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Novel estimation technique 
for the carrier‑to‑noise ratio 
of wireless medical telemetry 
using software‑defined radio 
with machine‑learning
Ishida Kai 

In this study, we developed a novel machine-learning model to estimate the carrier-to-noise ratio 
(CNR) of wireless medical telemetry (WMT) using time-domain waveform data measured by a low-cost 
software-defined radio. With automatic estimation of CNR, the management of the electromagnetic 
environment of WMT can be made easier. Therefore, we proposed a machine-learning method for 
estimating CNR. According to the performance evaluation results by 5-segment cross-validation on 
704 types of measured data, CNR was estimated with 99.5% R-square and 0.844 dB mean absolute 
error using a gradient boosting regression tree. The gradient boosting decision tree classifiers 
predicted if the CNR exceeded 30 dB with 99.5% accuracy. The proposed method is effective for 
investigating electromagnetic environments in clinical settings.

Wireless medical telemetry (WMT) is a typical medical device that continuously monitors a patient’s physi-
ological signs, such as heart rate. As WMT uses wireless communications, seamless communication is needed 
for patient monitoring. According to Electromagnetic Compatibility Conference Japan (EMCC) survey in 2021, 
about 80% of hospitals have introduced WMT, of which 60% are managing electromagnetic environments1.

Notably, managing WMT frequency band is necessary in establishing a good WMT reception2. For measuring 
the electromagnetic environment, we can detect poor receptions, electromagnetic interference (EMI) caused by 
various kinds of electrical devices, and malfunction of radio-receiving equipment to evaluate the electromagnetic 
environment3. A carrier-to-noise ratio (CNR), defined as the ratio of the received modulated carrier signal power 
C to the received noise power N after the receiver filters, is a criterion for the communication quality of WMT. 
A CNR of at least 15–20 dB is required for the minimum reception of WMT4. To achieve good reception, the 
manufacturer recommended a CNR of more than 30 dB5. The CNR is obtained by subtracting the background 
noise (BGN) power from the WMT signal power in its usage frequency. The degradation of WMT signal power 
may occur either by locating the transmitter at a null point or far away from the receiving antenna or the aging 
degradation of radio frequency components, which include receiving antennas, coaxial cables, connectors, and 
amplifiers6. However, electrical devices, especially switched-mode power supplies installed in light-emitting diode 
(LED) devices, may radiate unwanted emissions and increase BGN7. In addition, to promote the safe introduction 
and operation of WMT, it is necessary to consider effective frequency allocations, range of access, invasive radio 
waves from out-of-hospitals, and interference by intermodulation8–10. Other wireless communication systems, 
such as real-time detection systems for dementia, may interfere with WMT because these devices use the same 
frequency band of WMT and are widely introduced in hospitals11.

However, it is difficult to determine only BGN because hospitals generally use WMT transmitters for patient 
monitoring, whose power are hard to put off. Therefore, actual CNR is hard to measure in clinical settings. 
Unfortunately, there is a lack of interest in the electromagnetic compatibility (EMC) of WMT in most hospitals. 
Over 50% of hospitals do not have planned countermeasures for EMI, even with 20% of them having experienced 
EMI troubles with WMT1. However, only 10% of hospitals have conducted periodic quantitative investigations of 
WMT because only a few staff in most hospitals have adequate skills or experience regarding EMC. Moreover, it 
is challenging to introduce a specific measuring device for the evaluation of EMC, such as a spectrum analyzer, in 
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most hospitals because of its cost. A simplified spectrum analysis function was installed in a WMT receiver, which 
measures the amplitude of received signals and/or electromagnetic noise in each WMT frequency channel12. 
However, this function cannot operate during patient monitoring. Therefore, it is desirable to establish a novel, 
easier, and cost-effective technique for evaluating EMC in clinical settings.

In this study, we investigated a machine-learning technique to estimate the CNR of WMT to establish a novel 
simplified, automated, and low-cost evaluation method.

Concept of our approach
Figure 1 shows the time-domain envelops of the WMT signal. The CNR of both WMT signals is approximately 
21 dB, but the amplitudes of both carrier signal and BGN differ. The amplitude of carrier signal (a) is − 90 dBm 
and (b) is − 86 dBm, and the amplitude of BGN (a) is − 111 dBm and (b) is − 107 dBm. Our proposed method 
estimates CNR by a single measurement and provides CNR values using these waveforms. As described earlier, 
both the WMT signal and BGN should be measured severally in these cases to calculate CNR. We investigated 
the acquiring features of time-domain waveforms using signal processing for machine learning.

We employed a low-cost software-defined radio (SDR) device as a receiver like a spectrum analyzer to provide 
an easier and low-cost method as much as possible. SDR is a radio communication system in which traditionally 
implemented components in hardware (e.g., mixers, filters, amplifiers, modulators/demodulators, and detectors) 
are instead implemented using software on a personal computer or an embedded system13. We estimated the CNR 
of WMT using time-domain waveform data measured by the SDR receiver and machine-learning techniques. 
We considered this approach as adequate for machine learning.

Data collection and labeling
We obtained the time-domain waveform of the WMT signal measured by a low-cost SDR receiver to structure 
datasets for machine-learning. We used a USB dongle-type SDR receiver (RTL2832U, RTL-SDR) with a resolu-
tion of 8-bit and a cost of approximately $30. This SDR was connected to a personal computer. Figure 2 shows 
the measurement setup. The WMT transmitter was placed in a transverse electromagnetic (TEM) cell to extract 
carrier signals only via the variable attenuator14. We used two types of transmitters made by different manu-
facturers: ZS-610P (Nihon-Kohden Co., Ltd.) and LX-8100 (Fukuda Denshi Co., Ltd.). The SDR transmitter 
(ADALM-Pluto, Analog Devices) connected with a personal computer for control was used as a signal generator 
which generated Gaussian noise in the 400 MHz band. We considered Gaussian noise to be BGN. According to 
a previous report, WMT employs a narrow band reception of 12.5 kHz; hence, most unwanted emissions gener-
ated from LED devices are band-limited to this bandwidth and are approximated as Gaussian noise7. Both the 
WMT signal and Gaussian noise were inputs to the SDR receiver through a hybrid coupler. The measurement 
was conducted at a measurement frequency of 429.325 MHz (using Japanese WMT channel number 300715), 
the sample rate was 1 MHz, and the number of samples for one measurement was 2,000,000. Each measured 
data comprising 2,000,000 points was separated into 10,000 points. We obtained 708 conditions of data that 
were changed amplitudes of both WMT signal and Gaussian noise using a variable attenuator to replicate the 
various reception levels. Figure 3 shows the CNR distributions of the measured data. The CNR values ranged 
from 1 to 58 dB.

In this study, we used supervised learning, and labeled actual CNR values for each measured data. First, we 
measured the WMT signal and BGN power at each amplitude level using a real spectrum analyzer (RSA306B, 
Tektronix). The CNR was calculated from these WMT and BGN levels. We labeled a CNR of more than 30 dB 
or not to each data.

Figure 1.   Time-domain envelopes of the WMT signal.
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Features, regressors, classifiers, and evaluation indexes for supervised 
machine‑learning
In this study, we used 31-dimensional features calculated from the measured data by signal processing. Figure 4 
shows the schematics of signal processing. First, we used simple moving averages with an interval of 300 points 
along the separated measured time-domain waveforms to detect envelope waves to obtain low-frequency features. 
We obtained the mean, standard deviation, minimum (Min), maximum (Max), and gradient calculated from 
envelope waves, which are between one-third and two-thirds of the total time. Moreover, the number of peaks 
of envelope waves between one-eighth and six-eighth of the time was calculated for each feature. In addition, 
we used the Butterworth filter, whose passband edge frequency was 10 Hz and stopband edge frequency was 
40 Hz, to measure the time-domain waveforms for obtaining high-frequency features. Z-score normalization 
was used for this filtered data. Next, a fast Fourier transform was used to calculate the frequency spectra. We 
used librosa library, a Python module for audio and music processing, to obtain a chromagram, zero-crossing 
rate, spectral centroid, spectral bandwidth, roll-off frequency, and 1–20 coefficients of the Mel-frequency cepstral 
coefficients (MFCCs)16,17.

Candidates for the regressors and classifiers are k-nearest neighbor (KNN)18, logistic regression (LR, classifier 
only)19, decision tree (DT, classifier only)20, random forest (RF)21, support vector machine (SVM)22, gradient 
boosting regression tree (GBRT) and decision tree (GBDT)23, ensemble algorithm (Adaboost)24, and two-layer 
neural network (NN)25. We tuned hyper parameters in these regressors and classifiers; number of neighbors in 
KNN, maximum depth, maximum leaf nodes and minimum sample leaf in DT, number of trees and maximum 
depth in RF and GBRT, the radius basis function kernel (gamma) and regularization parameter (C) in SVM, 

Figure 2.   Measurement setup for WMT signals.

Figure 3.   CNR distribution of the measured data.
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learning rate and number of boost round in GBDT, number of trees, maximum depth and learning rate in Ada-
Boost and epoch size, batch size and learning rate in NN. After which we selected the best parameters.

To avoid overtraining, we employed a 5-segment cross-validation for regression analysis and Stratified Group 
K-Fold (K = 5) for classification. In regression analysis, R2 score, which is the coefficient of determination and 
mean absolute error (MAE), was used as a criterion for evaluating the performance of supervised learning. 
In contrast, accuracy and recall were used in the classification instead. Generally, accuracy, true positive rate 
(TPR), true negative rate (TNR), false-negative rate (FNR), and false-positive rate (FPR) are used as criteria for 
evaluating the performance of supervised machine-learning algorithms, as defined by the following formulas:

where TP, TN, FP, and FN are the number of correct predictions for positive and negative subjects, and the 
number of incorrect predictions for positive and negative subjects, respectively. To evaluate these evaluation 
indices, we divided the measured data of each subject into training data (90%) for supervised learning and test 
data (10%) for evaluation.

The training and validations were executed using Windows 10 Pro personal computer (CPU: Intel Core i9, 
Memory: 192 GB, SSD: 1 TB and GPU: NVIDA GeForce RTX 2080Ti). Following Python libraries were used to 

(1)Accuracy = (TP+ TN)/(TP+ FP+ TN+ FN)

(2)TPR = Recall = TP/(TP+ FN)

(3)TNR = Precision = TN/(FP+ TN)

(4)FNR = FN/(TP+ FN)

(5)FPR = FP/(FP+ TN)

Figure 4.   Schematics of signal processing for acquiring features.



5

Vol.:(0123456789)

Scientific Reports |         (2023) 13:4162  | https://doi.org/10.1038/s41598-023-31225-3

www.nature.com/scientificreports/

construct machine-learning models: scikit-learn for KNN, LR, DT, RF, SVM and GBRT/DT, Keras and Tensor-
flow for NN, and XGBoost for Adaboost.

Experimental results
Figure 5 shows the R2 score and MAE for each regressor. All regressors achieved a R2 score exceeding 0.9, but the 
MAE ranged from 0.844 to 2.491. The SVM regressor had large variations of low to high level of CNR. The KNN 
regressor achieved high R2 score and MAE was the best in all regressors, but the estimation errors occurred on 
low level CNR. The RF, GBRT, Adaboost and NN regressors had good linearity, of which the GBRT regressor 
was the highest with R2 score of 0.995 and MAE of 0.844.

Figure 6 shows the confusion matrix for each classifier and depicts accuracy (ACC) and recall. All classifiers 
have similar results and achieved a higher accuracy exceeding 95% and a high recall exceeding 98%, of which 

Figure 5.   Results of the regression analysis.

Figure 6.   Results of the classification analysis.
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the GBDT classifier was the best (ACC = 99.4%, recall = 99.5%). From the point of view of the risk management, 
overlooking of low level CNR may invoke poor reception of WMT. It is desirable to have a lower value of FN, 
hence, making GBDT the best classifier.

Adequacy and limitations
The CNR of WMT (3–50 dB) was reported at the Japanese University Hospital ward28 and 6–61 dB at the 
simulated ward of the university department29. Our training dataset approximately covers these CNR values. 
However, we reproduced various conditions of CNR obtained by varying the amplitude of both the WMT signal 
and BGN, indicating that our dataset covers cases of good reception with no EMI factor and the worst condi-
tions of BGN increase.

In this study, we used a low-performance SDR device as a receiver to measure WMT signals. However, this 
SDR can capture a low amplitude signal of approximately − 120 dBm; hence, making it sufficient to measure 
WMT signals at actual hospitals.

In our learning model, the GBRT regressor was the best and could estimate CNR within the error range of 
1%. This high-precision estimator can provide a detailed survey of the electromagnetic environment in hospitals. 
For example, it could be useful for maintenance before or after replacing radio-receiving equipment, such as 
antennas and amplifiers. Furthermore, the GBDT classifier, which was our model’s best accuracy, was sufficient 
in determining whether the CNR exceeded 30 dB. This model is promising for screening poor reception of WMT 
for periodic investigation in hospitals. Notably, managing the electromagnetic environment is important for the 
safe operation of medical devices, including WMT30. However, most hospitals have generally been short staffed 
in the management of EMC. Our learning models are efficient in complementing the lack of skills, manpower, 
and specific instruments in clinical settings.

In this study, we targeted only the Japanese WMT, which uses the frequency of 400 MHz band. However, 
every country or region has different allocated frequency bands for WMT. For instance, Japan uses 400 MHz 
bands, while the US and EU use 600 MHz and 1400 MHz bands respectively15,31. However, the specifications of 
both Japanese and US or EU WMT systems are almost the same: the transmitting power (1 mW), modulating 
scheme (frequency shift keying), and channel bandwidth (12.5 kHz). As the carrier frequency bands of the US 
and EU WMTs differ from that of Japan, but with the communication system being the same, we can acquire 
time-domain waveforms using the same measurement and can estimate CNR using our learning model.

Moreover, our datasets were collected from measurements by wired setting, but WMT signals are propagated 
in the air in actual settings. However, we cannot change the setting of the output power of the WMT transmit-
ter in the body. But to reproduce and capture the various conditions of signal levels, we selected a wired setting 
that uses a TEM cell and variable attenuator. In clinical settings, WMT signals may vary due to the following 
reasons: reflection and diffraction on the wall, celling and flooring and the patient’s body movement. However, 
as described earlier, our dataset covers low to high level CNR. If the WMT signal was varied broadly due to these 
effects, we can use the worst value as CNR.

We used Gaussian noise to increase BGN. In our previous study, we approximated most LED noise as Gauss-
ian owing to band-limitation effect of the WMT receiver7. We intended to increase BGN as the effect of LED 
noise on WMT. However, some LED noise has sequential or impulsive characteristics, with a cycle of 50 Hz 
derived from the Japanese mains power supply, even in the band-limited reception32. This sequential noise 
causes approximately 3 dB worth of receiver sensitivity compared to LED noise, which can be approximated as 
Gaussian noise. On the other hand, by focusing on the highest position of the noise amplitude and broadening 
it, we can approximate this position as Gaussian noise even if the measured waveform has a sequential or impul-
sive nature. Therefore, our measured data also covers the increase in BGN caused by sequential and impulsive 
characteristic noise.

Discussion
In this study, we presented novel estimation technique for the CNR of WMT using machine-learning. Similar 
research in the estimating of signal to noise ratio (SNR) of wireless signals has been reported. Kojima reported 
that SNR was estimated by artificial NN, but this estimation was targeted to broad band communication such as 
wireless local area network of OFDM signal with a bandwidth of 20 MHz26. On the other hand, we targeted nar-
row band communication of WMT with a bandwidth of 12.5 kHz. Xie reported other approach of SNR estima-
tion that uses constellation diagrams of wireless signals and convolutional NN27. However, we used time domain 
waveform of WMT signals instead of constellation diagrams for estimating CNR. Therefore, our approach is 
different from these past studies.

The major features of our method are the ease of estimation and the low cost in estimating CNR of WMT. 
We simultaneously measured and automatically estimated CNR at high accuracy. No prior skills or knowledge 
on electromagnetic waves and wireless communications are required. Moreover, we used a less expensive SDR 
dongle that costs approximately $30 in substitution for a spectrum analyzer to measure the electromagnetic 
environment. The cost of a stand-alone spectrum analyzer usually exceeds $1000; that of the USB-connected type 
exceeds $400, but it is necessary to personal computers with a certain level of specification. The SDR dongle used 
in this study did not require a high-performance computer. Using a single-board computer such as Raspberry 
Pi as a control device, the SDR dongle was satisfactory for the measurement, and the total cost of our system 
was estimated as $100–120. A single-board computer with a mounted graphic processing unit, such as NVIDIA 
Jetson Nano, is suitable for operating our learning model. As an alternative approach, our machine-learning 
models can be installed in the WMT receiver. In this case, no other computer is needed for connecting SDR or 
spectrum analyzers. However, existing radio-receiving equipment was used for the measurement. For future 
work, we propose installing our learning models on both single-board computers and WMT receivers.
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Conclusion
We investigated a machine-learning model for estimating the CNR of WMT and found that GBRT was the best 
regressor and could estimate CNR within the error range of 1%. Also, GBDT was the best to classify whether 
the CNR exceeded 30 dB. Our proposed method evaluates the electromagnetic environment using a simplified, 
automated, and low-cost approach.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.

Received: 12 September 2022; Accepted: 8 March 2023

References
	 1.	 Electromagnetic Compatibility Conference Japan (2022) Results of a survey on promoting proper use of radio waves at the medical 

institutions. https://​www.​emcc-​info.​net/​medic​al_​emc/​pdf/​22-​300-​medie​mc-​activ​ityre​ports_​2021.​pdf.
	 2.	 Ishida, K., Wu, I., Gotoh, K. & Matsumoto, Y. Electromagnetic compatibility of 400 MHz radio communications in hospitals: Safety 

management of wireless medical telemetry. J. Med. Syst. 44(9), 154. https://​doi.​org/​10.​1007/​s10916-​020-​01629-z (2020).
	 3.	 Ishida, K. The simple approach of electromagnetic environment measurement methods in hospital. Trans. Jpn. Soc. Med. Biol. Eng. 

59 Annual, 710–712. https://​doi.​org/​10.​11239/​jsmbe.​Annua​l59.​710 (2021).
	 4.	 Ishida, K., Arie, S., Wu, I., Gotoh, K. & Matsumoto,. Impact of LED lamp noise on receiver sensitivity of wireless medical telemetry 

system. IEICE ComEx 7(11), 421–426. https://​doi.​org/​10.​1587/​comex.​2018X​BL0096 (2018).
	 5.	 Otsuka, T. Pitfalls of using medical machines on the wards: In case of wireless biomedical monitoring system. JJMI 75(11), 822–827 

(2005).
	 6.	 Fujii, K., Kishimoto, K. & Inoue, M. Fundamental study of quantitative evaluation of radio wave output of wireless medical telem-

etry transmitters operable in medical field. GJMR-K Interdiscip. 20, 5–10 (2020).
	 7.	 Ishida, K., Wu, I., Gotoh, K. & Matsumoto, Y. Evaluation of electromagnetic noise emitted from light-emitting diode (LED) lamps 

and compatibility with wireless medical telemetry service. IEICE Trans. Commun. E103-B(6), 637–644. https://​doi.​org/​10.​1587/​
trans​com.​2019H​MP0003 (2020).

	 8.	 Electromagnetic Compatibility Conference Japan (2021) Guidance for using an electric wave safe and safely in a hospital.
	 9.	 Hanada, E., Ishida, K. & Kudou, T. Newly identified electromagnetic problems with medical telemeter systems. Prz. Elektrotech. 

94(2), 21–24. https://​doi.​org/​10.​15199/​48.​2018.​02.​06 (2018).
	10.	 Ishida, K. Study of electromagnetic interference caused by passive intermodulation of wireless medical telemetry services. JJMI 

92(1), 2–13. https://​doi.​org/​10.​4286/​jjmi.​92.2 (2020).
	11.	 Fujii, K., Ohno, Y., Kido, M., Ishida, K. & Jeong, H. Effect of wandering sensing systems on wireless medical telemetry systems. 

Jpn. J. Med. Inf. 38(6), 321–336 (2018).
	12.	 Ishida, K. Study of spectrum analyzer installed in wireless medical telemetry receiver. JJMI 90(3), 237–244. https://​doi.​org/​10.​

4286/​jjmi.​90.​237 (2020).
	13.	 Ulversoy, T. Software defined radio: Challenges and opportunities. IEEE Commun. Surv. Tutor. 12(4), 531–550 (2010).
	14.	 Ishigami, S. et al. A new method of interference evaluation between an ultrawideband system and a wireless LAN using a gigahertz 

transverse electromagnetic cell. IEEE Trans. Eletromagn. Compat. 52(3), 737–744. https://​doi.​org/​10.​1109/​TEMC.​2010.​20429​59 
(2010).

	15.	 Association of Radio Industries and Businesses (2015) STD-21 ed.3.0, Medical telemeter radio equipment for specified low-power 
radio station.

	16.	 McFee, B., Raffel, C., Liang, D., Ellis, D. P. W., McVicar, M., Battenberg, E. & Nieto, O. Librosa: Audio and music signal analysis in 
Python. IN Proceedings of the 14th Python in Science Conference 18–25. https://​doi.​org/​10.​25080/​Majora-​7b98e​3ed-​003 (2015).

	17.	 Sahidullah, M. & Saha, G. Design, analysis and experimental evaluation of block based transformation in MFCC computation for 
speaker recognition. Speech Commun. 54(4), 543–565. https://​doi.​org/​10.​1016/j.​specom.​2011.​11.​004 (2012).

	18.	 Evelyn, F., & Joseph, L. H. Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties. USAF School of 
Aviation Medicine, Randolph Field, Texas (1951).

	19.	 Kleinbaum, D. G. & Klein, M. Logistic Regression (Springer, 2002). https://​doi.​org/​10.​1007/​978-1-​4419-​1742-3.
	20.	 Quilan, L. R. Simplifying decision trees. Int. J. Man.-Mach. Stud. 27, 221–234. https://​doi.​org/​10.​1016/​S0020-​7373(87)​80053-6 

(1987).
	21.	 Breiman, L. Random forests. Mach. Learn. 45, 5–32. https://​doi.​org/​10.​1023/A:​10109​33404​324 (2001).
	22.	 Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20(2), 273–297. https://​doi.​org/​10.​1007/​BF009​94018 (1995).
	23.	 Natekin, A. & Knoll, A. Gradient boosting machines, a tutorial. Front. Neurorobot. 7, 21. https://​doi.​org/​10.​3389/​fnbot.​2013.​00021 

(2013).
	24.	 Kégl, B. The return of AdaBoost. MH: Multi-class Hamming trees. arXiv:​1312.​6086 (arXiv preprint). https://​doi.​org/​10.​48550/​

arXiv.​1312.​6086 (2013).
	25.	 Rafiq, M. Y., Bugmann, G. & Easterbrook, D. J. Neural network design for engineering applications. Comput. Struct. 79(17), 

1541–1552. https://​doi.​org/​10.​1016/​S0045-​7949(01)​00039-6 (2001).
	26.	 Kojima, S., Maruta, K. & Ahn, C. J. Adaptive modulation and coding using neural network based SNR estimation. IEEE Access 7, 

183545–183553. https://​doi.​org/​10.​1109/​ACCESS.​2019.​29469​73 (2019).
	27.	 Xie, X., Peng, S. & Yang, X. Deep learning-based signal-to-noise ratio estimation using constellation diagrams. Mob. Inf. Syst. 2020, 

8840340. https://​doi.​org/​10.​1155/​2020/​88403​40 (2020).
	28.	 Kayano, I. et al. Novel channel management of wireless medical telemeters based on simulation and actual measurement of electro-

magnetic environment in a hospital. JJMI 91(5), 411–421. https://​doi.​org/​10.​4286/​jjmi.​91.​411 (2021).
	29.	 Kawabe, M., Kobayashi, N. & Kano, T. Development of management support system for evaluating the electromagnetic environ-

ment of wireless medical telemetry. JJMI 91(6), 499–509 (2021).
	30.	 Ishida, K. et al. Evaluation of electromagnetic fields in a hospital for safe use of electronic medical equipment. J. Med. Syst. 40(3), 

46. https://​doi.​org/​10.​1007/​s10916-​015-​0411-3 (2016).
	31.	 Federal Communications Commission (1999) Wireless Medical Telemetry Service (WMTS).
	32.	 Ishida, K., Arie, S., Wu, I., Gotoh, K., & Matsumoto, Y. Evaluation of Electromagnetic Noise Radiated from Tube-type LED Lamps 

and Its Effect on Wireless Medical Telemetry Systems. In Proceedings of the EMC Europe 2019.890–895. https://​doi.​org/​10.​1109/​
EMCEu​rope.​2019.​88720​12 (2019).

https://www.emcc-info.net/medical_emc/pdf/22-300-mediemc-activityreports_2021.pdf
https://doi.org/10.1007/s10916-020-01629-z
https://doi.org/10.11239/jsmbe.Annual59.710
https://doi.org/10.1587/comex.2018XBL0096
https://doi.org/10.1587/transcom.2019HMP0003
https://doi.org/10.1587/transcom.2019HMP0003
https://doi.org/10.15199/48.2018.02.06
https://doi.org/10.4286/jjmi.92.2
https://doi.org/10.4286/jjmi.90.237
https://doi.org/10.4286/jjmi.90.237
https://doi.org/10.1109/TEMC.2010.2042959
https://doi.org/10.25080/Majora-7b98e3ed-003
https://doi.org/10.1016/j.specom.2011.11.004
https://doi.org/10.1007/978-1-4419-1742-3
https://doi.org/10.1016/S0020-7373(87)80053-6
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/BF00994018
https://doi.org/10.3389/fnbot.2013.00021
http://arxiv.org/abs/1312.6086
https://doi.org/10.48550/arXiv.1312.6086
https://doi.org/10.48550/arXiv.1312.6086
https://doi.org/10.1016/S0045-7949(01)00039-6
https://doi.org/10.1109/ACCESS.2019.2946973
https://doi.org/10.1155/2020/8840340
https://doi.org/10.4286/jjmi.91.411
https://doi.org/10.1007/s10916-015-0411-3
https://doi.org/10.1109/EMCEurope.2019.8872012
https://doi.org/10.1109/EMCEurope.2019.8872012


8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:4162  | https://doi.org/10.1038/s41598-023-31225-3

www.nature.com/scientificreports/

Acknowledgements
This work was supported by JSPS KAKENHI Grant Number JP19K19371.

Author contributions
K.I. conceptualized the study. K.I. measured data and investigated supervised machine-learning. K.I. wrote the 
main manuscript.

Competing interests 
The author declares no competing interests.

Additional information
Correspondence and requests for materials should be addressed to I.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Novel estimation technique for the carrier-to-noise ratio of wireless medical telemetry using software-defined radio with machine-learning
	Concept of our approach
	Data collection and labeling
	Features, regressors, classifiers, and evaluation indexes for supervised machine-learning
	Experimental results
	Adequacy and limitations
	Discussion
	Conclusion
	References
	Acknowledgements


