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A machine learning analysis 
of correlates of mortality 
among patients hospitalized 
with COVID‑19
Timothy B. Baker 1,2*, Wei‑Yin Loh 3, Thomas M. Piasecki 1,2, Daniel M. Bolt 1,4, 
Stevens S. Smith 1,2, Wendy S. Slutske 1,5, Karen L. Conner 1, Steven L. Bernstein 6 & 
Michael C. Fiore 1,2

It is vital to determine how patient characteristics that precede COVID‑19 illness relate to COVID‑
19 mortality. This is a retrospective cohort study of patients hospitalized with COVID‑19 across 21 
healthcare systems in the US. All patients (N = 145,944) had COVID‑19 diagnoses and/or positive PCR 
tests and completed their hospital stays from February 1, 2020 through January 31, 2022. Machine 
learning analyses revealed that age, hypertension, insurance status, and healthcare system (hospital 
site) were especially predictive of mortality across the full sample. However, multiple variables 
were especially predictive in subgroups of patients. The nested effects of risk factors such as age, 
hypertension, vaccination, site, and race accounted for large differences in mortality likelihood with 
rates ranging from about 2–30%. Subgroups of patients are at heightened risk of COVID‑19 mortality 
due to combinations of preadmission risk factors; a finding of potential relevance to outreach and 
preventive actions.

Numerous  studies1–3 have identified premorbid risk factors for COVID-19 mortality: older age, male sex, and 
a history of certain comorbidities such as chronic renal disease or cardiovascular disease (see Supplementary 
Table 1 for recent studies on prediction of COVID mortality). Most of these studies have not examined vac-
cination status as a factor that might affect the nature or magnitudes of predictive factors. Also, many of the 
studies identifying such risk factors have used traditional multivariable analytic  strategies1–3. However, alterna-
tive approaches such as machine learning (ML) methods have also been used to take advantage of their com-
plementary  strengths4–12. Such strengths include less strict assumptions about data distributions, more flexible 
approaches to missingness, ability to determine optimal and robust predictor cut-scores, heightened sensitivity 
to higher order interactions, and greater predictive accuracy across multiple prediction  problems13–15. Of course, 
ML can have limitations as well such as overfitting or sensitivity to poor selection of training data.

ML may be particularly useful in predicting COVID outcomes using EHR data. This is because EHR data 
may produce challenges that are problematic for traditional multivariable analytic approaches such as linear 
or logistic regression. For instance, in the case of the current study using EHR data for prediction of mortality, 
the great number of predictors challenged the comprehensive evaluation of higher order interactions. Further, 
a meaningful number of variables had distributions that made it important to evaluate them within subgroups 
of the total sample. For instance, some insurance categories did not occur in certain age groups; while Medicare 
coverage occurred principally amongst older individuals, commercial insurance was essentially absent amongst 
such individuals. These examples involve regulatory and policy effects but naturally occurring variation also 
resulted in such nesting. For example, severe obesity was largely restricted to younger patients. In such cases 
of nested distributions, the effects of variables cannot be meaningfully estimated in certain groups of patients 
because of a lack of variation within the group. In addition, such distributions mean that analytic approaches that 
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determine risk across an entire sample or population may substantially mis-estimate relations in some subgroups. 
While traditional analytic methods could be engineered ad hoc to address such issues, model specification and 
interpretation of model coefficients quickly becomes complicated as the number of predictor variables and 
their interactions increase. ML represents an efficient approach that can generate easily grasped and clinically 
informative predictive models in such circumstances.

As noted above, ML methods have been used previously to identify factors that predict COVID-19 severity. 
However, some of these studies have limitations that may have reduced the accuracy and generalizability of 
their results. For instance, many used fairly small and unrepresentative samples. A recent review of ML studies 
of COVID-19 mortality  risk16 (see Supplementary Table 1) showed that many of the studies had samples that 
numbered only in the low thousands, or fewer, with samples often recruited from just a small number of health 
systems e.g., Refs.5,6,8,17. Also, few early studies were able to use vaccination status as a predictor so that its main 
and interactive relations with risk factors were unexplored. The current study employed an ML analytic strategy 
in a relatively large and diverse sample recruited from multiple sites with nationwide distribution; a sample for 
which COVID-19 vaccination history was known.

One goal of this study was to identify pre-hospital-admission patient characteristics that are relatively highly 
related to subsequent COVID-19 mortality: e.g., demographic variables and premorbid conditions that could 
have affected mortality amongst patients hospitalized with COVID-19 but that occurred prior to the development 
of severe disease. Such predictors index the risk of COVID-19 mortality in the absence of specialized testing or 
waiting until infection has occurred. In addition, we wish to demonstrate that predictors of COVID-19 mortality 
can be highly contextualized: i.e., varying meaningfully both with regard to other predictors and with regard to 
different healthcare sites included in the analyses. Thus, as other studies have done, we will show which predictors 
are generally most predictive of mortality across a sample and subsample. However, we will also demonstrate that 
the most relevant predictor variables that emerge can also be a function of site and other predictors.

Many prior ML studies that have focused on the prediction of COVID-19 mortality used predictors such as 
laboratory tests, COVID-19 symptoms and signs, post-hospitalization events such as ICU admission and use of 
mechanical ventilation e.g., Refs.4–11. Such variables are often highly predictive of COVID-19 outcomes such as 
 death12,16 because they directly index severe COVID-19 (i.e., measures of disease severity predict severe disease). 
These likely inform post-infection clinical decision making but they require access to specialized information, 
which limits their public health reach. Moreover, their high predictive validity may mask or obscure the relations 
of other important variables that are more causally remote with regard to the ultimate COVID-19 outcomes.

It is important that additional research address inconsistencies in the literature regarding the factors that pres-
age severe COVID-19. For instance, some studies have found Black race to be meaningfully related to COVID-
19  mortality2,4, while other studies have  not3,18. Similarly, the evidence is mixed as to whether some premorbid 
conditions such as hypertension are associated with COVID-19  severity19–24. This research can contribute to the 
evidence regarding such variables.

Methods
This research uses supervised ML methods to explore the correlates of mortality in an entire sample of adult 
patients hospitalized for COVID-19 (N = 145,944) and a subsample of these patients (N = 86,732). The entire 
sample comprised admitted patients meeting COVID-19 criteria from February 1, 2020, through January 31, 
2022; the subsample comprised a subset of those patients admitted from January 1, 2021 to January 31, 2022, a 
span during which COVID-19 vaccination was available.

Study design. The COVID EHR Cohort at the University of Wisconsin (CEC-UW) is a retrospective cohort 
study funded by the National Cancer Institute (NCI). Healthcare systems from across the U.S. were invited to 
participate and 21 joined the cohort (Supplementary Fig.  1) and transferred data regularly to the CEC-UW 
Coordinating Center in Madison, Wisconsin. Each data transfer included new data on patients entering the 
cohort and any follow-up data from cohort members identified in prior data collection waves. All participating 
hospitals were nonprofit acute care facilities affiliated with academic medical centers.

Ethics statement. The CEC-UW study was initially approved in May 2020 by the University of Wisconsin-
Madison Health Sciences Minimal Risk Institutional Review Board (MR-IRB) for collection of de-identified 
EHR data. In February 2021, the MR-IRB approved a protocol change to a Limited Data Set. The MR-IRB also 
determined that the study met criteria for a human subjects research exemption and qualified for a waiver of 
informed consent under the Federal Common Rule. All participating health systems provided written notice 
of either their own institution’s IRB approval or determination of exemption status before sharing EHR data. 
In February 2021, the MR-IRB approved a change of protocol for a Limited Data Set, allowing the collection 
of additional information (e.g., death dates, five-digit zip codes) but excluding direct patient identifiers. Each 
patient in the data set from each health system was assigned an enduring cryptographically processed Patient ID 
based on the SHA256 algorithm, which yielded a 64-character unique and private hash-based message authen-
tication code (HMAC). Study reporting follows STROBE  guidelines25. All methods were carried out in accord-
ance with relevant guidelines and regulations.

Data collection. Extraction, harmonization, and secure transfer of EHR data. EHR data extraction code 
was created by programmers at UW School of Medicine and Public Health (Madison, WI), Yale New Haven 
Health (New Haven, CT), and Bluetree Network, Inc.26 (Supplementary Methods Text).

The extraction code was customized at each healthcare system to map to their EHR data to yield relatively uni-
form data sets. Additional data harmonization and quality assurance was done by CEC-UW staff (Supplementary 
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Methods Text). Secure transfer of data from each of the 21 healthcare systems was accomplished via the transfer 
of data files to a secure SFTP (secure shell [SSH] File Transfer Protocol) portal located at the UW-Madison 
CEC-UW Coordinating Center.

Extracted data categories. Each healthcare system transferred five source data files with patient- and encoun-
ter-level information on: (1) sociodemographic and health characteristics; (2) pre- and post-COVID-19 ICD-
10 diagnoses; (3) clinical encounter data including treatment site (e.g., inpatient, outpatient), encounter-based 
ICD-10 diagnoses, mortality, ICU admission, intubation, and other clinical data; (4) selected laboratory test 
results linked to encounters; and (5) selected medications linked to encounters. Not all these data were used 
in the present analyses given their intended focus. Healthcare systems provided data only for closed clinical 
encounters; inpatient encounters were closed via discharge or death. Data on post-discharge outcomes or treat-
ment or outcomes at nonparticipating healthcare systems were not captured.

Analysis sample. The analysis samples comprised 145,944 (full sample) and 86,732 (subsample) adult 
patients hospitalized with COVID-19 who were admitted to a participating hospital and completed their hospi-
talization over the periods from February 1, 2020 to January 31, 2022 (full sample) and from January 1, 2021 to 
January 31, 2022 (subsample). Analysis sample inclusion criteria included: (1) ≥ 18 years old; (2) the inpatient 
encounter was the first COVID-19 hospitalization with duration ≥ 24 h (or, if < 24 h, admission to ICU or death 
during the hospitalization); (3) COVID-19 ICD-10 diagnosis (U07.1 or J12.82) during the hospitalization or 
positive COVID-19 PCR test result in a 14-day window (± 7 days centered at the admission date); and (4) prior 
contact with the health system to permit extraction of pre-COVID-19 ICD-10 diagnoses to calculate the Elix-
hauser Comorbidity  Score27. For the full sample, 74.0% (n = 107,960) had both a positive PCR test result and a 
COVID-19 ICD-10 diagnosis, 5.7% (n = 8367) had only a positive PCR test, and 20.3% (n = 29,617) had only a 
COVID-19 ICD-10 diagnosis at the time of hospitalization. For the subsample, 75.2% (n = 65,192) had both a 
positive PCR test result and a COVID-19 ICD-10 diagnosis, 5.4% (n = 4706) had only a positive PCR test, and 
19.4% (n = 16,834) had only a COVID-19 ICD-10 diagnosis at the time of hospitalization.

Primary outcome. The primary and sole outcome for these analyses was in-hospital mortality during the 
index COVID-19 hospitalization documented via EHR.

Non‑outcome variables. Patient-level variables include age (at time of entry into the cohort), sex, race, 
ethnicity, body mass index (BMI), insurance status, Elixhauser Comorbidity overall score and constituent item 
scores (Supplementary Table 2), Rural/Urban Commuting Area (RUCA) code groups, Social Deprivation Index 
score (SDScore), and vaccination status. Preadmission vaccination status was coded as binary (no vaccination 
versus any vaccination) and by the number of vaccine doses (0, 1, 2 or 3 doses). Supplementary Table 3 presents 
the types of vaccines that patients received for their first, second, and third vaccinations. Patients are considered 
‘unvaccinated’ in the absence of an EHR record of vaccination. Patients aged ≥ 90 years were coded as 90 at the 
time of data extraction. See Table 1 for data on age, race, ethnicity, BMI categories, insurance status, vaccina-
tion status, RUCA, SDScore, and Elixhauser score for the full sample. Such data are presented in Supplementary 
Table 4 for the subsample. Race and ethnicity categories were based on definitions used by the National Institutes 
of  Health28. The Elixhauser Comorbidity Score was calculated using van Walraven  weights27 based on ICD-10 
diagnoses (present vs. absent) determined via a 5-year look back pre-COVID-19. RUCA and SDScore were 
derived based upon the patient’s ZIP code and were determined for the patient’s aggregated ZIP code tabulation 
area (ZCTA). Supplementary Table 5 lists sites by number and the sample size associated with each site (health-
care system: not identified by name).

Statistical analysis
Descriptive statistics and missingness. Descriptive statistics for the analysis sample characteristics and 
selected outcome analyses were computed using SPSS version 27 (IBM Corp) and R version 4.1.2 (R Foundation 
for Statistical Computing). There were no missing data for the primary outcome. Missing data for covariates 
are reported in Table 1 and Supplementary Table 4. The data sets have missing values in 4 categorical variables 
(Race, Ethnicity, BMI, RUCA) and 1 continuous variable (SDScore). Missing values in each categorical variable 
were recoded as “Unknown” and entered as unknown or missing variables in the machine learning analyses. This 
leaves SDScore as the only variable with missing values.

Machine learning analyses. The primary ML approach used to generate decision trees and importance 
scores was  GUIDE29–31. GUIDE is a ML algorithm for building classification and regression tree models by 
recursively partitioning the data. In this report, the response variable Y is binary-valued (Y = 1 if died, Y = 0 if 
alive) and least-squares regression trees are used. At each node of a tree, the observations are divided into two 
subsets by a split of the form “X ≤ c” (if X is an ordinal variable) or “X ∈ A” (if X is a categorical variable), where X 
is the variable with the most significant contingency table chi-squared test of X (columns) versus the values of Y 
(rows). If X is an ordinal variable (such as Age), its values are grouped into 3 or 4 intervals at the sample quantiles 
to form the columns of the table. If X is a categorical variable, its categories are used to form the columns. If X 
has missing values, an additional column for missing values is added to the contingency table. After the most 
significant X is found, a search is carried out for the split of the data based on the observed values of X that mini-
mizes the sum of squared deviations of the Y values around each node mean. If X is ordinal, the search is over 
the sets {X = NA}, {X ≤ c and X = NA}, or {X ≤ c and X ≠ NA}, where c ranges over the midpoints of consecutively 
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Table 1.  The characteristics of the full sample averaged across patients from all health systems (N = 145,944) 
and including status on covariates and vaccination variables.

Patient characteristic N % M SD

Elixhauser comorbidity index 5.71 9.78

Age (years) 61.13 18.39

Social deprivation score 53.14 31.10

Age groups

 Under 60 years 61,685 42.3

 60–70 years 33,540 23.0

 Over 70 years 50,719 34.8

Sex

 Female 74,538 51.1

 Male 71,402 48.9

 Other 4 0.00

Race

 American Indian/Alaska Native 546 0.4

 Asian 3882 2.7

 Black or African American 34,663 23.8

 Native Hawaiian or other pacific islander 588 0.4

 White 85,851 58.8

 Other race 17,384 11.9

 More than one race 571 0.4

 Missing 2459 1.7

Ethnicity

 Not Hispanic or latino 120,761 82.7

 Hispanic or latino 22,373 15.3

 Missing 2810 1.9

Body mass index

 Underweight 4504 3.1

 Healthy weight 33,608 23.0

 Overweight 41,473 28.4

 Obese 48,138 33.0

 Severely obese 16,627 11.4

 Missing 1594 1.1

Insurance status

 Medicare 75,961 52.0

 Medicaid 17,419 11.9

 Commercial 38,728 26.5

 Uninsured 3836 2.6

 Other 10,000 6.9

Rural–urban commuting area

 Rural 2410 1.7

 Small town 4640 3.2

 Micropolitan area 9570 6.6

 Metropolitan area 129,221 88.5

 Missing 103 0.1

Vaccination status

 No recorded vaccination 123,126 84.4

 Yes, at least one 22,818 15.6

Vaccination doses

 0 123,126 84.4

 1 5589 3.8

 2 13,651 9.4

 3 3578 2.5
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ordered values of X, and NA denotes the missing value code. If X is categorical, the search is over all subsets A of 
the categories (including the NA category, if applicable) of X. The split procedure is repeated recursively on each 
node until an overly large tree is obtained. Then it is pruned to a smaller size to maximize a tenfold cross-vali-
dation estimate of prediction accuracy. Importance scores reflect the total chi-square associations of variables 
with mortality up to 4th-level interactions. Missing values in predictor variables are not imputed. At each split 
of a node, GUIDE determines whether missing values are sent to the left or the right branch based on model fit.

GUIDE has compared well with other methods in terms of producing solutions that generalize to new data: 
e.g., when compared with Lasso, stepwise regression, multivariate adaptive regression splines, support vector 
machine, random forest, and Rpart and M5 generated solutions  (REFS32–34). A manual for GUIDE can be found 
at: http:// www. stat. wisc. edu/% 7Eloh/ treep rogs/ guide/ guide man. pdf, which also provides access to downloadable 
software. For more information on GUIDE see the Supplementary Methods Text.

Different decision trees were developed using different samples and variables to explore the robustness or 
stability of the findings. One set of trees was developed from data over the whole study period (February 1, 
2020–January 31, 2022: full sample analyses) while another set was based on only the second year of the study 
period (January 1, 2021 to January 31, 2022: subsample analyses). These two sets of analyses contrasted solutions 
obtained for time spans that likely differed in multiple ways: the COVID-19 variants that were prevalent in the 
different  periods35, the adoption of different patient management and treatment methods, and the availability 
of vaccines (primarily occurring only after January 2021). Thus, the subsample analyses serve as sensitivity tests 
with regard to the full sample analyses. In addition, both the full sample analyses and the subsample analyses 
were done with and without site (healthcare system) being entered as a predictor. A key feature of this work 
is its capacity to accommodate predictive effects that are nested, meaning the effect is best understood in the 
context of other predictive variables. Site is entered into these models as one indicator of this. Solutions are also 
obtained without site effects since these may best reflect predictor-outcome relationships in applications where 
healthcare systems cannot be matched with the particular healthcare systems participating in this research (i.e., 
predictions are based on the substantive predictors per se rather than on predictions nested within sites). Also, 
leaving site out of the models is another way of showing the importance of site related differences in terms of 
predictor-mortality associations.

Results
Characteristics of the sample and mortality and vaccination rates. The characteristics of the full 
sample averaged across patients from all healthcare systems are depicted in Table 1, which lists status on covari-
ates and vaccination variables. Nearly all vaccinations (99.9%) occurred in the second year of the study period: 
i.e., from January 2021 to January 2022.

Decision trees. Full sample. Figure 1 displays the decision tree generated for the full sample including site 
as a predictor. The tree was pruned from a larger tree with 70 terminal nodes to optimize a tenfold cross-vali-
dation estimate of prediction error. This figure shows that age was the variable selected as having the strongest 
relations with mortality over all other predictors, with those over age 62 years having generally higher mortality 
rates (indicated by yellow terminal nodes). Amongst those under age 62, only a further split on age and past-
year uncomplicated hypertension (Elixhauser item 6) contributed significantly to prediction after pruning. For 
persons under age 46, mortality rates were quite low (2%). Results showed that many more variables survived 
pruning and significantly predicted mortality amongst those over 62 years of age. Site appeared in many arms of 
the tree for such individuals (see Supplementary Table 5 for site n’s). As such healthcare system or hospital mat-
ters especially for older patients although healthcare system may also code for factors correlated with it. Other 
variables contributing to prediction in this branch were uncomplicated hypertension, vaccination, and further 
splits on age. Thus, this tree shows relatively strong associations of age, hypertension, vaccination, and site with 
mortality but with site and vaccination showing significant relations only amongst older patients. Depending on 
the terminal nodes, mortality rates varied from about 2 to 31%.

Importance scores reflect the magnitude of association of predictors via both their main effects and interac-
tions. Some variables might have had significant associations with mortality but were not included in the decision 
trees since their chi-square values were only slightly less predictive than the included variables. The importance 
scores reflect the overall contributions of such variables. Figure 2 shows the 20 highest importance scores of the 
predictors in the full sample model that includes site. This figure shows that the variables that entered the decision 
trees achieved high importance scores: e.g., age, hypertension, vaccination, and site. Other variables with high 
importance scores were insurance coverage, sex, and a variety of comorbidities such as renal failure, diabetes, 
and others (see Fig. 2 caption). Supplementary Table 6 shows the mortality rates associated with the different 
insurance categories (these do not reflect interactions of insurance with other variables).

A second decision tree analysis was conducted with the same predictors in the full sample excepting site. This 
tree (Fig. 3) shared features with the ‘site tree’; age, hypertension (both complicated and uncomplicated in this 
tree), and vaccination remained significant predictors. However, the absence of site allowed other predictors to 
account for significant differences in mortality likelihood. These variables included sex, race, ethnicity, BMI, and 
social deprivation score. Higher mortality rates were associated with male sex, lack of vaccination, higher social 
deprivation, and Hispanic ethnicity. A key observation is the nested nature of the associations. For example, 
different racial groups (e.g., American Indian/Alaskan Native, Asian) predicted mortality risk especially well 
in those over age 62 but not those under age 62. The association of vaccination was especially strong in those 
over 62 years of age. Sex was especially predictive of mortality amongst those who were unvaccinated versus 
vaccinated. Additionally, higher social deprivation scores (i.e., greater deprivation) were especially predictive of 
mortality amongst those over age 76.

http://www.stat.wisc.edu/%7Eloh/treeprogs/guide/guideman.pdf
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Subsample. The same two decision tree models were run with the subsample that comprised only patients who 
had been hospitalized during the period from January 1, 2021 to January 31, 2022 when vaccines were available. 
The model including site (Fig. 4) comprised some of the same variables as did the full sample model with site: 
age, site, and hypertension. However, the cut-scores for age were somewhat different, this tree included RUCA 
but not vaccination status, and the sites that differentiated node splits differed as well.

The subsample analysis without site identified very similar predictors as were identified in other analyses 
(Supplementary Fig. 2). As such, mortality rates tended to be higher with advanced age, a history of hyperten-
sion, and in the unvaccinated.

Figure 5 displays the importance scores for the subsample including site. In general, this list shows good cor-
respondence in terms of the predictors identified in the full sample. Perhaps the biggest difference is the smaller 
magnitude of the relation of vaccination with mortality in the subsample than in the full sample. This may reflect 
the fact that vaccination and time (i.e., vaccine availability) are confounded in the full sample analyses. Thus, 
vaccination in these models may partly act as a proxy for hospitalizations occurring long after the initial phase 
of the pandemic when case mortality rates were especially high.

Discussion
This research used ML strategies to explore the associations of demographic and comorbidity risk factors with 
mortality in a large sample of patients hospitalized with COVID-19 in healthcare systems distributed across the 
United States. The analyses identified risk factors that have especially strong relationships with mortality and 
demonstrate how such risk factors interact in predicting mortality. The 10 risk factors with the strongest overall 
associations with mortality, reflecting both their main and interactive effects, were age, uncomplicated hyper-
tension, insurance status, site (health system), renal failure, diabetes, vaccination status (binary and number of 
immunizations), complicated hypertension, and sex.

Most of the risk factors listed above have been implicated in COVID-19 severity in past research (e.g., 
Refs.1–3). However, the present study makes several contributions. First, it was conducted in a particularly large 
sample comprising patients from multiple healthcare systems across the United States. Second, it exclusively 
explored variables that captured COVID-19 risk factors that preceded COVID-19 infection and that do not 
index infection severity once contracted. Such variables are highly relevant to the level of pre-infection risk of 
COVID-19 mortality if contracted; such data can be used in estimating mortality risk prior to intensive laboratory 
assessments or waiting for the disease to require progressively more intense intervention (such as intubation). 

Figure 1.  GUIDE subgroup model for differential outcomes for the Full sample. At each split, an observation 
goes to the left branch if and only if the condition is satisfied. Set1 = {Site 2, Site 4, Site 5, Site 7, Site 8, Site 13, Site 
14, Site 15, Site 18}. Set2 = {Site 2, Site 5}. Set3 = {Site 5, Site 13}. Set4 = {Site 9, Site 16, Site 19}. Set5 = {Site 1, Site 6, 
Site 12, Site 17}. Sample sizes (in italics) and 95% simultaneous confidence intervals for mortality rate printed 
below nodes. Terminal nodes with means above and below overall mortality rate of 0.089 are colored yellow and 
skyblue respectively.
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This information can also be used in public health outreach and education efforts and by emergency depart-
ment physicians to ascertain risk. Third, this research provides strong evidence that risk is meaningfully nested 
within patient subgroups, suggesting that data on population-wide risk relations may not optimally capture risk 
for many patients.

This research was unusual in showing particularly strong associations between hypertension and mortality. 
Prior research had produced a mixed pattern of association between these  variables19–23 with some research 
reporting a significant  relationship36–38 while other research did  not39,40. This mixed pattern of evidence has led to 
conflicting pronouncements regarding hypertension risk by authoritative  groups41. Some research suggests that 
the mixed evidence concerning hypertension risk can be attributed to its association with comorbidities such as 
other cardiovascular disease or with  age41,42. This is consistent with evidence that the association of hypertension 
with COVID-19 severity is sometimes reduced by statistical control of  covariates43. Thus, in a study of 17 mil-
lion National Health Service patients, Williamson et al.39 found that the heightened risk of COVID-19 mortality 
related to hypertension was largely accounted for by hypertension’s association with diabetes and obesity. In 
contrast, our results show that uncomplicated hypertension and not complicated hypertension, was especially 
strongly related to COVID-19 mortality. Moreover, both the decision trees and the importance scores suggest 
that it was particularly highly associated with mortality relative to other comorbidities or obesity and was not 
restricted to a particular age group. Finally, while we did not control for the use of hypertensive medication in 
the current analyses, prior research suggests that such medication per se does not significantly affect COVID-19 
 severity37,41,44,45.

While Black race has been found to be associated with more severe COVID-19 outcomes in some studies 
and  populations2,4, there was little evidence of this in this research. In fact, the decision tree without site (Fig. 3) 
showed that Black race was associated with an arm that conferred lower risk (along with other races).

The importance scores show good consistency regarding the findings in analyses of the full sample versus 
the subsample, which included only patients hospitalized in the second year of the study. This consistency was 
obtained despite factors that likely changed over the two time periods, factors such as new COVID-19 variants 
(to the extent that their prevalence varied with the two contrasted time  frames35,46,47 the advent of effective vac-
cines, and advances in treatment or management practices over the course of the  study48).

There were numerous examples where predictors exhibited detectable effects in certain subgroups but not 
others. For instance, vaccination, sex, BMI, and race were significantly associated with mortality only in older 
patients (see Figs. 1, 3). Further, the strength of associations of numerous predictors were dependent on site (e.g., 
vaccination, comorbidity, age: Fig. 1). Thus, while prior research showed that vaccination reduces the risk of 
mortality in hospitalized  patients49, the current research shows that such risk reduction depends not only upon 
site but also on the age of the patient and comorbidity status. The current research cannot reveal why site was so 
highly associated with mortality. Sites differed in many ways including treatments and management strategies 

Figure 2.  Twenty most important variables and their GUIDE importance scores for predicting mortality from 
full sample. Elix6 hypertension, uncomplicated, Elix14 renal failure, Elix11 diabetes, uncomplicated, VacDose 
number of vaccine doses, Vaccinated any vaccine dose (vs. none), Elix7 Hypertension, complicated. Elix1 
Congestive heart failure, ElixVWTotal weighted comorbidity total score, Elix5 peripheral vascular disorders, 
Elix12 diabetes, complicated, Elix20 solid tumor without metastasis, Elix2 cardiac arrhythmias, Elix3 valvular 
diseases, Elix13 hypothyroidism.
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used, additional uncontrolled patient characteristics, and timing of disease surges. The current research does 
not permit strong inference regarding these factors.

The cumulative contributions of the various risk factors via their interactive and non-interactive associations 
identified groups that diverged dramatically in their mortality rates. For instance, Fig. 1, depending upon their 
status on the variables of age, hypertension, race, and vaccination status, some groups had a mortality rate of 2% 
while other patients had a mortality rate of 30%.

This research did identify risk factors that were highly associated with COVID-19 mortality across the entire 
sample: e.g., age, insurance status, and hypertension. Hypertension not only had a high importance score (Fig. 2) 
but was the rare variable that was significantly predictive across most age groups (Figs. 1, 4). With regard to 
insurance status, patients on Medicare and the uninsured were clearly at elevated risk for death (Supplementary 
Table 6). Insurance status may not have entered any decision tree because age was selected over Medicare status 
during pruning. However, it is important to note that most of the variables that had high importance scores as 
computed over the full sample, also had effects that varied significantly as a function of other risk factors. Thus, 
these analyses suggest that greater understanding of the risk for COVID-19 related mortality would be achieved 
if such relations were examined in subpopulations since the relations of numerous risk factors with mortality 
vary meaningfully as a function of other risk factors.

In sum, these results revealed variables that were important predictors across both the full sample and the 
sub-sample and when site effects were and were not taken into account. These variables had high importance 
scores in the two samples (e.g., age, hypertension, sex, renal failure, congestive heart failure, vaccination). How-
ever, this research also shows that predictive relations can differ meaningfully when used with different sites and 
populations as indicated by the numerous and large magnitude site effects as seen in the regression trees. Thus, 
in this research, instead of attempting to derive prediction models in wholly separate patient or site populations 
(e.g., with training and test samples), we opted to show how different sites and populations affected predictor-
outcome relationships. Such variability in predictive relationships needs to be considered when attempting to 
generalize results to any particular healthcare setting or population.

The findings of this research might be used in policies aimed at outreach and prevention efforts. For instance, 
the age-related association of vaccination with decreased mortality might be used in outreach that encourages 

Figure 3.  GUIDE subgroup model for differential outcomes for the Full sample, without Site. At each split, 
an observation goes to the left branch if and only if the condition is satisfied. Symbol ‘</=*’ stands for ‘C or 
missing’. Set1 = {American Indian or Alaska Native, Asian, Other Race Not Specified, Unknown, Not Reported, 
or Missing}. Set2 = {Healthy Weight. Overweight}. Set3 = {Not Hispanic or Latino}. Set4 = {Black or African 
American, Native Hawaiian or Other Pacific Islander, White}. Elix6 hypertension, uncomplicated, Elix7 
hypertension, complicated, SDScore social deprivation score. Sample size (in italics) and mean of Mortality 
printed below nodes. Terminal nodes with means above and below value of 0.089 at root node are colored 
yellow and skyblue respectively.
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Figure 4.  GUIDE subgroup model for differential outcomes for the Subsample. At each split, an observation 
goes to the left branch if and only if the condition is satisfied. Set1 = {Site 1, Site 3, Site 7, Site 9, Site 10, Site 12, 
Site 19, Site 21}. Set2 = {Micropolitan Area, Rural}. Set3 = {Site 2, Site 5, Site 11, Site 15, Site 16}. Sample sizes (in 
italics) and 95% simultaneous confidence intervals for mortality rate printed below nodes. Terminal nodes with 
means above and below value of 0.073 at root node are colored yellow and skyblue respectively.

Figure 5.  Twenty most important variables and their GUIDE importance scores for predicting Mortality 
from Subsample. Elix6 hypertension, uncomplicated, Elix14 renal failure, Elix7 Hypertension, complicated, 
ElixVWTotal weighted comorbidity total score, Elix1 congestive heart failure, Elix11 diabetes, uncomplicated, 
Elix5 peripheral vascular disorders, Elix3 valvular diseases, Vaccinated any vaccine dose (vs. none), Elix12 
diabetes, complicated, VacDose number of vaccine doses, Elix2 cardiac arrhythmias, Elix4 pulmonary circuation 
disorders, Elix25 fluid and electrolyte disorders, Elix20 solid tumor without metastasis.
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greater vaccination in older patients. The effect of vaccination in patients over 62 years of age and who had hyper-
tension is particularly striking. Depending on status on other factors such as site, vaccination was associated with 
mortality rates that were often half of those of unvaccinated patients (Fig. 1). Outreach efforts might especially 
encourage vaccination amongst those who have hypertension given its strong association with mortality in such 
patients. Finally, the powerful findings associated with  site50 encourage further exploration of the factors that can 
account for such effects. Such site effects, however, also show the constraints in generalizing findings to other 
patients and healthcare settings.

Limitations of this work include the fact that mortality rates reflect all-cause mortality; some deaths may have 
occurred for reasons other than COVID-19 infection. Deaths outside of the healthcare systems and that occurred 
post-discharge were not available. Also, the analysis sample did not comprise any non-hospitalized patients. No 
doubt, different associations would have been obtained if persons with a broader range of COVID-19 severity 
had been included. The associations of risk factors with mortality would also certainly change if post-admission 
events such as symptoms or test results were included as  predictors12. Additionally, data on hospital features and 
care and staffing patterns at hospitals were unavailable and therefore site effects could not be further explored. 
Also, data were not available on the type of COVID-19 variants infecting patients and we did not compare dif-
ferent vaccines in terms of their relations with mortality. Further, we did not use a design in which we derived a 
prediction model and then validated it in a new sample of subjects. We did not use this strategy since we believed 
that use of the whole sample with tenfold cross-validation would yield the most accurate data on associations with 
COVID-19 mortality and because we wished to demonstrate the influence of different sites and patients on the 
nature of observed relationships. Moreover, the ML strategy we used might not have been an optimal approach 
relative to other strategies such as ensemble  methods12. Finally, the study sample comprised only COVID-19 
infected patients and no non-infected control patients.

Data availability
The existing Data Transfer and Use Agreements negotiated with each of the participating healthcare systems 
preclude the University of Wisconsin from sharing CEC-UW data with any entity at this time. Information 
Management Services, Inc. (IMS), under contract with the National Cancer Institute (NCI), is responsible for 
housing the final CEC-UW dataset. A small number of healthcare systems have put limits on the extent of data 
sharing. Data from most healthcare systems will eventually be made available to approved researchers, who are 
to be determined by NCI and/or IMS. The datasets generated and/or analyzed during the current study are not 
publicly available because they have not yet been transferred to the NCI contractor Information Management 
Services, Inc., (where they will be available after February 1, 2023) but are available from the corresponding 
author on reasonable request.
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