performance. However, the prediction performance of trained models deteriorated due to the decrease of 
sensitivity (Supplementary Table S6). Hence, models trained by Ni, Cu and Se without any basic characteristics 
were further validated by testing data set in the subsequent study.

Comparison of prediction performance of models constructed from fingernails and urine 
data. The association of urinary elements with GDM and the prediction performance with urinary elements 
are detailed in Supplementary Table S3. Among the 10 elements (Li, Mg, Ni, Cu, Zn, As, Se, Sr, Mo, Sn) with 
detection rates at 90% or above, none showed significant association between control and GDM groups. There 
was also lack of significant dose–response relationships between the target elements and the risk of GDM (Sup-
plementary Table S8).

The machine learning analysis of urinary elements was carried out like fingernails. As shown in Supplemen-
tary Fig. S2, kNN and ensemble models resulted in similar AUCs. The training process of kNN was much faster 
than that of the ensemble model; hence the kNN model was used for training models with urinary elemental 
contents. The best prediction combination was given by urinary Cu, Se and Sn concentrations in addition to pre-
pregnancy BMI, physical activity pattern and parity (Supplementary Table S11). After selecting the optimized 
models for fingernails and urine respectively, the testing data set was used to validate the prediction performance 
of both models. Figure 1 shows that the trained fingernail model (AUC: 0.71) performed better than the urine 
model (AUC: 0.49) in predicting GDM.

Table 1.  Basic characteristics of control and GDM pregnant women. p value of age and pre-pregnancy BMI 
were calculated by Mann–Whitney U test; p value of education level, income, passive smoking, physical activity 
pattern, family history of diabetes and parity were calculated by Pearson Chi-square test.

Characteristic Total (n = 67) Control (n = 34) GDM (n = 33) p value

Education level 0.33

Junior high school 10 (14.9%) 4 (12.1%) 6 (17.6%)

High school 12 (17.9%) 7 (21.2%) 5 (14.7%)

Junior college 20 (29.9%) 7 (21.2%) 13 (38.2%)

University/above 25 (37.3%) 15 (45.5%) 10 (29.4%)

Income (CNY per year) 0.85

 < 100,000 19 (28.4%) 8 (24.2%) 11 (32.4%)

100,000–200,000 32 (47.8) 18 (54.5%) 14 (41.2%)

200,000–300,000 8 (11.9%) 3 (9.1%) 5 (14.7%)

300,000–400,000 4 (6.0%) 2 (6.1%) 2 (5.9%)

400,000–500,000 4 (6.0%) 2 (6.1%) 2 (5.9%)

Passive smoking 0.39

Yes 16 (23.9%) 6 (18.2%) 10 (29.4%)

No 51 (76.1%) 27 (81.8%) 24 (70.6%)

Physical activity pattern 0.55

Low strength 28 (41.8%) 13 (39.4%) 15 (44.1%)

Middle strength 37 (55.2%) 18 (54.5%) 19 (55.9%)

High strength 2 (3.0%) 2 (6.1%) 0 (0.0%)

Family history of diabetes 1.00

Yes 65 (97.0%) 32 (97.0%) 33 (97.1%)

No 2 (3.0%) 1 (3.0%) 1 (2.9%)

Parity 0.63

1 time 34 (50.7%) 18 (54.5%) 16 (47.1%)

 > 1 time 33 (49.3%) 15 (45.5%) 18 (52.9%)

Age

Mean (SD) 30.7 (± 4.3) 30.9 (± 4.1) 30.5 (± 4.5) 0.65

Pre-pregnancy BMI

Mean (SD) 21.9 (± 3.5) 22.2 (± 3.7) 21.6 (± 3.3) 0.29
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Table 2.  Elemental concentrations in fingernails of control and GDM group. Concentration presented in 
median (IQR) (ng/g). *Concentration presented in median (IQR) (µg/g). Bolded: p value calculated by Mann–
Whitney U test.

Elements Below LOD (%) (n = 67) Control (n = 34) GDM (n = 33) p value

Li 0 (0.0%) 16.13 (12.70–27.11) 15.97 (12.67–20.46) 0.866

Be 27 (40.3%)  < LOD (< LOD-0.18) 0.16 (0.09–0.74)  < 0.001

Mg* 0 (0.0%) 90.02 (77.40–96.87) 83.17 (72.88–96.29) 0.807

Al* 0 (0.0%) 19.16 (13.74–30.19) 21.09 (15.35–27.85) 0.603

V 0 (0.0%) 40.26 (28.83–58.33) 41.19 (26.46–65.88) 1

Cr 0 (0.0%) 292.10 (184.39–511.32) 330.30 (219.68–489.79) 0.730

Mn 0 (0.0%) 340.44 (224.68–571.81) 321.89 (265.13–500.33) 0.885

Fe* 0 (0.0%) 26.54 (21.53–33.47) 26.21 (20.03–33.51) 0.577

Co 0 (0.0%) 16.14 (11.89–23.99) 17.53 (13.35–30.27) 0.377

Ni 0 (0.0%) 793.81 (505.64–1603.92) 409.46 (313.36–890.30) 0.029

Cu 0 (0.0%) 3972.89 (3186.18–5258.24) 4398.95 (3798.94–5369.89) 0.278

Zn* 0 (0.0%) 81.42 (76.63–87.00) 87.23 (76.33–96.86) 0.121

As 37 (55.2%) 3.30 (< LOD-43.76)  < LOD (< LOD-21.65) 0.306

Se 0 (0.0%) 461.54 (400.94–543.12) 532.95 (481.76–665.16) 0.003

Sr 0 (0.0%) 770.16 (443.18–1065.63) 756.93 (492.83–1093.87) 1

Mo 13 (19.4%) 5.95 (1.00–17.79) 4.61 (0.45–18.67) 0.826

Cd 0 (0.0%) 23.91 (16.75–57.42) 21.26 (11.09–32.90) 0.158

Sn 0 (0.0%) 315.44 (199.85–576.30) 561.75 (295.81–733.55) 0.009

Sb 0 (0.0%) 39.27 (27.95–57.71) 49.02 (35.15–88.80) 0.032

Ba 0 (0.0%) 867.26 (573.90–1375.13) 752.44 (552.27–1283.23) 0.551

La 0 (0.0%) 10.98 (8.28–16.54) 11.47 (7.67–17.02) 0.945

Ce 17 (25.4%) 7.62 (< LOD-21.87) 7.84 (0.99–16.38) 0.884

Hg 11 (16.4%) 92.09 (44.09–141.39) 32.43 (0.02–76.56) 0.005

Tl 0 (0.0%) 0.37 (0.20–0.47) 0.38 (0.26–0.59) 0.307

Pb 0 (0.0%) 617.40 (277.10–1073.17) 560.91 (364.66–865.72) 0.846

Bi 4 (6.0%) 5.34 (2.04–12.38) 4.67 (2.83–10.90) 0.812

U 0 (0.0%) 3.79 (2.78–6.30) 4.99 (2.63–9.35) 0.246

Table 3.  Adjusted odd ratio (OR) of elements in fingernails for the risk of GDM. Odd ratio adjusted for 
education level, income, passive smoking, physical activity pattern, family history of diabetes, parity, age 
and pre-pregnancy BMI. Bold: p value < 0.05 by logistic regression analysis. FDR correction was indicated in 
adjusted p value (significant level: p value < 0.1).

Element OR (95%CI) p value Adjusted p value Element OR (95%CI) p value Adjusted p value

Li 0.71 (0.29, 1.52) 0.405 0.810 Sr 1.03 (0.43, 2.51) 0.943 0.943

Be 1.52 (1.23, 1.97) 0.000 0.000 Mo 0.99 (0.88, 1.11) 0.858 0.918

Mg 1.67 (0.16, 20.87) 0.676 0.810 Cd 0.56 (0.25, 1.15) 0.421 0.810

Al 1.32 (0.51, 3.46) 0.569 0.810 Sn 2.32 (1.13, 5.55) 0.037 0.077

V 1.22 (0.44, 3.50) 0.703 0.810 Sb 2.11 (0.99, 5.31) 0.076 0.200

Cr 0.84 (0.34, 1.99) 0.683 0.810 Ba 0.87 (0.38, 1.91) 0.720 0.810

Mn 1.25 (0.48, 3.37) 0.650 0.810 La 0.95 (0.47, 1.84) 0.884 0.918

Fe 0.71 (0.16, 2.99) 0.647 0.810 Ce 1.03 (0.94, 1.13) 0.530 0.810

Co 1.28 (0.51, 3.34) 0.592 0.810 Hg 0.73 (0.58, 0.89) 0.003 0.041

Ni 0.50 (0.25, 0.92) 0.035 0.077 Tl 1.64 (0.62, 4.56) 0.322 0.810

Cu 4.26 (0.80, 26.80) 0.101 0.342 Pb 1.15 (0.59, 2.30) 0.679 0.810

Zn 5.43 (0.40, 141.57) 0.262 0.390 Bi 1.08 (0.93, 1.28) 0.332 0.810

As 0.95 (0.84, 1.07) 0.421 0.810 U 1.42 (0.78, 2.75) 0.272 0.810

Se 43.49 (3.54, 847.67) 0.006 0.041
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Element Tertile OR (95%CI) p value Element Tertile OR (95%CI) p value

Li

Q1 ref ref

Cu

Q1 ref ref

Q2 0.48 (0.13, 1.75) 0.274 Q2 8.08 (1.93, 41.78) 0.007

Q3 0.90 (0.26, 3.11) 0.863 Q3 2.44 (0.65, 9.86) 0.193

P for trend 0.945 P for trend 0.624

Be

Q1 ref ref

Zn

Q1 ref ref

Q2 2.78 (0.72, 11.85) 0.147 Q2 0.30 (0.07, 1.23) 0.106

Q3 8.64 (2.04, 45.44) 0.006 Q3 2.61 (0.68, 10.74) 0.169

P for trend 0.090 P for trend 0.493

Mg

Q1 ref ref

As

Q1 ref ref

Q2 0.68 (0.17, 2.63) 0.581 Q2 2.18 (0.61, 8.24) 0.235

Q3 0.91 (0.24, 3.48) 0.884 Q3 1.03 (0.27, 4.02) 0.963

P for trend 0.945 P for trend 0.945

Al

Q1 ref ref

Se

Q1 ref ref

Q2 1.27 (0.34, 4.81) 0.720 Q2 3.00 (0.82, 11.93) 0.103

Q3 1.61 (0.46, 5.82) 0.457 Q3 4.67 (1.23, 19.73) 0.028

P for trend 0.945 P for trend 0.140

V

Q1 ref ref

Sr

Q1 ref ref

Q2 0.87 (0.25, 3.01) 0.822 Q2 1.13 (0.31, 4.22) 0.849

Q3 1.38 (0.36, 5.51) 0.644 Q3 1.07 (0.27, 4.30) 0.925

P for trend 0.945 P for trend 0.945

Cr

Q1 ref ref

Mo

Q1 ref ref

Q2 1.52 (0.42, 5.74) 0.524 Q2 1.05 (0.29, 3.77) 0.944

Q3 1.35 (0.32, 5.88) 0.679 Q3 1.17 (0.31, 4.46) 0.816

P for trend 0.945 P for trend 0.945

Mn

Q1 ref ref

Cd

Q1 ref ref

Q2 1.55 (0.45, 5.58) 0.492 Q2 0.27 (0.06, 1.00) 0.056

Q3 1.34 (0.37, 5.02) 0.657 Q3 0.32 (0.07, 1.39) 0.135

P for trend 0.945 P for trend 0.493

Fe

Q1 ref ref

Sn

Q1 ref ref

Q2 1.01 (0.27, 3.80) 0.985 Q2 2.38 (0.62, 9.88) 0.215

Q3 1.09 (0.29, 4.20) 0.896 Q3 6.78 (1.68, 32.34) 0.010

P for trend 0.945 P for trend 0.090

Co

Q1 ref ref

Sb

Q1 ref ref

Q2 2.62 (0.65, 11.71) 0.186 Q2 0.94 (0.25, 3.53) 0.930

Q3 1.24 (0.34, 4.53) 0.746 Q3 2.46 (0.68, 9.67) 0.179

P for trend 0.945 P for trend 0.493

Ni

Q1 ref ref

Ba

Q1 ref ref

Q2 0.38 (0.10, 1.39) 0.152 Q2 0.76 (0.21, 2.68) 0.669

Q3 0.20 (0.05, 0.77) 0.024 Q3 0.74 (0.19, 2.90) 0.660

P for trend 0.140 P for trend 0.945

La

Q1 ref ref

Pb

Q1 ref ref

Q2 1.06 (0.29, 3.93) 0.928 Q2 1.57 (0.44, 5.78) 0.489

Q3 1.06 (0.30, 3.77) 0.930 Q3 1.15 (0.28, 4.81) 0.845

P for trend 0.945 P for trend 0.945

Ce

Q1 ref ref

Bi

Q1 ref ref

Q2 2.46 (0.65, 10.08) 0.194 Q2 2.88 (0.76, 11.89) 0.127

Q3 1.01 (0.27, 3.82) 0.989 Q3 0.98 (0.28, 3.44) 0.972

P for trend 0.945 P for trend 0.945

Hg

Q1 ref ref

U

Q1 ref ref

Q2 0.21 (0.05, 0.84) 0.034 Q2 0.76 (0.20, 2.83) 0.685

Q3 0.10 (0.02, 0.41) 0.003 Q3 2.28 (0.66, 8.28) 0.199

P for trend 0.081 P for trend 0.606

Continued
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Discussion
This is the first study predicting the risk of GDM based on the elemental content of fingernails using a machine 
learning algorithm. A similar approach has been used to evaluate the risk of GDM based on the metabolites of 
 urine23. Conventional statistical models have been widely applied to evaluate the association between elements 
and GDM in many  studies14,24,25. However, no studies have applied machine learning for this purpose. In the 
present study, we first used conventional statistical models, and found significant associations of Be, Ni, Se, Sn, 
Sb, Cu and Hg with GDM (Table 2 to Table 4). We here present the first report of a significant association between 
Be concentration and GDM. Nevertheless, statistical models cannot conclusively determine the risk of GDM 
solely by the association with elements. According to Senat, et al., many other basic characteristics including 
age, pre-pregnancy BMI, and family history of diabetes are general risk factors for  GDM26. Passive  smoking24; 
 parity25 has also been reported as a potential risk factor. Machine learning can take into account these many 
factors. Hence, machine learning analysis was implemented to find the hidden pattern in multi-factorial data 
collected from pregnant women with and without GDM, and then predict the risk of GDM with trained models.

Numerous machine learning models for the prediction of GDM have been  reported27,28; however, there is no 
consensus as to which one is best. As shown in Supplementary Fig. S1, the prediction performances of 15 machine 
learning algorithms were compared using the training data set. Ensemble models and SVM models resulted 
in similar AUC in the trained models, but the ensemble subspace model was more reproducible, suggesting it 
would be more reliable for the data in the present study. The major advantage of ensemble models over SVM is 
that ensemble models use multiple single models to form a new model. As a result, the prediction performance 
of an ensemble algorithm is usually better than a single  algorithm29. After selecting the algorithms, different 
combinations of elements as well as basic characteristics were used to train models to obtain the highest accuracy.

The model was firstly trained by single element content in fingernails. The results of single element models 
(Supplementary Table S5) show that only the ensemble model trained by Cu level in fingernails provided accept-
able prediction performance. Multiple studies have reported that multi-elements exposure is significantly associ-
ated with  GDM7,8. Hence, we also evaluated the performance of models trained by multiple elements, ranging 
from two element combinations to four element combinations. Table 5 shows that when the number of elements 
increased, the prediction performance of the trained model also increased. The trained model was validated by 
an external testing data set. Figure 1 shows that acceptable accuracy was obtained by the trained model, which 
suggested that the concentrations of Cu, Ni and Se were important predictors for GDM. In the present study, 
addition of the basic characteristics of pregnant women did not improve the prediction performance of the 
machine learning models. It indicated that the models used in the present study worked better for numerical 
variables but not categorical  variables30.

The elements used to train the predictive model were similar to most of the other studies. The correlation 
between circulating Cu level and GDM was summarized using the data from 14 published studies. It was con-
cluded that high serum Cu was positively associated with the risk of GDM, especially among Asians during the 
third  trimester31. Multiple systematic reviews and meta-analyses have focused on the association between Se 
and GDM. Those studies were consistent in concluding that Se concentrations were low in women with GDM 
compared with normal women, while the present study shows an opposite trend. The studies involved in those 
reviews determined serum Se level in either second or third  trimesters32–34; while in this study Se levels were 
measured in the first trimester. Studies reporting the correlation of blood or urinary Ni with GDM are limited, 
and the conclusions are inconsistent. The present study found significant negative association between finger-
nail Ni level and GDM while the above mentioned studies reported no significant  association8 and positive 
 association7, respectively. Our results show that the correlation between fingernail elements and GDM is different 
from that of blood and urine.

Although the trained model in the present study did not include basic characteristic as predictors, our models 
highlighted fingernail Cu, Ni and Se concentrations as potential predictors for GDM. To the best of our knowl-
edge, this is the first study demonstrating the prediction of GDM by elemental contents using machine learn-
ing. Our model outperformed the models trained by serum triglyceride and fasting plasma glucose level (AUC: 
0.68)17. Our trained model also performed comparably to another model trained by cytosine-phosphate-guanine 
levels in blood (AUC: 0.82)19. Although excellent prediction models constructed by putrescine and microRNA 
with AUC 0.95 and 0.91, respectively, have been reported, studies using those models did not include external 
validation by a testing data  set18,27. Our prediction model was validated by a testing data set and resulted in AUC 
0.71, which indicated acceptable performance.

Element Tertile OR (95%CI) p value Element Tertile OR (95%CI) p value

Tl

Q1 ref ref

Q2 0.80 (0.21, 2.93) 0.735

Q3 1.37 (0.36, 5.27) 0.639

P for trend 0.945

Table 4.  Adjusted odd ratio (OR) for the risk of GDM according to the tertiles of fingernail elemental 
concentration. Odd ratio adjusted for education level, income, passive smoking, physical activity pattern, 
family history of diabetes, parity, age and pre-pregnancy BMI. ref: reference group. p for trend was adjusted by 
FDR correction. Bold indicates p value < 0.05 by logistic regression analysis.
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Another major highlight of the present study is that fingernail samples were collected in the first trimester. To 
date, many studies involving nail samples utilized nail clippings collected either during a later stage of pregnancy 
or  postpartum35. Information obtained from nail samples represents exposure from a few weeks to a few months 
before  collection36. As a result, the association observed using those samples is closely related to the middle to 
later stage of pregnancy. In contrast, the fingernail samples used in this study represent exposure during the 
first few weeks of gestation, if not before, which is much earlier than the identification of GDM. But this is what 
prediction means: Anticipating a problem before it develops. The model used in this pilot study highlights the 
ability of fingernail Cu, Ni and Se levels to predict GDM because it was predicting the risk of GDM before the 
development of GDM.

In the present work, we collected both urine and fingernail samples from the same individual and predicted 
the risk of GDM with their elemental contents through machine learning analysis. One of the major advantages 
of using fingernails rather than urine is that the elemental detection rate in fingernails is higher than that in urine. 
The elemental analysis revealed more than 90% of 24 elements in fingernail samples, while the same analysis 
could detect only 9 elements in urine samples. For fingernails, it should be pointed out that although the detection 
rates of Be and Hg were relatively low, our model found that they had a significant association with the risk of 
GDM. In terms of the prediction performance of the trained model, prediction by fingernail elemental contents 
provided acceptable predictive accuracy for the testing data set while the prediction by urinary elemental con-
tents was similar to random guessing, as the AUC was 0.49 for the external validation result of a urine prediction 
model (Fig. 1)37. It was mainly due to the low elemental detection rate and no significant difference in elemental 
concentrations between control and GDM patients for urine sample (Supplementary Table S3). Although it is 
expected that the use of urine sample will remain dominant in HBM studies, this pilot study highlights that 
fingernails are a potential alternative sample for predicting the risk of GDM.

However, there are several important limitations that should be considered in interpreting the results of the 
present study. Firstly, the sample size was relatively small. A larger sample (more than 1000 pregnant women in 
total) will be utilized in the future study to compare the prediction performance of models with other  studies38. 
Secondly, the reason why the results of this study with regard to the correlation between some of the elements 
with GDM were not consistent with past studies is not known. For example, As content in urine or blood is well-
known for its correlation with GDM but no significant association was observed in the present  study39,40. To date, 
there is only one study reported As content in toenails in association with GDM, and it found that As content in 

Table 5.  Prediction performance of multi-element model trained by fingernail elemental contents. AUC, area 
under the receiver operating characteristic curve. No. of permutations: 100.

No. of element in group Element AUC Sensitivity Accuracy Balanced accuracy F-value Matthews correlation coefficient p value of permutation test

4 Ni, Cu, Se, Sn 0.80 0.65 0.71 0.66 0.60 0.33 0.02

3 Ni, Cu, Se 0.81 0.76 0.78 0.78 0.78 0.57  < 0.01

2 Ni, Cu 0.78 0.53 0.68 0.67 0.62 0.36 0.02

1 Cu 0.73 0.72 0.73 0.73 0.72 0.45 0.02

Figure 1.  ROC curve of best predictions given by nails and urine with ensemble model and KNN model 
respectively. The prediction performance of trained models were validated by testing data set. The AUC of 
fingernail and urine prediction models were 0.71 and 0.49, respectively.
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toenails collected 2 weeks postpartum was significantly associated with  GDM14. Our study utilized fingernails, 
collected in the first trimester. The influence of type of nails and the specific stage of pregnancy needs to be thor-
oughly examined in future studies, and other reasons for these inconsistencies need to be explored. Thirdly, the 
urinary elemental detection rates in the present study were low, which affected the results of machine learning.

Conclusion
To the best of our knowledge, this is the first study demonstrating the application of machine learning analysis 
to the prediction of GDM using the elemental contents in fingernails. Our study provides additional evidence 
for the positive association between elemental contents in fingernails and GDM. The results indicate that Ni, Cu 
and Se concentrations, in particular, in fingernails are important factors for the prediction of GDM by ensemble 
subspace models. In contrast with fingernails, the elemental contents in urine failed to predict the risk of GDM 
due to the low detection rate for most of the elements. The present study highlights the potential of GDM pre-
diction in early pregnancy using the elemental contents in fingernails. Further large scale studies are required 
to verify the correlation of elemental contents in fingernails and GDM. It should be pointed out that long-term 
exposure information provided by fingernails may also help in elucidating the mechanistic relationship between 
elements and GDM development.

Methods
Study population. This pilot, nested case–control study was based on the Shanghai Maternal-Child Pairs 
cohort study conducted at the School of Public Health, Fudan University, Shanghai. A cohort of Shanghai preg-
nant women were recruited from September 2016 to December 2017. Eligible women were those who: (1) were 
over 20 years old; (2) were free of serious chronic disorders (e.g., diabetes, high blood pressure, heart disease, 
etc.); (3) did not smoke or drink alcohol. Of these, 34 with GDM were recruited for the evaluation of the associa-
tion between elemental exposure and the risk of GDM. Diagnosis of GDM was performed by oral glucose toler-
ance test (OGTT) during gestational weeks 24–28. 34 pregnant women without GDM were selected as control 
group by propensity score matching. The control group was matched with the experimental group in terms of 
age, living district, pre-pregnancy BMI, family yearly income, education level, infant sex, parity, passive smok-
ing, and physical activity pattern.

Ethic statement. All methods were carried out in accordance with relevant guidelines and regulations. The 
study was approved by the Institutional Review Boards (IRB) of the School of Public Health, Fudan University 
(IRB#2016-04-0587). Informed consent was obtained for each participant at the time of enrollment.

Data collection. A face-to-face interview was conducted by a trained nurse with each participant using a 
standard questionnaire to collect information on age, pre-pregnancy BMI, education level, family yearly income, 
passive smoking, physical activity pattern, parity and family history of diabetes. Information on the oral glucose 
tolerance test (OGTT) of pregnant women, and infant sex were retrieved from medical records.

GDM diagnosis. The diagnosis of GDM was based on the guideline published by the Ministry of Health 
(MOH) of  China41. A 75 g OGTT was performed on pregnant women during gestational weeks 24–28. Preg-
nant women were identified as having GDM if any one of the following criteria was met: fasting plasma glu-
cose ≥ 5.1 mmol/L, 1 h plasma glucose ≥ 10.0 mmol/L or 2 h plasma glucose ≥ 5.1 mmol/L.

Sample collection. Fingernail samples (width larger than 0.2 mm) were provided by pregnant women dur-
ing 12–16 weeks of gestation. They were asked to collect nails from all fingers with a stainless-steel nail clipper. 
Fingernail samples were stored in a zip-locked plastic bag at room temperature and transported to Hong Kong 
Baptist University (HKBU) for elemental analysis. For each individual, the mass of fingernail samples used for 
ICP-MS analysis ranged from 5 to 10 mg.

Urine samples (10 mL) were collected at around 16 weeks of gestation. Samples were stored in polypropylene 
centrifuge tubes at -80 °C until analysis.

Elemental analysis. The concentration of 27 elements in fingernails was determined by inductively coupled 
plasma-mass spectrometry (ICP-MS) at HKBU while the concentration of the same 27 elements in urine was 
determined by ICP-MS in Shanghai. Fingernail samples were washed using the method recommended by the 
International Atomic Energy Agency (IAEA)42. The subsequent acid-digestion was performed using a modified 
method reported in our previous  study43. In brief, fingernail samples were transferred to 15 mL polypropylene 
tubes and then rinsed by acetone followed by ultrapure water three times. The washed samples were oven-dried 
at 60 °C overnight. Samples were then mineralized with 3 mL of concentrated nitric acid and 1 mL of 30% hydro-
gen peroxide in a microwave digestion system. The digested solution was transferred to an acid-washed beaker 
and evaporated on a hotplate until nearly dry. 5 µL of 1 µg/mL germanium standard solution was added as an 
internal standard and ultrapure water was used to make up the sample solution to 5 mL. The solution was then 
analyzed by ICP-MS. Multi-element standard solutions (Li, Be, Mg, V, Cr, Mn, Ni, As, Se, Mo, Cd, Sn, Sb, La, 
Ce, Hg, U: 0.2–10 ng/mL; Co, Tl, Bi: 0.04–2 ng/mL; Sr, Pb: 0.8–40 ng/mL; Cu, Ba: 2–100 ng/mL; Fe: 4–200 ng/
mL; Al-Zn: 8–400 ng/mL) were prepared by appropriate dilution of 1000 µg/mL of stock standard solution for 
the quantification of elements by external calibration. Since certified reference material (CRM) for nails was not 
available, hair CRM was employed for method validation. 5 mg of hair CRM or fingernail sample was digested 
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and analyzed by ICP-MS. The standard solution used in the calibration was analyzed every 20 samples to ensure 
no significant instrumental drift occurred during the analysis.

Urine samples were thawed at room temperature and vortexed (IKA, Germany) for 5 s. Then each sample was 
centrifuged (Microfuge 16, Beckman Coulter, USA) at 4000 rpm for 1 min to remove debris. 1 mL of supernatant 
was diluted with 1% (v/v) concentrated nitric acid  (HNO3) to 10 mL and vortexed for 30 s to ensure complete 
mixing. Other relevant details can be found in the Supplementary Materials.

Statistical analysis. Limit of Detections (LODs) were calculated by multiplying the standard deviation of 
7 consecutive measurements of blank standard solution by three, and then dividing that number by the slope of 
the calibration curve. Calculated concentrations below LOD were assigned the value as LOD/2 for further analy-
sis. Elements with detection rates higher than 90% were included in the machine learning algorithm. The basic 
characteristics of the participants are summarized in Table 1. The education level, income, passive smoking, 
physical activity pattern, family history of diabetes and parity were compared by Pearson chi-square test. Mann–
Whitney U test was used to examine the age and pre-pregnancy BMI. The association between elements and the 
risk of GDM were evaluated by Mann–Whitney U test and logistic regression analysis. Odd ratio (OR) and 95% 
confidence intervals (CIs) were calculated with elemental concentration as continuous variables and categorical 
variables according to the tertile distribution (The first tertile was used as the reference group) for the risk of 
GDM. The regression model was adjusted for age, pre-pregnancy BMI, education level, income, passive smok-
ing, physical activity pattern, family history of diabetes, and parity. The Pearson correlation between fingernail 
and urinary elemental concentration was determined by MATLAB R2021b software. Unless otherwise specified, 
a two-tailed p value < 0.05 was defined as statistically significant. False discovery rate (FDR) was employed for 
multiple testing with significant level defined at p value < 0.1.

Machine learning analysis was performed by MATLAB R2021b software. Maternal age and pre-pregnancy 
BMI were input as continuous variables while passive smoking, physical activity pattern, parity and family history 
of diabetes were input as categorical variables. The prediction accuracy of multiple models, including ensemble 
models, discriminant analysis (DA), support vector machine (SVM), k-nearest neighbor (kNN) and Naive Bayes 
(NB), were evaluated. The data was split into a training data set consisting of 51 individuals (75% of total indi-
vidual) and a testing data set consisting of 16 individuals (25% of total individual, control to patient ratio = 1:1). 
Ensemble modeling using a random subspace algorithm resulted in the highest area under curve (AUC) in the 
receiver operating characteristic (ROC) curve for the trained model; these models were used in all analysis in 
this pilot study. The trained ensemble models were optimized by the training data set with tenfold cross valida-
tion repeated five times. The performance of optimized models was evaluated by the test data set. Based on the 
result of the logistic regression analysis mentioned above, nickel (Ni), copper (Cu), selenium (Se), and tin (Sn) 
concentrations in fingernails were input as predictors in the ensemble model. Age, pre-pregnancy BMI, passive 
smoking, physical activity pattern, parity and family history of diabetes were incorporated in machine learning 
analysis to further optimize the prediction models. Permutation test was employed as the negative control. The 
p value of the permutation test was determined as the fraction obtained by the 100 permutations which were 
higher than the real  accuracy44. Balanced accuracy, F-value, Matthews correlation coefficient were also calculated 
with MATLAB.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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