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Real‑time botnet detection 
on large network bandwidths using 
machine learning
Javier Velasco‑Mata 1,2*, Víctor González‑Castro 1,2, Eduardo Fidalgo 1,2 & Enrique Alegre 1,2

Botnets are one of the most harmful cyberthreats, that can perform many types of cyberattacks 
and cause billionaire losses to the global economy. Nowadays, vast amounts of network traffic are 
generated every second, hence manual analysis is impossible. To be effective, automatic botnet 
detection should be done as fast as possible, but carrying this out is difficult in large bandwidths. To 
handle this problem, we propose an approach that is capable of carrying out an ultra-fast network 
analysis (i.e. on windows of one second), without a significant loss in the F1-score. We compared 
our model with other three literature proposals, and achieved the best performance: an F1 score of 
0.926 with a processing time of 0.007 ms per sample. We also assessed the robustness of our model 
on saturated networks and on large bandwidths. In particular, our model is capable of working on 
networks with a saturation of 10% of packet loss, and we estimated the number of CPU cores needed 
to analyze traffic on three bandwidth sizes. Our results suggest that using commercial-grade cores 
of 2.4 GHz, our approach would only need four cores for bandwidths of 100 Mbps and 1 Gbps, and 19 
cores on 10 Gbps networks.

Over the last years, botnets have gained more and more presence on the Internet: in their 2020 report, the FBI’s 
Internet Crime Complaint Center (IC3) recorded more than $4.1 billion in losses related to cybercrime, suf-
fered both by individuals and by companies1. A year later, the recorded losses ascended to $6.9 billion2. Botnets 
are one of the main concerns since they allow expanding online attacks such as Distributed Denial of Service 
(DDoS)3, Spam campaigns4, espionage5, Phishing6 and Ransomware7. This raises the necessity of developing 
botnet countermeasures.

Traffic analyzers can use different approaches: the first ones were based on recognizing known patterns inside 
the payloads of traffic8,9, but their main downside is that there exist obfuscation techniques to bypass these tools’ 
analyses10. Recent proposals that use Machine Learning (ML) techniques11 assume that botnet traffic reflects 
behavior of its related malware. While ML classifiers achieved great detection rates for botnets12, little work has 
been done on adapting these methods to high-demanding environments. In Industry 4.013, it is necessary to carry 
out a quick detection of potential threats, ideally, in real time or close to real time. Current studies on Software 
Defined Networks (SDN) measured the hardware requirements to detect botnets14–16, but they were limited to 
mobile 5G networks. In this work we adopt a wider research line giving insights on the computer requirements 
to detect botnets on the standards TCP and UDP on any type of traffic networks that support these protocols, 
with bandwidths up to 10 Gbps. The main contributions of this paper are:

•	 A high-capacity approach to classify the network traffic in large bandwidths (tested up to 10 Gbps), in 
comparison to the state-of-the-art methods, as far as we know from our research on current literature. As a 
disclaimer, we refer to methods that analyze the traffic derived from TCP and UDP based communications 
between machines, not to methods based on DNS queries or on any kind of blacklists. The novelty of our 
approach is that it can work on time windows of just one second and yield the analysis of that frame in the 
next 1 to 2 seconds thanks to the use of only four features whose computation is very quick. Additionally, we 
also assess the performance of our model on saturated networks.

•	 Experimental evidence on why an incorrect use of the network IPs as traffic features is counterproductive.
•	 A novel study on the hardware required to implement our approach and achieve real-time detection. We 

estimate the number of CPU cores necessary to process network bandwidths of 100 Mbps, 1 Gbps and 10 
Gbps, assuming that the cores work with a frequency of 2.4 GHz.
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As the classifier for our approach, we selected a Decision Tree, following the results of our previous work17, in 
which we compared the computational costs of four different models – Decision Tree (DT), Random Forest 
(RF), k-Nearest Neighbors (kNN) and Support Vector Machines (SVM)–, and realized that DT was the most 
efficient among them.

Finally, we compared our model to other three state-of-the-art approaches that could also be implemented to 
use time windows of one second, and we assessed that our approach was an order of magnitude faster. Figure 1 
shows the graphical abstract of this paper.

The rest of the paper is structured as follows: “State of the Art” Section presents the state-of-the-art on net-
work traffic analysis under real-time restrictions. “Methodology” Section  explains the methods used in this 
work, while “Experimentation and Results” Section presents the experiments carried out in this work and the 
dataset used, as well as the obtained results. The conclusions of this work and future lines of work are explained 
in  “Conclusions” Section.

State of the art
Several works have tackled the problem of optimizing botnet detection from different perspectives and consider-
ing different aspects of the traffic. While our work is focused on the traffic generated in communications between 
bots or with the botmaster – the device that controls the bots –, other noteworthy approaches18–20 focused 
on detecting suspicious DNS requests: in this case, the bots include a string generator or Domain Generator 
Algorithm (DGA) and the server of the botmaster is hidden behind one or more of the domains that would be 
generated. Specifically, the bots would try to connect with the botmaster by making DNS requests with each 
of the generated domains, until one works. Recently, Yin et al.21 developed ConnSpoiler, a system optimized 
to detect this kind of DNS requests on IoT networks. The detector was based on the Threshold Random Walk 
(TRW) algorithm, and it was tested over a private dataset made with traces from a Chinese ISP network, which 
offered Internet services for the education, research, scientific and technical communities, relevant government 
departments and Hi-Tech Enterprises. The system ran over a single CPU of 2.00 GHz, and it only needed 3.3% 
of its capacity per device to be monitored, with a false positive rate of about 0.13% . Highnam et al.22 developed 
the Bilbo the“bagging” model, which combined two neural networks, a CNN and a LSTM, to determine whether 
a URL is legitimate or generated with a DGA. In their experimentation on four hours of real traffic, Bilbo dis-
covered five potential botnets that commercial tools did not warn about. Finally, DNS-based approaches can be 
complemented with other methods, creating frameworks such as BotDet23, which combines a DGA detector with 
other three modules based on blacklists for TOR servers and malicious IPs and SSL certificates.

Regarding approaches that analyze the inter-bot communications, one of them is to analyze traffic from vari-
ous locations at the same time. This is specially relevant in distributed environments. One example is BotGuard24, 
a lightweight analyzer for SDN. It gathers the traffic data from switches in the network, which is then analyzed 
with a detection engine based on a Convex Lens Imaging graph (CLI-graph). According to their experiments on 
self-generated traffic from an SDN and using the computational power of an Intel i5 CPU, their system is able to 
detect botnet activity with an accuracy higher than 90% and a delay lower than 56 ms.

Figure 1.   Visualization of the contributions presented in this work. We proposed an efficient classifier of 
network traffic capable of working on time windows of one second and yield the result in the following 1 to 
2 seconds. Our model uses four features: the two port numbers (i.e., destination and source), the number of 
packets, and the number of bytes transmitted. First, we compared the F1 score of our model working on time 
windows of one second against time windows of 180 s, as recommended by the literature. Then, we compared 
our model against three other models from the state-of-the-art. Next, we assessed the capability of our model to 
work on saturated networks, and finally we measured the hardware requirements to attain a real-time detection 
using our model.
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In IoT communications, Borges et al.25 developed an anomaly detector that only required to measure the 
number of packets sent by a device in time windows of just 0.1 s. In more detail, the concatenation of these 
measures makes a time series that is firstly transformed in a series of symbolic patterns through an ordinal pat-
tern transformation, which is then analyzed by the detector in search for anomalous patterns. According to their 
results on the N-BaIoT dataset, they achieved accuracies between 98.5% and 100% when they used time series 
of length m ≥ 400 . As a limitation, they reported that constructing and processing the time series required at 
least 1 minute before performing the detection. After that, the detection time was 24 ms in the best case and 40 
ms in the worst case scenario.

Singh et al.26 developed a scalable implementation using open-source tools such as Hadoop27, Hive28 and 
Mahout29 to process high volumes of data. The traffic classification algorithm was Random Forest, and it was 
tested with CAIDA datasets30. This approach was able to extract the features of 1 GB pcap files in 51 s, and, thus, 
it could process high bandwidths of data in quasi-real-time with a 5 to 30 s of delay, while attaining an accuracy 
of 99.7%.

It is also possible to develop models that work on generic traffic31 such as BotMiner32. A frequent strategy to 
optimize these detectors is the selection of the best features: it reduces the characteristics to extract from the data 
and also the complexity of the classifier. In33 the features are selected using the Gini Importance metric, and the 
classification is made with a Random Forest (RF) classifier. Over the well-known CTU-13 dataset34, this approach 
achieved an accuracy of 90% and the RF was able to classify 204, 711 samples in 27.1 seconds.

The approach used in this work is based on reducing the set of packets considered as a flow, so the feature 
calculation can be triggered earlier. The most usual way to achieve this is through using time windows: In35, 
Kirubavathi and Anitha use a mixture of data from the ISOT36 and CAIDA datasets as well as traces collected 
from a private setup of infected machines, to test different sizes of time-windows in botnet detection (i.e., from 
60 to 300 seconds). They found that the highest performance is achieved on the time windows of 180 s, with a 
Naive Bayes (NB) classifier that obtained 99% of accuracy and 0.02% of false positive rate. Besides, Zhao et al.37 
also studied the feasibility of detecting botnets using a limited number of packets via time windows. For their 
work they used two datasets from The Honeynet Project38 for the botnet traces, and other two datasets from the 
Traffic Lab at Ericsson Research and from the Lawrence Berkeley National Laboratory (LBNL) for non-malicious 
traces. Using a Decision Tree (DT) classifier, they found that the false positive rate (FPR) and the true positive 
rate (TPR) started becoming stable in time windows of 60 s, and that the best performance was achieved at 
180 seconds. In this case, the DT achieved a TPR of over 90% and an FPR under 5% . Moreover, Mai and Noh39 
experimented with the size of the time windows in botnet detection, finding that too many flows were generated 
if the lengths of the time windows are shorter than 150 seconds, and that if the length was greater than 300 sec-
onds, the accuracy was reduced. The experiments were carried out on the ISOT dataset with an ensemble model 
that combined k-means and DT, and the peak accuracy obtained was 99.4% , being relatively stable around this 
value if the time windows were inside the range between 150 and 300 seconds. In the same line, a recent work 
by Nguyen et al.40 proposed a collaborative detector that used features based on both network traffic and on 
computer processes, which also divided the activity on time windows. Their model also peaked in performance 
using time windows of 180 s.

Finally, other works used time windows shorter than 180 s by combining the flow analysis with other tech-
niques. For example the multilayer framework proposed by Ibrahim et al.41 combined two modules to detect 
Command and Control (C &C) servers, which denote the external servers that control botnets and give them 
commands. The first Filtering module clusters the traffic into known and unknown classes using a semi-super-
vised Kmeans; and the second one is a “Detecting C &C Server Module” that works on the unknown class. This 
framework used time windows of one second and achieved a 92% F1-score on the CTU-13 dataset. However, 
due to the clustering process the detection is not made in real-time.

Methodology
One‑second time window.  Network devices communicate through packets, and a chain of packets inter-
changed by two devices is called a traffic flow. It is possible to extract features from a flow and classify the 
nature of the communication. Although using all the packets of a connection from start to end could give the 
most information, it is not strictly necessary. It is possible to just use the subset of packets that fall inside a time 
window and calculate the desired features using them. As we already pointed out, some researchers looked for 
an optimal time window to detect botnet activity and settled on 180 s35,37,39,40. However, their research focused 
on attaining the best detection rate rather than spotting botnets in a small amount of time. Our goal is to detect 
botnets in real-time while assuming an acceptable loss in the accuracy as a trade-off.

Our approach is composed by a first module that divides the incoming traffic into time windows of one sec-
ond, and inside each time window, it separates the flows, i.e., each independent communication between two 
devices. These flows are distinguishable by the pair of IPs and the pair of used ports. Then, for each 1s flow, the 
module extracts four features:

•	 The source port number.
•	 The destination port number.
•	 The number of packets inside the time window.
•	 The total bytes transmitted in that second.

The selection of these four features obeys the restriction of “being fast to calculate”, since the core design of our 
approach is to be able to work with large bandwidths without adding delays to the detection, at the expense 
of a higher detection performance. Therefore, we discarded features that require calculating means, standard 
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deviations, or a deeper look into the packet structure. We also chose the model to work with time windows of 
one second since it is intended to work as an Intrusion Detection System (IDS), and one second is enough to 
alert humans to start a response. Next, the second module performs the classification using these features. Fol-
lowing the above-mentioned time restriction, we chose the classifier Decision Tree (DT), since it is fast in the 
decision17, and because it is possible to quickly train a new DT with traffic traces of new or modified botnets.

With respect to the features we have used, it is true that the source and destination ports could be circum-
vented by a botnet by modifying the ports and using common ones. However, this is already done by the botnets 
Bunitu or Miuref, which are detected by our approach.

F1 score on saturated networks.  It is unavoidable that real networks experience saturation, and thus 
some packets are dropped by the routers or other network devices. We have taken this situation into account 
and compared the performance of our proposal in both ideal conditions and in saturated conditions. For this 
comparison, the model was always trained on ideal conditions, i.e., without packet dropping. Then, the model 
was validated (i) over traffic without dropped packets, and also (ii) over traffic where each packet was subjected 
to a probability of 10% of being dropped. If the packet was dropped, then it was not used to extract the features.

We selected a 10% packet drop as it is usually considered as the maximum tolerable packet loss to consider 
a network operative42,43. Hence, if this rate was higher, then human administrators should be alerted, indepen-
dently of the type of traffic in the network. Commercial IDS are usually not adapted for large bandwidths or 
saturated networks. For example, in bandwidths of 10 Gbps, Suricata44 showed a 74.3% false positive rate and a 
16.7% false negative rate, while dropping 8% of UDP packets and 9% of TCP packets itself due to its analysis45. 
The reason behind is that they offer a more detailed analysis and can be configured to do more tasks, and thus 
the comparison of their method with our model would be unfair.

Performance evaluation.  Once we assessed the feasibility of our proposal, we compared its performance 
against other works that follow a flow based classification, and whose flows can be redefined to fit in time win-
dows of one second. All those works were based on DT for classification and differed on the features used, as 
shown in Table 1. We prepared a second version of the model of Gahelot and Dayal46, since the original version 
showed a bad performance by relying on the IPs of the packets as features, as it is discussed in Subsection 4.4. 
The HAIS model is the DT presented in our previous work12.

Finally, we measured the time required by our proposal to calculate the features and classify one second 
of traffic assuming three different bandwidths: 100 Mbps, 1 Gbps and 10 Gbps. This evaluation was made in a 

Table 1.   Features used by the different models tested with time windows of one second.

Feature Ours Zhao et al.37 Gahelot and Dayal46
Modified Gahelot and 
Dayal46

Velasco-Mata et al. 
(HAIS)12

Source IP – – � – –

Destination IP – – � – –

Source Port � – – – �

Destination Port � – � � �

Average packet length – – � � �

Variance of packet lengths – � – – �

Total null packets – – � � –

Length of first packet – � � � –

Protocol – – � � –

Duration – – � � –

Total bytes transmitted � – � � �

Number of packets transmit-
ted � � � � �

Number of flows per total 
flows – � – – –

Average interval time 
between packets – – – – �

Variance of interval times 
between packets – – – – �

Aver. device’s response time 
after receiving a packet – – - – �

Var. device’s response time 
after receiving a packet – – – – �

Number of SYN flags – – – – �

Average speed of packet 
transmission – – – – �

Variance of speed of packet 
transmission – – – – �
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single thread fashion, and we used this data to give insights on the hardware requirements needed to achieve a 
real-time performance through parallelization.

Experimentation and results
Dataset and preprocessing.  The data used in the experiments came from the combination of traffic cap-
tures in PCAP format from two sources. On one hand, the traces from the botnets Donbot, Murlo, NSIS, Neris, 
Rbot, Sogou and Virut were obtained from the malware captures of the CTU-13 dataset34. In particular, the sixth 
capture’s botnet of CTU-13 was originally named “Menti”, but at the time of writing this paper, the download-
able file labels it as “Donbot”. On the other hand, we collected the traces corresponding to normal traffic and to 
the botnets Bunitu, Miuref and NotPetya from publicly available captures from the Stratosphere IPS Project47, 
which are the most recent publicly available captures to the best of our knowledge. We selected these three bot-
nets because other works reported that they were relatively hard to classify48,49. In particular, Bunitu and Miuref 
make use of common ports such as 80 and 443 that are also used by regular traffic, which makes these botnets 
specially challenging to be detected by classifiers that use information from the ports, such as ours. To extract 
the traffic traces from the botnets, we used all the available captures for these traffic classes at the end of 2020 at 
the Stratosphere IPS Project. Regarding the normal traffic, the traces were extracted from 12 captures from unin-
fected computers browsing the Internet, also published by the Stratosphere IPS Project. The dataset is composed 
by joining the data from these traffic captures.

We used pyshark50 to preprocess the data from the PCAP format, extracting from each packet the necessary 
information to calculate the features listed in Table 1, specifically its timestamp, length (i.e., size), protocol, 
source and destination pairs of IP address and port, and whether it carried the SYN flag. To discern between 
different communications we used the IP addresses and the ports. Besides, we used the timestamp to divide the 
traffic in time windows.

We worked with two sizes of time windows to calculate the features of each flow, i.e., the set of packets 
sent between two computers during that time window. This causes a different number of samples per class: for 
example, 20 packets can be interchanged inside a time window of 180 s, thus generating one sample, but they 
are not going to generate 180 samples if the time window size is one second, as many of those windows will be 
empty of this communication. Table 2 shows the number of samples per class if the traffic is divided either in 
time windows of one second or 180 seconds.

Detection on time windows of one second.  We compared the F1 score attained by our proposal using 
either time windows of (i) one second or (ii) 180 seconds, as recommended by the literature35,37,39. The traffic 
was characterized using four features: the source and destination ports, the number of packets and the total bytes 
transmitted within the time window. The approach uses a DT with the default configuration of the Scikit-Learn 
framework for Python, which uses the Gini Impurity H to determine the quality G of a candidate split θ of a node 
m of nm samples51 as shown in Eq. (1):

Figure 2 shows the comparison between using time windows of one second or 180 seconds. These results are 
the mean values from a 10-fold cross-validation, with stratified folds to preserve the percentage of samples of 
each class. In all cases, the F1 scores achieved when using one-second windows were similar or better to those 
obtained when using windows of 180 seconds. The case of Sogou is especially remarkable, i.e., 0.59 in the case of 
1 s and less than 0.01 in the case of 180 s. This is due to the big difference in the number of samples between the 
two approaches, as shown in Table 2. We have observed that Sogou established longer connections than the other 
botnets, and thus dividing its traffic within longer time windows implied that Sogou generated significantly fewer 
samples. However, NotPetya also was noticeably less represented than the other classes, but the classifier achieved 

(1)G(Qm, θ) =
n
left
m

nm
H(Q

left
m (θ))+

n
right
m

nm
H(Q

right
m (θ))

Table 2.   Samples extracted per traffic class in the used dataset when the traffic is divided in time windows of 
one second or 180 s.

Class Samples (1 s) Samples (180 s)

Normal 1,251,570 40,954

Bunitu 62,700 1967

Donbot 7886 465

Miuref 242,667 9395

Murlo 14,558 922

NSIS 21,162 1140

Neris 383,669 14,514

NotPetya 991 35

Rbot 139,635 4639

Sogou 454 6

Virut 86,818 3880
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a high F1 score. The reason behind this is that the traffic generated by NotPetya differs highly from the other 
classes, since it uses different ports. Finally, the F1 score on Donbot is exceptionally small, i.e., lower than 0.1 in 
both approaches. About 96% the Donbot traffic and 30% of Neris traffic were directed to port 25, causing that 
the classifier misidentified most of the Donbot traffic as Neris one. The F1 score of Neris did not suffer as much 
as with Donbot because it had a greater representation of samples and most of them were correctly identified.

The detection results are similar for most of the considered botnets, whether using time windows of 1 or 
180 seconds. The features used were the source and destination ports, which do not change with the size of the 
window, and the total number of packets and total number of bytes transmitted inside the window, which do 
change. This suggest that the behavior of these botnets is regular over time52, which is expected since botnets are 
programs that aim to be as small as possible to avoid detection, that in turn, is contrary to have a complex code.

Effectiveness on saturated networks.  The next experiment compared the performance of our approach 
in either (i) ideal conditions or (ii) in a saturated network. In the latter case, the network traffic is reproduced in 
the same way as the ideal case, but each package is subjected to a probability of being dropped of 10% , i.e., we 
generate a random real number between 0 and 1 and, if it is lower than 0.1, it is removed from the raw data, so 
it is not processed (see “F1 scoreon saturated networks” Section). Figure 3 shows the differences in the F1 score 
attained for each traffic class. These results are the mean values from a stratified 10-fold cross-validation. Since 
our approach is based on features extracted from packets achieved in time windows of just one second, which 
resulted in using just one or few packets for classifying the traffic, the F1 scores did not suffer significantly from 
the packet losses. As previously explained in “Detection on time windows of one second” section, the low F1 
score on the Donbot botnet is due to most of its traffic being misclassified as Neris traffic.

Evaluation of performance and hardware recommendations.  In this Section, we compared our 
proposal with three works: the model of Zhao et al.37, which also uses four features, the model of Gahelot and 
Dayal46 and the model from one of our previous works, which we refer as HAIS12.

Regarding the proposal of Gahelot and Dayal, we found that it suffered from a big flaw by using the IPs as 
features. The IPs could be used for aggregating purposes53, but never as raw features since (1) they were not 
assigned by the botnet malware, (2) they could be masked with NATs or similar devices and (3) they could be 
used to identify the infected machine in the training in the same way as using the label as a feature. This means 
that algorithms would learn that “devices with IP A are infected, and devices with IP B are not”, so they would 
perform great in the same dataset but poorly in others or in a real scenario. To prove this, we also assessed a 
modified version of the model of Gahelot and Dayal that did not use the IPs as a feature. In this experiment, 
we divided the dataset into a training set with 70% of the samples, preserving the percentage of samples of each 

Figure 2.   F1 scores per traffic class using time windows of either one second or 180 seconds.

Figure 3.   F1 scores for each traffic class on ideal conditions and on a saturated network with a packet loss 
probability of 10%..
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class from the dataset, and a test set with the rest of the samples in a way that the IPs of the test set would not 
be present in the training set.

Table 3 shows the weighted F1 scores obtained by the models to compare their detection performance, and the 
mean time they required to calculate the features and classify a single sample. As expected, the original version 
of Gahelot and Dayal46 performed poorly by relying on the IPs as a raw feature attaining an F1 score of 0.095, 
while the modified version not only was slightly faster but also achieved a F1 score of 0.911. The best F1 score 
was achieved by our HAIS model, which used thirteen features, but it also was the slowest one. However, our 
new proposal attained a similar F1 score – i.e., only 2.1% lower than the HAIS model – while being the fastest, 
analyzing a sample in a mean of 0.007 ms. This makes it more suitable for an environment where a rapid process 
of lot of data is necessary.

Even though using a smaller number of features in our model increased its speed compared to other models, 
one possible limitation could be a potential lack of robustness. A botnet designer might try to use common 
ports such as 80 (HTTP) and 443 (HTTPS) to hide the communications of the bots. However, this is already 
the case of many of the botnets used in the experimentation: Bunitu, Miuref, Rbot and Virut do use these ports. 
Still, our classifier was able to differentiate the normal traffic–that includes web navigation, thus using ports 
80 and 443–from these botnets with an acceptable rate. A more sophisticated botnet might also try to mimic 
normal traffic by emulating the size and frequency of transmission of its traffic packets. This, however, could 
also work against the botnet itself for two reasons. First, it would add complexity to the malware code, making 
it less stealthy for antivirus programs and harder to transmit due to the extra size of the program. And second, 
bots usually try to limit their communications to avoid being too noisy and, thus, being detected. If they tried to 
imitate normal traffic, which does not have this limitation and therefore transmits more data, then they would 
generate a noticeable amount of traffic that could be traced back to them.

Finally, we assess the hardware requirements of our proposal for different network bandwidths. We simulated 
three bandwidths to test the computational cost of a DT: 100 Mbps, 1 Gbps and 10 Gbps. This simulation was 
done by gathering real flows generated at different times into the same time window, in a way that the system 
receives to analyze 100 Mb, 1 Gb or 10 Gb of data each second, respectively with the tested bandwidths. The 
module was built using Python 3 and ran on an Intel(R) Xeon(R) E5-2630v3 (CPUs of 2.4 GHz, 3.5 GHz on 
Turbo mode).

Table 3.   Weighted F1 scores and mean time to process a sample. The traffic was processed in time windows of 
one second. The modified Gahelot and Dayal model refers to the feature vector in which we have excluded the 
IPs. Significant values are in bold.

Model F1 score Mean time/sample (ms)

Zhao et al.37 0.882 0.095

Gahelot and Dayal46 (Original) 0.095 0.048

Gahelot and Dayal46 (Modified) 0.911 0.046

Velasco-Mata et al. (HAIS)12 0.947 0.503

Our proposal 0.926 0.007

Figure 4.   Maximum, mean and minimum time (s) required to calculate features, classify samples and the total 
process if the system used time windows of one second in traffic bandwidths of 100 Mbps, 1 Gbps and 10 Gbps.
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Figure 4 shows the maximum, mean and minimum time required by our model to calculate the features, 
classify the samples and the whole process over the three bandwidths.

It is noticeable that the feature calculation took less time than the classification itself, thanks to our selected 
feature set, and that both 100 Mbps and 1 Gbps connections required a maximum total processing time of 
approximately 3.8 seconds per one second of traffic. This means that if the process was parallelized it would 
need at least 4 CPU cores of the same frequency (or equivalent) to classify one second of traffic in one second 
of processing.

In the case of 10 Gbps bandwidth, the maximum time required for analyzing one second of traffic was 15.9 s 
(i.e., including the features calculation and the classification), but taking into account that in the worst case the 
feature calculation needed 8.0 s and the classification needed 10.3 s, the safest option with parallelization would 
require at least 19 CPU cores at the same frequency or the equivalent.

Conclusions
We presented a real-time approach to detect botnets, based on a Decision Tree and a small set of four features that 
do not require complex calculations. With the goal of detecting botnets as fast as possible, ideally at the moment 
in which they start working, we designed our model so that it worked on time windows of just one second, in 
contrast to the 180 seconds previously recommended in the literature35,37,39,40. We believe that it will make it 
possible to make a fast detection in an instantaneous fashion. We calculated the F1 score of our approach on 
time windows of both one second and 180 seconds. The results of this experiment showed that the score did not 
regress significantly by using windows of one second, while it allows us to process the traffic and detect botnets 
in the next 1 to 2 seconds. This makes us claim that it is possible to detect botnet-like traffic in a real-time regime 
based on analyzing traffic second by second.

We also took into consideration that in real scenarios the network could be overloaded and thus a percentage 
of packets might be dropped by the routers or other devices due to insufficient capacity. According to45, popular 
detection tools like Suricata dropped up to 9% of the packets on saturated networks. Therefore, we simulated 
harsh conditions where the packets had a probability of 10% of being dropped and tested the performance of our 
approach. We found that our model’s detection capability did not suffer significantly.

Once we assessed the feasibility of our approach, we compared it with other models that could be imple-
mented for windows of one second. We observed that our approach was the fastest, needing only 0.007 ms to 
process a single sample, and attaining an F1 score of 0.926, only 2 percentage points lower than the approach 
that got the best F1 metric in our assessment.

We also gave experimental evidence against using the IPs of the network traffic as direct features to train 
models. While using the IPs is useful for aggregating traffic and then calculating features, using directly the IP of 
a device as a feature is equivalent to using the sample’s label as a feature. In other words, the model would learn 
that “devices with this particular IP are infected”, but this knowledge would be worthless on other datasets or in 
a real environment and also would mislead the model.

With respect to the hardware requirements for our proposal, we measured the time required by the system 
when it only uses one CPU core of 2.4 GHz (3.5 GHz in Turbo Mode) to process network bandwidths of 100 
Mbps, 1 Gbps and 10 Gbps. According to this data, when the process was parallelized we could achieve real-
time detection using 4 similar CPU cores for networks of 100 Mbps and 1 Gbps, and 19 CPU cores for 10 Gbps 
bandwidths.

In future works, we will work on testing the proposed model on other botnets, creating a knowledge database 
of botnets that can be quickly detected with this model, and botnets that need more sophisticated techniques.

Data availability
The original datasets used during the current study are available in the Stratosphere Lab repository, available at 
https://​www.​strat​osphe​reips.​org/. The processed versions used in this work are available from the corresponding 
author on reasonable request.
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