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On the stability & phase 
locking to a system reference 
of an optoelectronic oscillator 
with large delay
Mehedi Hasan 1*, Charles Nicholls 2 & Trevor Hall 1

Delay line oscillators based on photonic components, offer the potential for realization of phase 
noise levels up to 3 orders of magnitude lower than achievable by conventional microwave sources. 
Fibreoptic-based delay lines can realize the large delay required for low phase noise systems whilst 
simultaneously achieving insertion loss levels that can be compensated with available microwave 
and photonic amplification technologies. Multimode operation is an artefact of the delay line 
oscillator and introduces modulational instability into phase-locked control loops. An optoelectronic 
oscillator (OEO) with large delay under proportional integral control by a phase-locked loop (PLL) is 
modelled, providing the first report of the location of all the infinity of poles of the PLL-OEO system 
function. The first experimental observation of giant phase modulated oscillation of a free OEO 
and spontaneous giant phase modulated oscillation of a PLL-OEO are also reported and explained 
respectively as a source and manifestation of modulational instability. Nevertheless, the analysis 
and experimental observations, including a prototype 10 GHz PLL-OEO phase noise spectral density 
achieving −80dBc/Hzat10Hz and −145dBc/Hzat10kHz , demonstrate that stable phase lock operation 
and optimum phase noise performance is achievable provided full account of the multimode nature of 
the OEO is taken in the phase lock analysis.

The random fluctuations of an oscillator limit the precision of time and frequency measurements on which sci-
entific and technological endeavours rely. The noise and long-term stability of the system oscillator / clock is of 
major importance in applications such as optical and wireless communications, high-speed digital electronics, 
radar, and astronomy. With ever-increasing clock frequencies being used in digital systems, the requirement for 
compact high-performance clock sources will continue. The development of such a source would have major 
impact, for example, on radar sensitivity through improved clutter rejection; on the generation of mm waves for 
5G wireless; and on research into sources of THz radiation.

Among a variety of means using photonics to generate microwaves, the optoelectronic oscillator (OEO) is 
the most suited to practical deployment. Reference1 provides a review of the large literature that has arisen fol-
lowing the introduction in 1996 of the OEO2. Lasers and OEOs are examples of time delay oscillators. The laser 
generates optical carriers using a cavity containing the sustaining amplifier. The OEO generates microwave car-
riers using an RF photonic link consisting of laser; optical intensity modulator; optical fibre; photo-receiver; RF 
amplifier and bandpass filter, which drives the modulator; closing the loop and sustaining oscillation. The virtue 
of time delay oscillators is the large delay achievable relative to the oscillation period. The low loss of optical fibre 
(0.2 dB/km) permits delay line lengths of ~ 10 km offering exceptional OEO phase noise performance. However, 
the frequency interval between adjacent oscillation modes becomes very small (20 kHz for 10 km), and filtering 
is needed for mode selection and sidemode suppression.

Whereas quartz crystal system reference oscillators, even when multiplied to microwave frequencies, offer 
superior phase noise at close-to-carrier offset frequencies, the OEO offers superior phase noise performance at 
offset frequencies further out from the carrier. It remains a requirement to phase lock the OEO to the system 
reference to reduce the close-in phase noise and to provide long-term stability while engineering the phase-locked 
loop (PLL) to take advantage of the superior phase noise of a free OEO at higher offset frequencies.

OPEN

1Photonic Technology Laboratory, Advanced Research Complex, University of Ottawa, 25 Templeton 
Street, Ottawa, ON  K1N 6X1, Canada. 2Nanowave Technologies Inc., 6 Gurdwara Rd, Nepean, ON  K2E 8A3, 
Canada. *email: mhasa067@uottawa.ca

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-31248-w&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2023) 13:4207  | https://doi.org/10.1038/s41598-023-31248-w

www.nature.com/scientificreports/

A variety of architectures and approaches to locking an OEO to a system reference have been disclosed in 
the literature3–8. In most cases, the PLL is combined with injection locking; either external-injection locking of 
the OEO to the reference carrier6 or self-injection locking of the OEO to a delayed replica of the oscillation7,8. 
The latter category encompasses dual loop OEOs5 and more generally multi-loop OEOs as a large self-injection 
level special case. The theoretical models disclosed to describe these architectural variations neglect the mul-
timode character of the OEO. In respect of injection locking the models reduce to the differential equations of 
Adler (weak injection)9 or Paciorek (strong injection)10 valid only for classical single mode oscillator. Recently, 
a delay integral/differential equation formulation of injection locking theory for a time delay oscillator has been 
introduced11 that fully accounts for the multimode character of the oscillator and the distinct physical roles of 
the delay line and RF bandpass filter. It is long established that injection locking has an equivalent representa-
tion as a type-I PLL12, i.e., a proportional controller, so these architectures may be viewed from the perspective 
of self-referenced phase locked loops, which has been applied to the study of self-injection locked electronic 
oscillators and a short loop OEO3. In respect of the PLL, prior models treat the controlled OEO as a voltage-
controlled oscillator (VCO) and consequently reduce to the classical theory in which the VCO is treated as a 
perfect phase integrator. The multimode operation and long delay are fundamental to the neuromorphic appli-
cation of a broadband OEO as a reservoir computer13,14 but this paper is concerned with the OEO as a source 
of pristine RF carriers.

A single-loop OEO under proportional integral control by a PLL is modelled taking full account of the delay, 
providing the first report of the location of all the infinity of poles of the controlled oscillator system function. 
This provides a well-characterised basic subsystem from which more complex architectures may be composed, 
either as nested control loops or as coupled oscillators. The theoretical considerations are supported by experi-
mental observations. The first observation is reported of an OEO exhibiting giant phase modulated oscillation 
analogous to the FM mode regime of an actively mode-locked laser15. The giant phase modulation phenomenon 
is the source of a modulation instability of a PLL-OEO system which is described by the analysis and observed 
experimentally. Nevertheless, the analysis and experimental observations presented demonstrate that stable 
phase lock operation and optimum phase noise performance is achievable if the multimode operation of the 
basic oscillator is accounted for in the phase lock analysis.

Free optoelectronic oscillator system poles.  Consider the controlled optoelectronic oscillator shown 
within the dashed box in Fig. 1. The system function G of a Leeson model16 of the optoelectronic oscillator is 
given by:

where τD is the delay and τR is the on-resonance group delay of the RF bandpass filter that promotes single-
mode oscillation. For simplicity, a single-pole baseband-equivalent model of the bandpass filter is used (see 
supplementary material).

The poles of G are located at the roots of the equation:

which may be cast into the same form:

as the definition of the Lambert w function17:

(1)G(s) = 1
1− 1

1+τRs
exp (−τDs)

(2)1+ sτR − exp (−sτD) = 0

(3)(ρ + τDs) exp (ρ + τDs) = ρ exp (ρ) ; ρ = τD/τR

(4)w(z) exp (w(z)) = z

Figure 1.   Leeson phase model of a phase locked optoelectronic oscillator system. The phase locked loop 
forms a negative feedback loop composed of the phase sensitive detector (PSD), loop filter, and optoelectronic 
oscillator (OEO). The PSD is depicted by the signed summation block on the left that measures the phase error 
φin − φout . The loop filter is depicted by a block labelled by its system function F . The OEO is depicted by the 
contents of the red dashed box that form a positive feedback loop. The rectangle represents the combined action 
in the Laplace transform domain of the fibre optic delay line and RF bandpass filter, where τD is the time delay 
and H is the baseband equivalent system function of the RF bandpass filter. The summation block represents a 
phase shifter that introduces a single pass phase shift equal to the tuning control φ1.
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Consequently, the roots sk are given by:

where the integer k indexes the countable infinity of branches of the multivalued Lambert w function. The Lam-
bert w function organises its solutions by increasing negative real part with increasing magnitude of the branch 
index Conveniently, the Lambert w function is a MATLAB supplied function.

Expressed in terms of the real σ and imaginary iω parts of the Laplace transform variable s = σ + iω , Eq. (2) 
separates into two coupled real equations:

Equation (6) defines an implicit curve in the complex plane parameterised by τRω , referred to herein as the 
pole locus, on which the poles must lie. The bounded range of the arctangent in Eq. (7) localises each pole to a 
neighbourhood of τDω = 2πk . Equation (6) & (7) may be iterated to find the precise locations of the poles as 
an alternative to evaluating the Lambert w function.

For large delay τD ≫ τR , Eq. (6) & (7) simplify to:

The explicit pole locus defined by Eq. (8) provides an excellent fit to the exact distribution of the poles for 
representative values of the τD , τR parameters (see Fig. 2a) and provides an upper bound to their real part. Such 
curves were introduced by Yanuck18 using the term ‘pseudo-continuous spectrum’ and are of utility in establish-
ing sufficient conditions for the stability of controlled time delay oscillator systems without explicit solution in 
terms of elementary or special functions.

Giant phase modulation.  While the system function of the optoelectronic oscillator shares with an ortho-
dox voltage-controlled oscillator a pole at the origin representing a perfect integrator, it possesses in addition, 
a countable infinity of complex conjugate pairs of poles in the left-hand half-plane close to the imaginary axis 
representing sidemode resonances. Referring to Fig. 1 and Eq. (1), tuning phase modulation:

with amplitude �φ and frequency ω causes oscillation phase modulation:

where:

Under conditions where all significant sidebands of the modulated oscillation fall well within the passband 
of the RF-bandpass filter, the complex envelope is given by:

(5)skτD = wk

(

ρ exp (ρ)
)

− ρ ; k ∈ Z

(6)τDσ = −
1

2
ln
(

(1+ τRσ)
2 + (τRω)

2
)

(7)τDω = 2πk − tan−1 (τRω/(1+ τRσ)) ; k ∈ Z

(8)τDσ = −
1

2
ln
(

1+ (τRω)
2
)

(9)τDω = 2πk − tan−1 (τRω) ; k ∈ Z

(10)φ1 = �φ cos (ωt)

(11)φout = µ cos (ωt + ξ)

(12)µ = |G(iω)|�ϕ ; ξ = arg (G(iω))

Figure 2.   (a) A comparison of the poles of the system function of a free time delay oscillator and the asymptotic 
curve defined by Eq. (8); (b) Bode plot of the transfer function of an optoelectronic voltage-controlled oscillator 
relative to an orthodox voltage-controlled oscillator with equivalent static tuning sensitivity-in a neighborhood 
of the first sidemode resonance.
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where ω0 is the natural frequency of the unmodulated oscillation. The right-hand side of Eq. (13) follows from the 
Jacobi-Anger expansion. The modulated oscillation is known as a Bessel super mode and has a comb spectrum 
with spectral lines at intervals of the modulation frequency.

The on-sidemode-resonance phase modulation gain G(iωk) may be estimated as:

which for representative parameter values k = 1, τR ∼ 86ns, τD ∼ 25µs , evaluates to 4281 ( 73dB ). The phase 
modulation gain at the same frequency of an orthodox VCO with the same tuning sensitivity is:

which evaluates to 0.1591 (-16 dB). The 89 dB greater gain at the first sidemode resonance of the OEO compared 
to the VCO is confirmed by the plot in Fig. 2b. Equation (14) is only valid for τD ≫ τR . However, Eq. (1)) and the 
theoretical description of tuning phase modulation remains valid as τD → 0 but the character of the oscillator 
progressively evolves from a multimode time delay oscillator with properties dominated by the delay line to a 
classical single mode oscillator with properties dominated by the RF bandpass filter (see supplementary material).

To confirm these phase modulation resonances experimentally, a small voltage modulation is applied to 
a voltage-controlled RF phase shifter inserted within the OEO loop. The experimental arrangement is shown 
schematically in Fig. 3. An Analog Devices HMC931 is used as the voltage-controlled phase shifter (PS). A cus-
tom 10 GHz resonator having quality factor of around ∿2700 is used as the electrical bandpass filter (EBPF). 
A distributed feedback (DFB) laser having an output power of 80 mW (Em650 from G & H) with an operating 
wavelength near ∿1550.12 nm is used as the optical source. The electrical amplifiers are off-the-shelf RF power 
amplifiers having a gain of 16dB . Three similar electrical amplifiers were used in the loop to compensate the extra 
insertion losses caused by the EBPF (∼ 10dB) and the PS (∼ 4dB).

Figure 4a shows the measured spectrum of the RF output of the OEO in the absence of applied modulation. 
The sidemode resonances excited by residual intra-loop phase fluctuations are separated from the oscillation 
frequency by the reciprocal of the delay (~ 25 µs ) produced by a 5 km optical fibre coil. A sinusoidal voltage with 
40 kHz frequency and −50dBm power is applied to the phase shifter (PS) to inject intra-loop phase modulation. 
Figure 4b–d shows the resulting measured electrical spectrum of the RF output of the OEO. The RF spectrum 
of the free OEO presented in Fig. 4a does not change when the injected frequency is 40 kHz. However, at the 
modulation frequency ∼40.20 kHz the sidemodes within the RF spectrum gain considerable power with injected 
phase modulation (Fig. 4b) in comparison to the spectrum without any injected phase modulation (Fig. 4a). At 
modulation frequencies close to resonance (∿40.38 kHz), the outcome is giant phase modulation of the carrier 
confirming the prediction of Eq. (14). Consistent with Eq. (13), the giant phase modulation generates a comb 
spectrum with peaks of similar magnitude (Fig. 4c) at intervals of the modulation frequency extending over a 
broad band (Fig. 4d) comparable to the 3.7 MHz  −3dB bandwidth of the EBPF.

The near-singular sidemode resonances in the phase modulation transfer function of the optoelectronic oscil-
lator are responsible for the phenomenon of giant phase modulation. When an OEO is placed within a phase 

(13)u(t) = exp [i(ω0t + µ cos (ωt + ξ))] = exp (iω0t)
∑

n=−∞,∞
inJn(µ) exp (in(ωt + ξ))

(14)G(iωk) ∼
1

2π2k2

(

τD

τR

)2

(15)G(iωk) =
1

2πk

Figure 3.   Schematic diagram of the experimental setup for the observation of giant phase modulation. LD 
Laser diode, MZM Mach–Zehnder modulator, SMF Single mode fiber, PD Photodiode, EA Electrical amplifier, 
PS Phase shifter, EBPF Electrical bandpass filter, EC Electrical coupler, ESA Electrical spectrum analyzer, RF LO 
Radio frequency local oscillator.
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control loop the sidemode resonances are a source of modulational instability. Spontaneous giant phase modula-
tion is almost certain to be observed if the controller design does not take account of the sidemode resonances.

Controlled optoelectronic oscillator system poles.  The behaviour of a phase locked loop (PLL) is 
accurately captured by a dynamical system model with the phase of the voltage-controlled oscillator (VCO) as 
state variable. An orthodox VCO is modelled as a perfect integrator characterized by its tuning sensitivity KVCO 
( Hz/V  ). The phase sensitive detector (PSD) may be based on a balanced mixer or other approximation to a 
four-quadrant multiplier, which provides an approximately sinusoidal response with 2π period. An alternative 
implementation based on a sequential phase detector with charge pump provides a linear response over an inter-
val of (−2π , 2π) outside of which the response saturates. In either case, the PSD is characterised by its sensitivity 
KPSD ( V/rad ) to small phase differences. The loop filter is modelled by a linear system of differential equations, 
which is expressed equivalently but more conveniently by the system function in the Laplace transform domain. 
Indeed, subject to linearization, the closed loop system function of the complete PLL-VCO may be derived and 
its poles (and zeros) located. Since the number of poles is small, it is a relatively simple design matter to place all 
the poles in the left-hand half-plane of the Laplace transform domain to ensure stability.

On the other hand, an OEO may be tuned by inserting a voltage-controlled phase shifter within the oscil-
lating path (see Fig. 3). The path contains an optical fibre coil of substantial length (∼ 5km) and hence long 
delay (∼ 25µs ). The OEO oscillation essentially accumulates a phase step on each round trip resulting in a 
staircase approximation of the phase ramp provided by an orthodox VCO. The passband of the RF filter is 
large (~ 3.7 MHz) compared to the frequency interval between adjacent sidemodes ( ∼ 40kHz ) and hundreds of 
roundtrips are necessary before the smoothing of the staircase it provides is effective. The OEO is an example of 
a time delay oscillator and its behaviour as a voltage-controlled oscillator differs substantially from an orthodox 
VCO. Systems with time delays such an OEO are challenging to control19. Their stability analysis is complicated 
by a system function possessing an infinity of poles. Consequently, while a controller may be designed to place 
a finite number of known poles in the lefthand half-plane of the Laplace transform domain, one rarely can be 
certain that the same controller has not moved one or more of the remaining infinity of poles into the righthand 
half-plane, thereby leading to instability.

It is convenient to take the signal input to the phase sensitive detector from the output coupler of the oscillator, 
which leads to the configuration illustrated schematically by Fig. 1. The complete system function is:

(16)K(s) =
F(s)

1+ F(s)− 1
1+τRs

exp (−τDs)

Figure 4.   Measured electrical spectrum for (a) the free OEO and (b–d) with small (− 50 dBm) injection 
of sinusoidal intra-loop phase modulation via the phase shifter having frequencies close to the inter mode 
frequency interval. A resolution bandwidth of 100 Hz is used for all the measurements. A span of 200 kHz 
is used for (a–c); whereas a span of 3 MHz is used for (d). The artifact in (d) is a text file error when saving a 
spectrum with a large number of points.
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where F is the controller system function. The poles of K are located at the roots of the equation:

Equation (17) separates into two coupled real equations:

that differ from Eq. (6) & Eq. (7) by the addition of the final term on the righthand sides.
In the case of a proportional integral controller:

where κ is the proportional gain, τI is a time constant that characterises the integrator, and τ1 = κτI is a time 
constant that characterises an equivalent lead-lag network.

For representative parameter values ( τR ∼ 86ns, τD ∼ 25µs, τI ∼ 100ms) the time constants τR ≪ τD ≪ τI 
are roughly evenly distributed over three orders of magnitude. Consequently, the standard assumption that the 
oscillator behaves as an ideal integrator may be used to place the inner poles. Specifically, the approximation:

is made to reduce Eq. (17) to:

Substitution of Eq. (20) results in a quadratic equation describing damped simple harmonic motion:

where:

is the period of the natural oscillation and:

is the damping factor. The two roots:

provide an accurate estimate of the location of the two inner poles of K  . Over damping corresponds to ξ > 1 
and a reciprocal pair of real poles. Critical damping corresponds to ξ = 1 and a double pole on the real axis. 
Under damping corresponds to ξ < 1 and a complex conjugate pair of poles situated in the left-hand half-plane 
on a circle of radius 1/τF centred on the origin. The choice ξ = 1/

√
2 provides responsive dynamics. The natural 

frequency is best set close to the frequency (~ 100 Hz) at which the system reference phase noise crosses over 
the phase noise of the free oscillator.

Beyond the inner pole region F(s) → κ and Eq. (18) approaches:

The outer poles approach the pole locus of a proportionally controlled oscillator (see supplementary mate-
rial Fig. 1A and associated discussions). The two controller parameters available to the designer have been used 
to place the inner poles, it is good fortune that the outer poles are in the left-hand half-plane ensuring stability.

In the example given, it is significant that arg (F) → 0 outside the inner pole region. The phase of F plays a 
critical role in Eq. (18) via the term:

Stability is only guaranteed if the cosine is positive. The proportional integral controller retains proportional 
control at high frequencies, yet prima facie, it is desirable that the controller relinquishes control completely at 
frequencies where the free oscillator provides superior phase noise performance. In practice additional poles are 
inserted into the loop filter transfer function to provide design freedom for a variety of purposes such as phase 
detector comparison frequency rejection, improved tracking of ramped or chirped reference sources and phase 
noise spectral shaping. The PLL evaluation board active loop filter (Fig. 5) used in experiments introduces three 
such additional poles.

(17)1+ F(s)−
1

1+ τRs
exp (−sτD) = 0

(18)τDσ = −
1

2
ln
(

(1+ τRσ)
2 + (τRω)

2
)

−
1

2
ln
(

|1+ F(s)|2
)

(19)τDω = 2πk − tan−1 (τRω/(1+ τRσ))− arg (1+ F(s)) ; k ∈ Z

(20)F(s) = κ +
1

sτI
≡ κ

1+ sτ1

sτ1

(21)1− 1
1+τRs

exp (−τDs) ∼ sτD ; |sτR| ≪ |sτD| ≪ 1

(22)F(s)+ sτD = 0 ; |sτD| ≪ 1

(23)1+ 2ξ(τFs)
2 + (τFs)

2 = 0

(24)τF =
√
τIτD

(25)ξ =
1

2
κ

√

τI

τD

(26)τFs = −ξ ±
√

ξ 2 − 1

(27)
τDσ = − 1

2 ln
(

(1+ τRσ)
2 + (τRω)

2
)

− ln (1+ κ)

≈ − 1
2 ln

(

1+ (τRω)
2
)

− ln (1+ κ) ; τR ≪ τD

(28)− 1
2 ln

(

|1+ F(s)|2
)

= − 1
2 ln

(

1+ |F|2 + 2|F| cos
(

arg (F)
))

∼ −|F| cos
(

arg (F)
)
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A single pole low-pass filter contributes a phase shift that accumulates to −π/2 over a range of frequencies 
spanning roughly a decade either side of its breakpoint frequency. Consequently, a section of the pole locus can 
enter the righthand half-plane and stability is no longer guaranteed. If that section includes a sidemode resonance 
a modulational instability would be guaranteed if not for the small gain margin provided by the RF bandpass 
filter. A three-pole low pass filter designed without regard to the OEO sidemode may shift an outer pole with 
relative ease into the left-hand half-space of the Laplace transform domain (see Fig. 2A supplementary material).

Loop filter design and experimental results.  Off-the-shelf components are used to demonstrate the 
phase locking of a single loop optoelectronic oscillator. Figure 6 shows a schematic diagram of the experimental 
arrangement. An Analog Devices HMC703 is used as the PLL in this experiment. A Keysight N5166B CXG RF 
vector signal generator is used to provide a 100 MHz carrier with power of 6 dBm as reference input. The OEO 
operates at 10 GHz which is above the 8 GHz input frequency limit of the HMC703 consequently a ÷2 frequency 
divider is used before the PLL to bring the signal frequency into the operating range of the PLL. A Keysight sig-
nal source analyzer (SSA) E5052B is used to measure the phase noise spectrum of the PLL-OEO system.

The PLL evaluation board active loop filter (Fig. 5) used for experiments provides a controller system function:

Figure 5.   The active loop filter circuit included on the phase locked loop evaluation board used for 
experiments. R19, R21, R14, C17, C28, C25 and C5 are labeled verbatim from the HMC703 evaluation board. 
The 2.5 V is a bias used to permit a single ended power supply but otherwise acts as a signal ground.

Figure 6.   Schematic diagram of the experimental setup for phase locking the OEO to the reference LO PLL 
Phase lock loop; FD Frequency divide, SSA Signal source analyzer; Ref. LO Reference local oscillator.
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which, in addition to the lead-lag term, introduces three single pole factors. The time constants τ1, τ2, τ3, τ4, τ5 are 
defined by the active filter circuit component values and κ is the proportional gain. Representative values of the 
parameters κ , τ1, τ2, τ3, τ4, τ5 are given in Table 1 evaluated for two example component sets (Case-1 and Case-2) 
(see supplementary material). The component values listed were provided by filter design software with a charge 
pump current setting of ICP = 2.5mA and a static voltage-controlled oscillator gain setting of KVCO = 4kHz/V  
as measured experimentally. The filter design software selects component values with no regard to sidemode 
resonances. The optoelectronic oscillator operated at 10 GHz. The system reference was provided by a 100 MHz 
RF source. Consequently, the PLL used a N = 100 frequency divider, which has the effect of reducing the loop 
gain by the same factor. Both sets of component values provided a stable PLL-VCO (not OEO) with substantial 
phase and gain margins ∼ 80◦&25dB . On the other hand, the Bode plot for the PLL-OEO for the two component 
sets over a range of offset frequencies up to 100kHz is given in Fig. 7. Superficially the Bode plots indicate stable 
operation with similar phase and gain margins until one inspects a small neighborhood of the first sidemode reso-
nance at ∼ 40kHz shown in the inset of Fig. 7 where the phase lag passes through −180◦ . For Case-1 parameter 
values, the loop gain exceeds unity by up to ∼ 10dB ensuring instability. The Case-2 parameter values reduces the 
loop gain at the first side-mode resonance below ∼ −9dB suppressing the instability. For the first component set 
spontaneous giant phase modulated oscillation (modulational instability) is observed experimentally for a charge 
pump current of 800µA or greater. The growth of the phase modulation is limited only by saturation within the 
control loop and can be up to ±2Nπ ∼ ±630rads . For Case 2 parameter values modulation instability is not 
observed experimentally for charge pump current up to 2.5mA . The respective predicted outer pole locations of 
the complete system are illustrated by supplementary material Fig. 2A.

The loop-filter design freedom that is required to achieve performance objectives other than stability such 
an engineered phase noise spectrum is seriously curtailed by modulation instability. The restoration of design 
freedom requires methods of suppressing the spurious resonances that do not re-introduce system reference 
phase noise. The possibilities include self-injection / self-phase locking, which involve more than one loop, and/
or low-noise methods of reducing RF filter bandwidth, which is a challenge.

Figure 8 shows the measured phase noise of the OEO without (free OEO) and with PLL locking (PLL locked 
OEO). 100 correlations are used for the measurement. A phase noise of − 141 dBc/Hz @ 10 kHz offset is attained 

(29)F(s) = κ
τ1

τ2
.
1+ sτ2

sτ1
.

1

1+ sτ3
.

1

1+ sτ4
.

1

1+ sτ5

Table 1.   Loop filter component and system parameter values; (a) Component values for two different 
instances of loop filter design; (b) model parameters derived from component values (see supplementary 
material for formulae).

(a)

Case R19 (k�) R21 (k�) R14 (k�) C17 (nF) C25 (nF) C28 (nF) C5 (nF) KVCO (kHz/V) N ICP (mA)

1 33 33 1.8 0.47 47 1 4.7 4 100 2.5

2 22 22 2.2 2.2 220 3.3 4.7 4 100 2.5

(b)

Case κ τ1 (µs) τ2 (µs) τ3 (µs) τ4 (µs) τ5 (µs) τD (µs) τR (ns)

1 0.081 1584 1551 32.31 15.51 8.46 25 86

2 0.054 4913 4840 71.53 48.40 10.34 25 86

Figure 7.   Open loop Bode plot for the PLL-OEO for the two different loop filter designs considered. The inset 
shows the first side-mode resonance for two different sets of loop filter component values listed in Table 1.
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for a carrier frequency of 10.045 GHz. With an increase in the number of correlations to 1000, the measured 
phase noise of the OEO improved to − 145 dBc/Hz @ 10 kHz offset, however the measurement time thereby 
becomes prolonged. The spurious spectral lines at 1 MHz and harmonics are caused by the laser frequency dither 
which is applied to mitigate phase noise due to double Rayleigh scattering (DRS)20. The phase locked spectrum 
also shows that the bandwidth of the active loop filter needs to be reduced further to optimise the crossover 
from the locked OEO to the free OEO phase noise. If required, the frequency drift compensation can be enlarged 
further using the method presented in21.

Conclusion
This paper reports the findings of a study of an optoelectronic oscillator (OEO) with large delay under propor-
tional and proportional integral control by a phase-locked loop (PLL). The study is the first to fully account for 
the OEO delay in responding to a tuning stimulus including the location of all the countable infinity of poles of 
the system function. This provides a well characterised basic subsystem from which more complex architectures 
may be composed, either as nested control loops or as coupled oscillators. The theoretical considerations are sup-
ported by experimental observations. The first observation is reported of an OEO exhibiting giant phase modu-
lated oscillation that is related to the FM-mode regime of an actively mode-locked laser but without the pulsed 
mode regime. Giant phase modulation is the source and spontaneous giant phase modulation (i.e., regenerative 
FM-mode regime mode-locking) is a manifestation of a modulation instability of a PLL-OEO system which is 
described by the analysis and observed experimentally. Nevertheless, the analysis and experimental observa-
tions, including a prototype 10 GHz PLL-OEO phase noise spectral density achieving −80dBc/Hz at at10Hz and 
−145dBc/Hz at 10kHz demonstrate that stable phase lock operation and near optimum phase noise performance 
is achievable provided full account of the multimode character of the OEO is taken in the phase-lock analysis.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Received: 19 October 2022; Accepted: 8 March 2023

References
	 1.	 Hao, T. et al. Toward monolithic integration of OEOs: From systems to chips. J. Light. Technol. 36, 4565–4582 (2018).
	 2.	 Yao, X. S. & Maleki, L. Optoelectronic oscillator for photonic systems. IEEE J. Quant. Electron. 32, 1141–1149 (1996).
	 3.	 Zhang, L., Poddar, A. K., Rohde, U. L. & Daryoush, A. S. Comparison of optical self-phase locked loop techniques for frequency 

stabilization of oscillators. IEEE Photonics J. 6, 7903015 (2014).
	 4.	 Zhang, Y., Hou, D. & Zhao, J. Long-term frequency stabilization of an optoelectronic oscillator using phase-locked loop. J. Lightwave 

Technol. 32, 2408–2414 (2014).
	 5.	 Bluestone, A. et al. An ultra-low phase-noise 20-GHz PLL utilizing an optoelectronic voltage-controlled oscillator. IEEE Trans. 

Microw. Theor. Tech. 63, 1046–1052 (2015).
	 6.	 Zhenghua, Z., Chun, Y., Zhewei, C., Yuhua, C. & Xianghua, L. An ultra-low phase noise and highly stable optoelectronic oscillator 

utilizing IL-PLL. IEEE Photon. Technol. Lett. 28, 516–519 (2016).
	 7.	 Fu, R. et al. Frequency stability optimization of an OEO using phase-locked-loop and self-injection-locking. Opt. Commun. 386, 

27–30 (2017).
	 8.	 Banerjee, A., Dantas de Brittob, L. A. & Pachecob, G. M. A theoretical and experimental study of injection-pulling for IL-PLL 

optoelectronic oscillator under RF signal injection. Optik 203, 164059 (2020).
	 9.	 Adler, R. A study of locking phenomena in oscillators. Proc. IRE 34, 351–357 (1946).
	10.	 Paciorek, L. J. Injection locking of oscillators. Proc. IEEE 53, 1723–1727 (1965).
	11.	 Hasan, M., Banerjee, A. & Hall, T. J. Injection locking of optoelectronic oscillators with large delay. J. Lightwave Technol. 40, 

2754–2762 (2022).
	12.	 Couch, L. W. A study of a driven oscillator with FM feedback by use of a phase-locked loop model. IEEE Trans. Microw. Theor. 

Tech. 19, 357–366 (1971).
	13.	 Brunner, D. et al. Tutorial: Photonic neural networks in delay systems. J. Appl. Phys. 124, 152004 (2018).

Figure 8.   Measured phase noise of the free OEO and phase locked OEO. 100 correlation is used for the 
measurement.



10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:4207  | https://doi.org/10.1038/s41598-023-31248-w

www.nature.com/scientificreports/

	14.	 Chembo, Y. K. Machine learning based on reservoir computing with time-delayed optoelectronic and photonic systems. Chaos 
30, 013111 (2020).

	15.	 Siegman, A. Lasers. University science books, (1986).
	16.	 Leeson, D. B. Oscillator phase noise: A 50-year review. IEEE T. Ultrason. Ferr. 63, 1208–1225 (2016).
	17.	 Coreless, R., Gonnet, G., Hare, D., Jeffrey, D. & Knuth, D. On the Lambert w function. Adv. Comput. Math. 5, 329–359 (1996).
	18.	 Yanchuk, S. & Giacomelli, G. Spatio-temporal phenomena in complex systems with time delays. J. Phys. A Math. 50, 103001 (2017).
	19.	 Sipahi, R., Niculescu, S., Abdallah, C. T., Michiels, W. & Gu, K. Stability and stabilization of systems with time delay. IEEE Contr. 

Syst. Mag. 31, 38–65 (2011).
	20.	 Lelièvre, O. et al. A model for designing ultralow noise single- and dual-loop 10-GHz optoelectronic oscillators. J. Light. Technol. 

35, 4366–4374 (2017).
	21.	 Dai, J. et al. Stabilized optoelectronic oscillator with enlarged frequency-drift compensation range. IEEE Photon. Technol. Lett. 30, 

1289–1292 (2018).

Acknowledgements
Mehedi Hasan and Trevor J. Hall are indebted to Nanowave Technologies Inc. for providing access to their 
state-of-the-art laboratory to conduct the experimental result presented herein. Mehedi Hasan is grateful to the 
Natural Sciences and Engineering Research Council of Canada (NSERC) for their support through the Vanier 
Canada Graduate Scholarship program. Trevor J. Hall is grateful to the University of Ottawa for their support 
of a University Research Chair.

Author contributions
M. H. performed the experiment and wrote part of the manuscript. T. H. performed the MATLAB simulations 
along with mathematical modelling and completed the manuscript. C. N. reviewed the manuscript and super-
vised the experiment.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​023-​31248-w.

Correspondence and requests for materials should be addressed to M.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

https://doi.org/10.1038/s41598-023-31248-w
https://doi.org/10.1038/s41598-023-31248-w
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	On the stability & phase locking to a system reference of an optoelectronic oscillator with large delay
	Free optoelectronic oscillator system poles. 
	Giant phase modulation. 
	Controlled optoelectronic oscillator system poles. 
	Loop filter design and experimental results. 
	Conclusion
	References
	Acknowledgements


