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A neural network‑based PDE 
solving algorithm with high 
precision
Zichao Jiang , Junyang Jiang , Qinghe Yao * & Gengchao Yang 

The consumption of solving large‑scale linear equations is one of the most critical issues in numerical 
computation. An innovative method is introduced in this study to solve linear equations based on deep 
neural networks. To achieve a high accuracy, we employ the residual network architecture and the 
correction iteration inspired by the classic iteration methods. By solving the one‑dimensional Burgers 
equation and the two‑dimensional heat‑conduction equation, the precision and effectiveness of the 
proposed method have been proven. Numerical results indicate that this DNN‑based technique is 
capable of obtaining an error of less than  10–7. Moreover, its computation time is less sensitive to the 
problem size than that of classic iterative methods. Consequently, the proposed method possesses a 
significant efficiency advantage for large‑scale problems.

The numerical methods for solving partial differential equations (PDEs) are among the most challenging and 
critical engineering problems. The discrete PDEs form sparse linear equations and are usually solved by itera-
tion methods, e.g., the Gauss–Seidel  method1, the conjugate gradient (PCG) method, etc.2–4. Classic iterative 
solvers assure the precision and the reliability of the solutions but bring the challenge in terms of computational 
consumption.

In recent years, deep neural network (DNN), which reveals superior capability to process and to predict 
complicated systems, has been widely employed in a variety of fields, e.g., natural language  processing5, computer 
 vision6, etc.7,8 Due to its high computational efficiency and scalability, especially on heterogeneous platforms, 
DNN has become a promising technique in scientific computing and even provides the possibility for real-time 
PDE  solving9. Ray et al.10 proposed a neural network-based indicator to correct the irregular solution in the 
discontinuous Galerkin scheme. Chan et al. and Wang et al.11,12 employed neural networks to solve multiscale 
problems. In the numerical simulation of engineering problems, DNN is utilized as a direct solver of the approxi-
mated system, and solutions are found with high  efficiency13–16.

The idea of utilizing DNN to achieve numerical solutions of PDEs brings certain potential risks as well. 
According to the universal approximation theorem, the piecewise continuous objective function is a necessary 
condition for the reliability of DNN  approximation17,18. However, solutions of the PDEs, particularly the non-
linear PDEs, do not always satisfy the regularity  condition19. Accordingly, the solutions achieved from the direct 
DNN prediction usually have inadequate numerical accuracy. Therefore, many published neural network-based 
studies focus on semi-analytic models as an alternative to the direct prediction. For instance, Raissi et al.20 first 
proposed physics-informed neural network (PINN) to solve PDEs by embedding integral forms into the loss 
function. Ehsan et al.21 developed the hp-VPINN, an improved version of PINN with a higher accuracy.  Ew22 
employed the DNN to solve variational problems that arise from PDEs. These methods translate the original 
PDEs into parametric models and design the penalty functions to ensure the compatibility of the DNN models 
with the original PDEs and improve the accuracy of the DNN-based solutions but their accuracy is usually 
limited. Some recent studies have employed novel models that have been employed in other areas, e.g. using 
 ConvLSTM23 and data-driven  GMG24 to solve Naiver-Stokes equation, but their lowest error is in the range of 
 10–3–10–2.

Solving the intermediate linear equations through DNN is another intuitive and enlightening idea to combine 
the advantages of neural networks and classic numerical methods. Replacing the classic iteration methods like 
PCG and  GMRES25 with DNN can directly accelerate the computational process of the finite element method 
(FEM), the finite difference method (FDM), and the spectral methods. For instance, Xiao et al.26 proposed a 
neural network-based solver to expedite the FDM solving process of the Poisson equation in fluid simulations. 
Following this approach, the network’s architecture and the linear equations’ regularity are the essential factors, 
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and the former will be discussed in detail later in this manuscript. The regularity of the intermediate linear equa-
tions is usually controllable and readily quantifiable relative to the original PEDs or their parametric models. 
Therefore, solving the intermediate linear equations by DNN has potentially better improvement in terms of 
precision.

Interpretability27 is another critical issue for the application of DNN in PDE, which can be comprehended 
as an explanation of how a particular input leads to a particular output in DNN and what factual information 
the DNN learned during training. The interpretability of a generic DNN model is still an open problem, which 
inevitably restricts the application of DNNs in numerical computation. However, DNN is proven sufficiently 
reliable as an inner interpolation when the training set is sampled uniformly enough to support almost all pos-
sible inputs. The homogeneous data set of linear equations is fortunately convenient to generate. Moreover, for 
a particular algorithm, the discretization scheme of the PDE is usually unique; thus, the corresponding linear 
equations are constrained to a small range. Therefore, the DNN-based solvers of the intermediate linear equa-
tions effectively avoid the challenge of interpretability.

Regarding the network architecture, the classic DNN model suffers from network degradation and is conse-
quently unattainable to obtain high  accuracy28. Specifically, the higher depth of the network does not improve 
the accuracy but even has a negative effect. To fix the problem of network degradation, He et al. proposed Res-
Net28. A short connection called Res-block covering the hidden layers is involved in the network to maintain 
the training information transition to each hidden layer. It is proved effective in many practical applications, for 
example, Transformer proposed by  Google29. In numerical computation and PDE, Tong et al. employed Res-
Net in the simulations of the linear and nonlinear self-consistent  systems30. Res-Net was also utilized by  Ew22, 
mentioned above.

This paper presents an innovative DNN-based algorithm to solve linear equations with high precision and 
efficiency. The basic idea of this method is to solve the linear equations based on DNN, as a substitute for the 
classic iteration algorithms. The proposed method maintains the high efficiency of DNN and assures the neces-
sary precision for PDE solving via the following two aspects. Firstly, we employed the Res-Net architecture in 
the DNN model; thus, the accuracy can improve with the increasing depth of the network. Moreover, inspired 
by classic residual correction methods, we combined the DNN model with a correction iteration process, which 
reduces the error of the results from DNN iteratively.

To balance the network architecture’s simplicity and the algorithm’s generality, we focus on multi-diagonal 
linear equations. As one of the most common types of matrices, the multi-diagonal matrix is the discrete form of 
various PDEs. In FDM, many schemes correspond to differential equations with a naturally multi-diagonal struc-
ture. The equations can be further reduced even to tridiagonal equations when combined with the alternating 
direction implicit (ADI) method. For instance, both the Burgers equation and the heat-conduction equation have 
a 2nd-order precision scheme satisfying this property. More importantly, several vectors can directly represent a 
multi-diagonal equation, implying that an intuitive network input layer can be constructed based on this feature.

The DNN model predicts the solution of the equation based on the input set of vectors representing the 
equation and offers another vital performance advantage. In FDM, solving several linear equations with the 
same structure is often necessary. For example, in the ADI method, such a process exists at each time step. 
Traditional methods usually require circular construction of the matrix, which brings unavoidable additional 
computational time overhead. The algorithm, however, can solve multiple equations simultaneously, effectively 
avoiding this problem.

This paper is organized as follows: the main ideas are introduced in section "Methodology". In section "Pre-
cision-oriented parametric analysis", we investigate several factors affecting the numerical precision. Sec-
tion "Numerical experiments and validation" presents the numerical results that demonstrate the precision and 
efficiency of the proposed method. The conclusions are drawn in section "Conclusion".

Methodology
Inputting equations in matrix form into a DNN model and improving the accuracy are two critical subroutines 
in the proposed algorithm. In this section we present a dimension-reduced representation of the matrices in 
FDM, which is also utilized as input to the DNN model. In design of the DNN model, we employ the Res-Net 
architecture mentioned in section "Introduction" to address some of the difficulties of DNN models, e.g. network 
degradation. However, the optimization of the network is not sufficient to improve the accuracy to that required 
for numerically solving the PDE, and we have therefore developed the iteration algorithm that will be introduced 
in detail in section "A correction iteration".

The representation of the linear equation. The inputs of a DNN model are usually vectors, whereas 
the linear equations in FDM are always in matrix form, thus we first consider how to convert the equations 
into a form that can be fed into the DNN model. Since the linear equations in FDM describe the relationships 
between neighboring nodes, the matrices are sparse and have fixed and regular non-zero element positions, 
which inspired us to adopt a dimension-reduced matrix representation.

In FDM, the discrete equations generally form

where D is the dimension and p ∈ Z
D is the index vector of the node, e(d) is the d-th unit vector, xp is the solution 

while fp is the righthand term at node p . a(d)m (d ≤ D,m ≤ k) represents the constant coefficients of the difference 
scheme, where is the order of the scheme.

(1)
∑D

d=1
a
(d)
0 xp +

∑D

d=1

∑k

m=−k
a(d)m xp+me(d) = fp,
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In this paper, we focus on the PDEs in rectangular domains in Cartesian coordinate systems, where the differ-
ence equations are correspondingly multi-diagonal and sparse. The choice of matrix representation is particularly 
important for the solving process, which drives us to adopt a formulation of the multidiagonal matrixes that is 
more appropriate for the neural networks.

Considering an arbitrary linear system Ax = f  , the left-hand matrix A can be decomposed in the form of

where the symbol diagi(·) denotes the matrix that places the elements of the vector 
(
ai,1, ai,2, · · · ai,(n−i)

)
 on the 

i-th diagonal. In particular, diag0(·) represents the main diagonal, diagi(·)(i > 0) is the diagonal above the main 
diagonal, and oppositely diagi(·)(i < 0) is the lower diagonal elements.

The matrix in (2) can be represented by a series of vectors, called diagonal vectors, and the number of diagonal 
vectors coincides with the size of the equation. Practically, for a sparse multi-diagonal matrix, there will only be 
a few non-zero diagonal vectors. We can therefore represent the complete linear equations in terms of several 
vectors, including the right-hand vector f  , which will naturally be the input of the DNN model.

With this approach, we achieve the input of any multi-diagonal equation into the DNN model; thus, the DNN 
model can solve the linear equations of an arbitrary shape. However, in this paper, to simplify the description, 
we have chosen the tridiagonal equations as an example to illustrate the mechanism of the algorithm.

An arbitrary multi-diagonal matrix can have all its main diagonal elements transformed to 1 by a linear 
transformation, as shown by

where the original equation is represented by three diagonal vectors d , r , l  and the right-hand vector f  . After 
the transformation shown in (3), the input vectors are reduced by one, and more significantly, the three input 
vectors are normalized.

The DNN model can so far be written in the form of N
(
r, l, f ;�

)
 , where � is the set consisting of the 

parameters and hyperparameters of the DNN model. On the other hand, the DNN model can be considered as 
a regression of the operator y = S

(
A, f

)
= A−1f  .We accordingly selected mean squared error (MSE) as the 

loss function L(·) , shown by

where M is the size of the training set.
The training set we utilize consists of the random vectors of the Gaussian distribution

where ρ is the standard deviation of the training set and is treated as a given parameter in establishing the train-
ing set. It is worth noting that, although the training process of the DNN model is time-consuming, it is done 
 offline10 and only once for equations of the same size.

The residual network architecture. There are kinds of particular problems of classic deep  networks28,30,31 
that directly constrain the precision of the predicted solution, e.g., vanishing gradient, exploding gradient, and 
network  degradation32–35. Focusing the above problems, especially the network degradation, Res-Net establish a 
direct connection between the shallow layer and deep layer imitating a short circuit. Res-Net is thus capable to fit 
the identity operator and forces the network to approximate the "residue" of the input–output map  effectively30,36.

To prevent the vanishing gradient, we employ ReLU (rectified linear unit) as the activation function in the 
hidden layers. We denote the weight and bias of a single hidden layer as w and b , the residual block L(·) can be 
represented as

The DNN model N  can be denoted by a composite mapping, which forms

where ◦ stands for operator composition.

(2)

A =
�

i=0,±1,±2,···diagi
�
ai,1, ai,2, · · · ai,(n−i)

�

=
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,

(3)

(
diag0(d1, d2, · · · , dn)+ diag1(r1, r2, · · · , rn−1)+ diag−1(l1, l2, · · · , ln)

)
x = f

⇒

(
In + diag1

(
r1
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, r2d3 , · · · ,
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)
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(
l1
d1
, l2
d2
, · · · , ln−1
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f1
d1
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, · · · ,

fn
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)T
,

(4)L(·) =
1

M

∑M

i=1

(
N
(
ri , li , f i;�

)
− S

(
Ai , f i

))2
,

(5)
TN (ρ) =

{{
ri , li , f i , yi

}
: ri ∈ R

N−1; li ∈ R
N−1; f i ∈ R

N ;

yi =
(
I + diag1(ri)+ diag−1(li)

)−1
f i; rij , lij , fij ∼ N

(
0, ρ2

)
, j ≤ N

}

(6)
{
F(x) = ReLU(wx + b),

L(x) = F(x)+ x.

(7)N
(
r, l, f ;�

)
= LN ◦ LN−1 ◦ · · · ◦ L1,
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In addition to the Res-block, we utilize another short connection covering the whole network model. Based 
on this short connection, the network can be comprehended as the approximation of 

(
I − A−1

)
f  , that the output 

vector has smaller values and a zero mean. To evaluate the practical optimization via Res-Net, the training loss 
comparison between the DNN models with and without Res-Net is shown in Fig. 1.

From Fig. 1, the training loss of the DNN model containing Res-Net decreases to 1/4500–1/5000 of the 
original model. Moreover, the optimization of Res-Net is even more significant for large-scale linear equations. 
Therefore, Res-Net can be considered a reliable method to improve the precision of the DNN model.

Based on the above architecture, we designed the DNN model as shown in Fig. 2. In this model, there are 
three input vectors whose total dimension is (3N − 2) , while the dimension of the output vector is N . We thus 
established four groups of Res-blocks, three of which receive the input r , l , and f  . After concatenation, the output 
of these three groups is fed into the left Res-block and the final output x is achieved after adding f .

In Fig. 2, both the number of the Res-blocks (the depth of the network) and the size of the weight matrix (the 
number of the neurons) in each Res-block should be carefully considered based on the balance of the compu-
tational consumption and the precision. In this manuscript, we select the scheme that all the Res-block groups 
consist of three Res-blocks, i.e., n = m = 3 in Fig. 2. The number of the neurons is 100 in the group li , ri and f i , 
and 200 in the group ci(i ≤ 3) . This scheme is a compromise choice based on the numerical tests.

A correction iteration. Theoretically, based on the universal approximation  theorem17,18, the network can 
approximate the objective function with arbitrary accuracy when the number of neurons and layers of the neu-
ral network is sufficiently large. However, an excessively large model is not acceptable for actual computation. 
Therefore it is impracticable to obtain an accurate solution to an arbitrary equation via an individual prediction. 
In addition to the Res-Net, we employed another approach to improve the numerical precision. Inspired by the 
classic iteration methods, e.g., CG and GMRES, we proposed a correction algorithm shown in Algorithm 1.

Figure 1.  The ratio of the training loss of Res-Net and non-Res-Net at different sizes.

Figure 2.  The schematic of the DNN model.
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In Algorithm 1, ε is the parameter that determines the iterative convergence criterion, which is a constant 
smaller than 1. The other parameter restricts the iteration number is the maximum iteration number Nmax . The 
symbol xa∼b(a, b ∈ N+) denotes the vector consisting of the a-th to b-th elements of x . The operator ⊙ in Algo-
rithm 1 indicates the elementwise product of two vectors, i.e., 

[
a1 · · · an

]
⊙

[
b1 · · · bn

]
=

[
a1b1 · · · anbn

]
 . 

It can be proven that the matrix M is the matrix–vector product Arit.
In the calculation of matrix M , the tridiagonal matrix and vector production can be considered a sum of three 

vector operations that minimize the computational complexity and memory usage. In addition, the effect of the 
iterative algorithm to improve the accuracy will be evaluated by the numerical results proposed in Chapter 3.

Precision‑oriented parametric analysis
In general, the numerical precision of the proposed method could be influenced by two aspects of the input: the 
properties of the linear system and the parameters of the algorithm. It has been mentioned in section The repre-
sentation of the linear equation that the condition number of the matrix is significantly related to the diagonal 
dominance. In contrast, the condition number can reflect the sensitivity of the solution. The performance of 
the DNN model is consequently affected by diagonal dominance. Moreover, the algorithm’s relative precision 
(the norm ratio between the solution and error) is another essential benchmark that we evaluate in this section.

To quantify the effect of the above parameters on the precision and the convergence rate in the correction 
iteration, we conducted a series of numerical experiments proposed in this section. Specifically, we utilized 5000 
sets of input vectors generated by standard random numbers for each set of parameters to collect the mean results. 
In each set of parameters, ρc and ρr represents the ρ of the off-diagonal vector and right-hand vector, respectively.

The influence of the input vectors. The off-diagonal vectors affect the diagonal dominance of the linear 
equation and the regularity of the approximated mapping. Therefore, with the increase of the off-diagonal vec-
tors’ norm, the DNN model’s accuracy gradually deteriorates. The network would become invalid after reaching 
an uncertain threshold.

On the other hand, for a fixed matrix A , the mapping between the right-hand vector and solution is linear. 
Consequently, the norm of the solution is approximately proportional to the norm of the right-hand vector. 
A well-trained network should achieve high accuracy and simulate this linearity. Thus, the norm of the error 
would be approximately proportional to the norm of the right-hand vector. Figure 3 demonstrates the effect of 
the off-diagonal and the right-hand vectors on the network, respectively.

Figure 3.  The influence of the off-diagonal elements on the training loss (Left: the influence of ρc when 
ρr = 0.1 ; Right: the influence of ρr when ρc = 0.1).
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In Fig. 3, training loss represents the final value of the loss function in the training process. To investigate 
the effect of the single parameter, ρr in Fig. 3a is set to 0.1 in ,and ρc in Fig. 3b is set to 0.01. In Fig. 3a, the train-
ing loss is significantly related to ρc , and the training process shows the phenomenon of non-convergence as ρc 
increases to more than 0.3. Therefore, to achieve a reliable predicted solution, diagonal dominance is one of the 
essential factors that need to be considered.

According to the results shown in Fig. 3b, DNN can be considered as a regression with an approximately 
constant relative accuracy, i.e., the ratio �y∗ − y�/�y� is nearly a constant with a given network. In the view of 
the relative accuracy, Fig. 4 presents the relative accuracy of the network.

In Fig. 4, the relative error calculated from �y∗ − y�/�y� is approximately 2.53 ×  10–8 and remains within a 
small range for different ρr . This demonstrates that the algorithm has an advantage in terms of numerical accu-
racy and is sufficient for the numerical solution of the PDE.

The amplification factor. Since the operator S
(
A, f

)
= A−1f  is linear to f  , the following equality must 

be valid for arbitrary constant α:

As a regression of S
(
A, f

)
 , the output of DNN must satisfy this property as well. Nevertheless, the DNN, as 

a nonlinear mapping, is incapable of this linear property but approximately meets it. We were inspired by this 
property to conceive a factor α , called the amplification factor, as a hyperparameter to improve the precision 
of the DNN model. In particular, the prediction of DNN S

(
A, f

)
 is replaced by S

(
A,αf

)
/α . According to the 

numerical results in section "The influence of the input vectors", the constant α can be comprehended as an 
amplification factor of the prediction error and drive the correction iteration to correct it easier. The comparison 
among the iteration processes with different α is shown in Fig. 5.

In Fig. 5, as the amplification factor α gradually increases, the error in iterative convergence decreases sig-
nificantly. However, the increase of α beyond a certain threshold has approximately no effect on the precision. 
Besides, for the given set of input vectors, α has little impact on the speed of convergence; thus, larger α also 
causes more iterative steps. To further demonstrate the effect of the hyperparameter α , Fig. 6 shows the residual 
norm and the number of iterations with different α.

As can be observed in Fig. 6a, the influence of the off-diagonal elements on the precision has been approxi-
mately eliminated when the off-diagonal elements are smaller than the threshold ( ρc < 0.2 ). Combining the 
results in Fig. 3, we can assert that for diagonal-dominated equations, the correction iteration practically 
eliminates the effect of diagonal dominance on precision. Nevertheless, for non-diagonal dominant equations 
( ρc > 0.3 ), the correction iteration inevitably fails to converge due to the large condition number. The amplifica-
tion factor does not produce any effect in this case. Figure 7b shows that the number of iterations increases as 
the amplification factor increases until the iterations fail to achieve convergence. The results further demonstrate 
that the amplification factor practically amplifies the error of the DNN prediction and improves the numerical 
precision while causing an increase in the number of iterations. The number of iterations for the non-diagonal 
dominant equations is small due to the iterative divergence.

Numerical experiments and validation
Computational efficiency. To demonstrate the high efficiency of the proposed method, we compare it 
against the LU method in this section, as shown in Fig. 7.

The current version of our solver is developed based on the TensorFlow  platform37, while the classic solv-
ers in this comparison are provided by  NumPy38 library,  SciPy39 library (for CPU implementation), and CuPy 
library (for GPU implementation). On the homogeneous (CPU) platform, both the NumPy-based solver and 
SciPy solver natively support parallel computation. Since GPU devices can accelerate the TensorFlow platform, 
we utilized the CuPy-based solvers as the classic solvers on the GPU platform for a fair comparison. In this test, 

(8)
1

α
S
(
A,αf

)
= S

(
A, f

)

Figure 4.  The relative error for different ρr ( ρc = 0.01).



7

Vol.:(0123456789)

Scientific Reports |         (2023) 13:4479  | https://doi.org/10.1038/s41598-023-31236-0

www.nature.com/scientificreports/

the NumPy-based solver is based on the LU algorithm, the SciPy-based solver utilizes the Least Square QR-
factorization (LSQR) algorithm, and both of the algorithms are implemented by the CuPy-based solver.

The hardware platform in this test is Intel Xeon-W3175X CPU (28 cores, 3.1 GHz) and Nvidia RTX2080Ti 
GPU. In every single test, we solved 5000 random linear equations of a given size and calculated the average 
solving time.

In Fig. 7, as the size of the matrix increases, the computation time of the proposed DNN-based algorithm 
grows much slower than other classic solvers, and for matrices of size over 1000, this algorithm can achieve an 
acceleration of 10 to 100 times compared with the CPU-implemented algorithms.

The CuPy-based LU algorithm performs best in small equations but worst in large ones due to the bandwidth 
constraint between the CPU and GPU. The CuPy-based LSQR algorithm keeps most of the computation sub-
routines on the GPU, thus having advantages over the CPU-implemented algorithms. However, as the matrix 
increases, its time increases faster than the DNN-based solver; therefore, the DNN-based algorithm is more 
suitable for solving large-scale problems.

The heat conduction equation. In order to further highlight the high efficiency and accuracy of our 
algorithm, a set of PDEs is solved numerically using the proposed method. The first case is a 2D heat-conduction 
equation with mixed boundary conditions on a rectangle area shown by

Figure 5.  The norm of the residual vs. different α (Left: the decreasing of the residual in each iteration; Right: 
the residuals with different α).



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:4479  | https://doi.org/10.1038/s41598-023-31236-0

www.nature.com/scientificreports/

where the problem domain � =
{(

x, y
)
|0 ≤ x ≤ 1, 0 ≤ y ≤ 1

}
,β is the conduction coefficient, assumed as a 

constant in this problem.
In the present case, the parameters of the simulation are shown in Table 1.
The ADI scheme with 2nd order spatial precision and 1st temporal precision is utilized, which forms

(9)






∂tu− β

�
∂2xxu+ ∂2yyu

�
= 0,

�
x, y

�
∈ �

∂u
∂n |y=0,1

= 0

u |x=0 = 0, u |x=1 = 1

Figure 6.  The effects of ρc on convergence error (a) and the number of iterations (b).
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Figure 7.  Comparison of the computation time among different solvers.

Table 1.  Parameters of the 2D heat-conduction equation.

Parameter Value

β 0.1

�t 0.001

�x 0.0025

�y 0.0025

T 1.0
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where τ±x = 2
(
�t−1 ±�x−2

)−1 . The tridiagonal linear equation can represent each semi-step, and the proposed 
method can thus solve the linear equation. The comparison between the numerical solutions at the first 200 
timesteps is shown in Fig. 8.

To demonstrate the error distribution across the field more clearly, we have chosen the x-u section to illus-
trate the error distribution in Fig. 8. Although the LU linear solver achieves the reference solution, all the classic 
solvers mentioned in Fig. 7 can achieve an approximately precise solution as well. The error across the area is 
approximately 10−6 , in the same order of magnitude as the discretization error of the difference scheme in Eq. (8).

The convection–diffusion equation. This section presents a nonlinear problem solved by the proposed 
method. The Burgers equation is one of the fundamental PDEs in various fields such as nonlinear acoustics, gas 
dynamics, fluid mechanics, etc.40. The Burgers equation was first introduced by H.  Bateman41 and later studied 
by J. M.  Burgers42 in the theory of turbulence. Considering the nonlinear Burgers equation shown by

where β is the factor of diffusion.
The difference scheme with 2nd precision we selected is shown by

 where the constant α = 1/4�x , β̂ = β�t/2�x2 the parameter is set as time step �t = 0.001 , spatial step 
�x = 1/400 , β = 0.25.

Analytic solutions exist for this equation; thus, the numerical results can be employed to evaluate the preci-
sion of both the differential format and the proposed algorithm. Figure 9 shows the numerical results and error 
distribution in the first 500 timesteps.

In Fig. 9, the error of both two algorithms across the entire field is approximately 10−7 , as shown in Fig. 9c, 
while the discretization error of the difference scheme is approximately 10−5 , as shown in Fig. 9b.

Both linear and nonlinear equation examples illustrate the high precision of the proposed method, while 
most other NN-based solvers, including  PINN20, hp-VPINN21, etc.26,43, have errors in the magnitudes range of 
10−2 to 10−3.

Conclusion
This paper introduces a DNN-based algorithm to solve the linear equation with high efficiency and precision. 
The algorithm combines the Res-Net architecture and the correction iteration method.
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Figure 8.  The numerical solution to the heat conduction equation at y = 0.5 (a) and the error distribution (b).
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1. Based on the DNN model, the proposed method has high computation efficiency and the native hardware 
compatibility on GPU and other hybrid platforms. Compared with classic methods, this method can simul-
taneously solve numerous linear equations with a low computation complexity.

2. We employed the Res-Net architecture to avoid the network degradation of the DNN and consequently 
improve the precision of the DNN model. The proposed method also includes the correction iteration to 
reduce the error further to achieve acceptable algorithm precision iteratively.

3. We verify the proposed method’s reliability, numerical precision, and computational efficiency by applying 
it to solve practical PDEs (including linear and nonlinear equations) in this paper. In addition, we provide 
several numerical results to evaluate the numerical precision of the proposed method and its affecting fac-
tors, e.g., the diagonal dominance of the input matrix.

4. Like the other algorithms based on the DNN, the performance of the proposed method is also significantly 
affected by the factors of input variables. We investigate some typical elements, e.g., the diagonal dominance 
and the norm of the right-hand vector, based on the numerical results.

5. Inspired by the properties of the analytical solution of the linear equation, we conceive the amplification 
factor to improve the precision of the proposed method. The amplification factor can efficiently reduce the 
error of the solution and eliminate the effect of the diagonal dominance but causes more iteration steps.

6. According to the numerical results, including a nonlinear problem and linear problem, the proposed method 
is reliable in solving the PDEs numerically with high computational efficiency and sufficient precision.

For a long time, accuracy and interpretability have been fatal problems in exploring the DNN for applications 
in numerical computation. The method proposed in this research provides an innovative idea with a reference 
value. However, the currently proposed method still has some limitations, including the inability to solve non-
diagonally dominated equations.

Some limitations still exist in the current version of the algorithm, such as difficulties with rigid problems. 
In our subsequent research, we will improve the proposed algorithm to address these limitations and continue 
to investigate the combination of the proposed DNN models with classic algorithms, e.g., the preconditioner 
based on the proposed method. Moreover, the proposed method has been proven effective in accelerating the 
solving process of multi-diagonal equations. We will continually explore its application to three-dimensional 
problems and other PDEs.

Data availability
The training data set in the manuscript is composed of random numbers (the generating method is introduced 
in section "Methodology" of the manuscript). The trained model we obtained will be submit as attachment (h5 
file), which is also the data file needed to achieve the results of this manuscript. The other data used or analysed 
during the current study available from the corresponding author on reasonable request.
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