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Medical image captioning 
via generative pretrained 
transformers
Alexander Selivanov 1,2,4, Oleg Y. Rogov 1,4, Daniil Chesakov 1,3, Artem Shelmanov 1,3, 
Irina Fedulova 2 & Dmitry V. Dylov 1*

The proposed model for automatic clinical image caption generation combines the analysis of 
radiological scans with structured patient information from the textual records. It uses two language 
models, the Show-Attend-Tell and the GPT-3, to generate comprehensive and descriptive radiology 
records. The generated textual summary contains essential information about pathologies found, 
their location, along with the 2D heatmaps that localize each pathology on the scans. The model has 
been tested on two medical datasets, the Open-I, MIMIC-CXR, and the general-purpose MS-COCO, 
and the results measured with natural language assessment metrics demonstrated its efficient 
applicability to chest X-ray image captioning.

Medical imaging is indispensable in the current diagnostic workflows. Out of the plethora of existing imaging 
modalities, X-ray remains one of the most widely-used visualization methods in many hospitals around the 
world, because it is inexpensive and easily  accessible1. Analyzing and interpreting X-ray images is especially 
crucial for diagnosing and monitoring a wide range of lung diseases, including  pneumonia2,  pneumothorax3, 
and COVID-19  complications4.

Today, the generation of a free-text description based on clinical radiography results has become a conveni-
ent tool in clinical  practice5. Having to study approximately 100 X-rays  daily5, radiologists are overloaded by 
the necessity to report their observations in writing, a tedious and time-consuming task that requires a deep 
domain-specific knowledge. The typical manual annotation overload can lead to several problems, such as missed 
findings, inconsistent quantification, and delay of a patient’s stay in the hospital, which brings increased costs 
for the treatment. Among all, the qualification of radiologists as far as the correct diagnosis establishing should 
be stated as major problems.

In the COVID-19 era, there is a higher need for robust image  captioning5–7 framework. Thus, many health-
care systems outsource the medical image analysis task. Automatic generation of chest X-ray medical reports 
using deep learning can assist and accelerate the diagnosis establishing process followed by clinicians. Providing 
automated support for this task has the potential to ease clinical workflows and improve both care quality and 
standardization. For that, we propose to adapt powerful models from non-medical domain.

Medical background. Radiology is the medical discipline that uses medical imaging to diagnose and treat 
diseases. Today, radiology actively implements new artificial intelligence  approaches8–10. There are three types of 
radiologists—diagnostic radiologists, interventional radiologists and radiation oncologists. They all use medical 
imaging procedures such as X-rays, computed tomography (CT), magnetic resonance imaging (MRI), nuclear 
medicine, positron emission tomography (PET) and ultrasound. Diagnostic radiologists interpret and report 
on images resulted from imaging procedures, diagnose the cause of patient’s symptoms, recommend treatment 
and offer additional clinical tests. They specialize on different parts of human body—breast imaging (mam-
mograms), cardiovascular radiology (heart and circulatory system), chest radiology (heart and lungs), gastro-
intestinal radiology (stomach, intestines and abdomen), etc. Interventional radiologists use radiology images to 
perform clinical procedures with minimally invasive techniques. They are often involved in treating cancer, heart 
diseases, stroke, blockages in the arteries and veins, fibroids in the uterus, back pains, liver and kidney problems.
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Technical background. Because image captioning is a multimodal problem, it draws a significant attention 
of both computer vision and natural language processing communities. The latest surveys in the medical image 
captioning  task5,11 offer a detailed description of domain knowledge from radiology and deep learning. The first 
architectures to address this problem were CNN-RNN models  from12,13. However, the latter shows satisfactory 
results only on the single-pathology tasks.

With the new concept of attention  approach14, more papers have begun to use visual  attention15–17, being the 
first to use attention on medical images. The authors  of15 presented a model that can fix its attention on salient 
objects while generating the corresponding words in the output sequence. Shortly after the visual-attention 
concept was exposed, text-attention was introduced by authors of TieNet—a framework that generates natural 
 reports18–20 for the Chest-Xray  dataset21. They used both semantic and visual attention, that allowed them to 
get high natural language generation (NLG) metrics on medical datasets. It was trained for solving several 
tasks such as classification, localization, and text generation. It used a non-hierarchical CNN-LSTM22 approach 
together with the attention to semantic and visual features, as it allowed to overperform the current state-of-
the-art results. In  the23, bone fracture X-ray reports were generated by identifying image features and filling text 
templates. The authors  of20 suggested a multi-task framework, that can both predict tags and generate texts using 
co-attention. This model is still not sufficient for producing accurate diagnosis from X-rays as the produced texts 
still contained repeated sentences due to a lack of contextual coherence in the hierarchical models. The authors 
 of24 took advantage of a sentence-level attention mechanism in a late fusion fashion. They took advantage of the 
multi-view images from both frontal and lateral view angles from the Open-I  dataset25.

The authors  of26 proposed to utilize a pre-constructed knowledge graph embedding module (extracted from 
the Open-I images using Chexnet  models27) on multiple disease findings to assist the report generation process. 
The authors  of28 exposed an anomaly detection method for detecting abnormalities on chest X-rays with deep 
perceptual autoencoders. The authors  of29 first generated topics for sentences using reinforcement learning (RL) 
followed by the word decoder sequence generation from the topic with attention to the original images. RL was 
used for tuning to optimize readability. We solve this problem in a simpler method without losing in quality. To 
extract topics, we use the NegBio  labeller21,30, which provides topics from clinical reports. We add these topics 
to the beginning of the medical report, for our model to understand where exactly the text should be generated.

The  work31  focuses on reporting abnormal findings on radiology images. The proposed method learns condi-
tional visual-semantic embeddings in radiology images; and the reports are further used to measure the similarity 
between the image regions and the medical reports. This by optimizing a triplet ranking loss. The authors  of32 
developed an algorithm that learns a description of findings from images and uses their pattern of occurrences to 
retrieve and customize similar reports from a large report database. The work  in33 proposed a Contrast Induced 
Attention Network (CIA-Net), using contrastive learning on the aligned positive and negative samples for the 
disease localization on the chest X-ray images. The work  in34 studies the cross-domain performance, agreement 
between models, and model representations for X-rays diagnostic prediction tasks. The authors test for concept 
similarity by regularizing a network to group tasks across multiple datasets together and observe variation across 
the tasks. The model  in22 generates a short textual summary with essential information on the found pathologies 
along with their location and severity. The model is trained on only 2% of the MIMIC-CXR dataset, and gener-
ates short reports. Although, in this work, we train on the whole MIMIC-CXR and generate a full-text report.

The authors  of35–39 attempted to use transformer-based models as decoders in the image captioning  domain22. 
The  work38 affirmed to have generated radiology reports through the custom transformer with additional mem-
ory-driven unit. Another model was introduced  in39 where encoder detects regions of interest via a bottom-up 
attention module and extracts top-down visual features. In this study, the decoder is presented as a custom 
transformer. For example, the paper  in36 proposes an approach called “pseudo self-attention”. Its main idea is 
to incorporate the conditioning input as a pseudo history to a pretrained transformer. They add a new key and 
value weights in the self-attention module to be projected onto the decoder’s self-attention space,  while37 focuses 
on visual and weighted semantic features.

Contributions. The contributions of this paper are the following:

• We introduce a new architecture for image captioning, based on a combination of two language models with 
image-attention (SAT) and text-attention (GPT-3), outperforming current state-of-the-art models

• We introduce a new preprocessing pipeline for radiology reports that allows to get higher NLG metrics
• We perform extensive experiments to show the capability of the proposed method
• Finally, we contribute to deep learning community by training two language models on a  large data-

set MIMIC-CXR

The rest of the paper is organized as follows: section “Methods” describes the architecture of two language 
models separately, section “Proposed architecture” provides the description of the proposed approach, sec-
tion “Experiments” describes the data and the computing, the last sections compare the results and conclude 
the paper.

Methods
Show attend and tell. Show Attend and Tell (SAT)15 is an attention-based image caption generation neural 
net. An attention-based technique allows to get well interpretable results, which can be utilized by radiologist to 
ensure their findings on X-ray. By including attention, the module gives the advantage to visualize where exactly 
the model ‘sees’ the specific pathology. SAT consists of three blocks: Encoder, Attention module, and Decoder. 
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It takes an image, encodes it, attends each part of the image, and generates an L-length caption z , an encoded 
sequence of words from the W-length vocabulary:

Encoder. Encoder is a convolutional neural network (CNN). It encodes an image and outputs a set of C vectors, 
each of which is a D-dimensional representation of the image corresponding part:

Here, C represents the number of channels in the output of the encoder. It depends on the used type of the 
encoder: 1024 for DenseNet-12140, 512 for VGG-1641, 2048 for  InceptionV342 and ResNet-10143. D is a config-
urable parameter representing the encoded vectors size. Features are extracted from the lower convolutional 
layer prior to the fully connected layers, and are being passed through the Adaptive Average Pooling layer. This 
allows the decoder to selectively focus on certain parts of an image by selecting a subset of all the feature vectors.

Decoder with attention module. The decoder is implemented as an LSTM neural  network44. It produces a cap-
tion by generating one word at every time step conditioned by the attention (context) vector, the previous hidden 
state and the previously generated words. The LSTM can be represented as the following set of equations:

Vectors it , ft , ct , ot , ht represent the input/update gate activation vector, forgetting gate activation vector, memory 
or cell state vector, while outputting gate activation vector and hidden state of the LSTM respectively. Ts,t is an 
affine transformation, such that Rs → R

t with non-zero bias. m denotes the embedding dimension, while n 
represents LSTM dimension. σ and ⊙ stand for the sigmoid activation function and element-wise multiplication, 
respectively. E ∈ R

m×L is an embedding matrix. The vector â ∈ R
D holds the visual information from a particu-

lar input location of the image at time t. Thus, â called context vector. Attention is a function φ , that computes 
context vector ât from the encoded vectors ai (2), produced by the encoder. The attention module generates a 
positive number αi for each location i on the image. This number can be interpreted as the relative importance 
to give to the location i, among others. Attention module is implemented as a multi-layer perceptron (MLP) 
with a softmax activation function, conditioned at the previous hidden state ht−1 (5) of the LSTM. The attention 
module is depicted in Fig. 1. The set of linear layers in MLP is denoted as a function f att . The weights αti are 
computed using the following equations:

The sum of weights αti (7) should be equal to 1 
∑C

i=1 αti = 1 . The context vector ât is computed by the 
attention function φ with the set of encoded vectors a (2) and their corresponding weights αti (7) as inputs: 
ât = φ({ai}, {αti}) . According to the original paper function, φ can be either ‘soft’ or ‘hard’ attention. Due to 
specific task of medical image caption, function φ was chosen to be the ‘soft’ attention, as it allows model to focus 
more on some specific parts of X-rays from others and to detect pathologies and major organs such as heart, lung 

(1)z = {z1, . . . , zL}, zi ∈ R
WSAT

(2)a = {a1, . . . , aC}, ai ∈ R
D×D

(3)
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Figure 1.  Attention module used in SAT.
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etc. It is named as a ‘deterministic soft attention’ and recognized as a weighted sum : φ({ai}, {αti}) =
∑C

i αiai . 
Hence, context vector can be computed as:

The initial memory state and hidden state of the LSTM are initialized with two separate multi-layer perceptrons 
( init-c and init-h ) with the encoded vectors ai (2) for a faster convergence:

To compute the output of LSTM representing a probabilities vector the next word, a ‘deep output layer’44 was 
used. It looks both on the LSTM state ht (5), on context vector ât (8) and the one previous word zt−1 (2):

where Lo ∈ R
W×m , Lh ∈ R

m×n , La ∈ R
m×D , and E ∈ R

m×L represent the embedding matrix.
The authors  in15 suggest to use the ‘doubly stochastic attention’, where 

∑

t αti ≈ 1 . This can be interpreted 
as encouraging the model to pay equal attention to every part of the image. Yet, this method is not relevant for 
X-rays, as each part of the chest is almost at the same position from image to image. If the model learned, e.g., 
that heart is in its specific position, a model does not have to search for the heart somewhere else. The model is 
trained in an end-to-end manner by minimizing the cross-entropy loss LCE between vector with a softmaxed 
distribution probability of next word and true caption as LCE = − log(P(z|a)).

Generative pretrained transformer. Generative Pretrained Transformer (GPT-3)45 is a large trans-
former-based language model with 1.75× 1011 parameters, trained on 570 GB of text. GPT-3 can be used to 
generate realistic continuations texts from the arbitrary domain. Basically, GPT-3 is a transformer that can look 
at a part of the sentence and predict the next word, thus being a language model. The original  transformer46 is 
made up of encoder stack and decoder stack, in which encoders and decoders stacked upon each other. Whereas 
GPT-3 is built using just decoder blocks. One decoder block consists of Masked Self-Attention layer and Feed-
Forward neural network. It is called Masked as it pays attention only to previous inputs. The input should be 
encoded prior to going into the decoder block. In transformers and in the GPT-3 particularly, there are two 
subsequent encodings: Byte Pair Token Encoding and Positional Encoding. Byte Pair Encoding (BPE) is a sim-
ple data compression technique that iteratively replaces the most frequent pair of bytes in a sequence with a 
single, unused byte. The algorithm compresses data by finding the most frequently occurring pairs of adjacent 
subtokens in the data and replacing all instances of the pair with a single subword. The algorithm repeats this 
process until no further compression is possible. Such tokenization avoids adding a special <unk> token to the 
vocabulary, as now all words can be encoded and obtained by combination of subwords from the vocabulary.

Proposed architecture
We introduce two architectures for X-ray image captioning. The overall goal of our approach is to improve the 
quality of Encoder-Decoder generated clinical records by using the GPT-3 language model. The suggested model 
consists of two parts: the Encoder, Decoder (LSTM) with an attention module and GPT-3. While Encoder with 
LSTM detects pathologies and indicates zones of higher attention demand, the GPT-3 takes it as input and writes 
a comprehensive medical report. There are two possible approaches for this task.

Approach 1 The first method consists in forcing the models to learn a joint word distribution. Within this 
method (Fig. 2), both models A and B output scores for the next word in a sentence. Afterwards, due to concat-
enating these scores and pushing them through the feed-forward neural net C, we get the final scores for subse-
quent word. Whilst the disadvantage of this approach is the following: the GPT-3 model has its own vocabulary 
built by the byte pair tokenizer. This vocabulary is different from the one used by the SAT model. We need to 
take from continuous GPT-3 distribution separate scores corresponding to the words present in the Show Attend 
and Tell vocabulary. This turns continuous distribution from the GPT-3 into discrete and hence, while we do not 
use all the potential generation power from the GPT-3.

Approach 2 The Approach 2 is shown in Fig. 3 and is based on stacked A and B models. Show Attend and Tell 
A gets an image as an input and generates a report based on the data found on X-ray with an Attention module. 
It learns where to focus and gives a seed for the GPT-3 B to continue generating text. The GPT-3 was fine-tuned 
on MIMIC-CXR in self-supervised manner using the Huggingface  framework47. It learns to predict the next 
word in the text. The GPT-3 continues the report outputed by SAT and generates a detailed and complete clinical 
report based on pathologies found by SAT. Such an approach is better for the GPT-3 as it gets more context as 
input (from SAT) than in the first approach. Thus, the second approach performs better, and was hence chosen 
as the main architecture.

(8)ât =

C
∑

i

αiati

(9)c0 = finit-c
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C
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(11)P(zt |ât , zt−1) = softmax(Lo(Lhht + Laât + Ezt−1))
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First language model. The first part of the suggested model is realized as the Show Attend and Tell model 
(SAT), the encoder to encode the image, and the LSTM for decoding into sequence. The encoder encodes the 
input image with 3 or 1 color channels into a smaller image with ‘learned’ channels. The resulted encoded images 
can be interpreted as a summary representation of findings in the X-ray (Eq. 2). Those encoders, pretrained 
on the  ImageNet48, are not suitable for the medical image caption task, as medical images do not have typi-
cal objects from the natural domain. Thus, the DenseNet-121  from49 pretrained on the MIMIC-CXR dataset 
was taken. It was trained for the classification task on 18 labels : Atelectasis, Consolidation, Infiltration, Pneu-

Figure 2.  The first approach. Learn the joint distribution of two models.

Figure 3.  The second approach. Pretrained GPT-3 (B) continues text generated by SAT (A).
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mothorax, Edema, Emphysema, Fibrosis, Effusion, Pneumonia, Pleural Thickening, Cardiomegaly, Nodule, 
Mass, Hernia, Lung Lesion, Fracture, Lung Opacity, and Enlarged Cardiomediastinum. Hence, the last classifi-
cation layer was removed and features from the last convolutional layer were taken. These features were passed 
through the Adaptive Average Pooling layer. They can be represented by the tensor with the following dimen-
sions: ( batchsize × C,D,D ) (Eq. 2). C stands for the number of channels or how many different image regions to 
consider. D implies the dimension of the image encoded region. Furthermore, the fine-tune method for encoder 
was added. It enables or disables the calculation of gradients for the encoder’s parameters through the last lay-
ers. Then, at every time step, the decoder with the attention module observes the encoded small images with 
findings and generates a caption word by word. The Encoder output is received and flattened to dimensions 
( batchsize,C,D × D ). Since captions are padded with a special token <pad> , captions are sorted by decreasing 
lengths and at every time-step of generating a word, an effective batch size is computed in order not to process 
the <pad> token.

The Show Attend and Tell model was trained using the Teacher-Forcing method while at each step the input 
to the model was the ground truth word on this step and not the previous generated word. As a result, we can 
consider the SAT as a language model A . It gets a tokenized text of length m, an image as input and outputs a 
vector of probabilities for the next word at each time step t:

where W is the SAT vocabulary size and L is the length of generated report (Eq. 1). Where P1 is computed as it 
is shown in the Eq. (11).

Over the training process, the LSTM outputs a word with a maximum probability after the softmax layer. 
Similarly  to50, we applied the K-Beam search, but only in the inference stage.

Second language model. The second part of the architecture proposed is the GPT-3. The GPT-3 is built 
from decoder blocks using the transformer architecture. At the same time, the decoder block consists of masked 
self-attention and a feed-forward neural network (FFNN). The output yields the token probabilities, i.e., logits. 
The GPT-3 was pretrained separately on the MIMIC-CXR dataset and was then fine-tuned together with the 
SAT to enhance clinical reports.

We put a special token <start> at the end of the text generated by the SAT allowing the GPT-3 to under-
stand where to start the generation process. We also used the K-Beam search after the GPT-3 generation and 
took the second best sentence from the output as a continuation. The pretrained GPT-3 performs as a separate 
language model B and generates good records based on the input text or tags. The GPT-3 generates report till 
the moment when it generates the special token <|endoftext|> . We denote the length of the GPT-3 gener-
ated text as l

Combination of two language models. We use a combination of two models placing them sequentially: 
the SAT model extracts visual features from the image and allows us to focus on its specific parts. The GPT-3 
provides good and comprehensive text, based on what is found by the first model. Thus, the predictions from the 
first model improve those of the second language model.

Evaluation metrics. The common evaluation metrics used for image captioning are : bilingual evalua-
tion understudy (BLEU)51, recall-oriented understudy for gisting evaluation (ROUGE)52, metric for evaluation 
of translation with explicit ordering (METEOR)53, consensus-based image description evaluation (CIDEr)54, 
and semantic propositional image caption evaluation (SPICE)55. The Microsoft Common Objects in  Context56 
provides the kit with implementation of these metrics for the image caption task.

Experiments
Datasets. For training and evaluation of medical image captioning, we use three publicly available datasets. 
Two of them are medical images datasets and the third one is a general-purpose one.

MIMIC-CXR The MIMIC Chest X-ray (MIMIC-CXR)57 dataset is a large publicly available dataset of chest 
radiographs in DICOM format with free-text radiology reports. This dataset consists of 377,110 images corre-
sponding to 227,835 radiographic studies performed at the Beth Israel Deaconess Medical Center in Boston, MA.

Open-I The Indiana University Chest X-ray Collection (IU X-ray)25 contains radiology reports associated with 
X-ray images. This dataset contains 7470 image-report pairs. All the reports enclose the following sections: 
impression, findings, tags, comparison, and indication. We use the concatenation of impression and findings as 
the target captions.

(12)
A : text,image → P1(z

t |true words = z�1�z�2� . . . z�t−1�, image),

t ∈ {2, . . .m, . . . L},

P1 ∈ R
m×WSAT

(13)B : text → P2(z
t |true words = z<1> . . . z<L> < s >), t ∈ {L+ 1, . . . L+ l},
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MSCOCO Microsoft Common Objects in Context dataset (MS COCO dataset)58 is large-scale non-medical 
dataset for scene understanding. The dataset is commonly used for training and benchmark object detection, 
segmentation, and captioning algorithms.

Image preprocessing. Hierarchical Data Format (HDF5)59 dataset was used to store all images. X-rays 
are in gray-scale and have one channel. To process them with the pre-trained CNN DenseNet-121, we used 1 
channel image. Each image was resized to the size of 224× 224 pixels, normalized to the range from 0 to 1, and 
converted to the float32 type and stored in the HDF5 dataset.

Image captions pre-processing. Following the logic  in60, a medical report is considered as a concatena-
tion of Impression and Findings sections, if both of these sections are empty, this report was excluded. This 
resulted in 360,666 DICOMs with reports for the MIMIC-CXR dataset. The text records are pre-processed by 
converting all tokens to lowercase, removing all non-alphanumerical tokens. For our experiments we used 75% 
of data for training, 24.75 % for validation and 0.25% for testing.

The MIMIC-CXR database was used to access metadata and labels derived from free-text radiology reports. 
These labels were extracted using the NegBio  tool21,30 that outputs one of 14 pathologies along with their sever-
ity and (or) absence. To generate more accurate reports, we added the extracted labels to the beginning of the 
report. This allows language models to know the summary of the report for a more precise description generation.

We additionally formed the abbreviations dictionary of 150+ words from the Unified Medical Language 
System (UMLS)61. We also extended our dictionary size with several commonly used medical terms from the 
Medical Concept Annotation  Tool62.

Training of the neural network. The pipeline is implemented using PyTorch. Experiments were con-
ducted on a server running the Ubuntu 16.04 (32 GB RAM). All models were trained with NVIDIA Tesla V100 
GPU (32 GB RAM). In all experiments, we use a 5-fold cross-validation and reported the mean performance. 
The SAT was trained for 70 epochs with the batch size of 16, embedding dimension of 100, attention and decoder 
dimension of 512, dropout value 0.1. The encoder and decoder learning rates were 4× 10−7 and 3× 10−7 , 
respectively. The Cross Entropy loss was used for training. The best model is chosen according to the highest 
geometric mean of BLEU-n, as it is done in other  works63. SAT was trained in Teacher-Forcing technique, while 
the Greedy approach is used for counting metrics. The GPT-3 small was fine-tuned with the MIMIC-CXR data-
set for 30 epochs with batch size of 4, learning rate of 5× 10−5 , the Adam epsilon of 1× 10−8 , where the block 
size equals 1024, with clipping gradients, which are bigger than 1.0. It was fine-tuned in a self-supervised manner 
as a language model. No data augmentation was applied.

Results and discussion
Quantitative results. The quantitative results for the baseline models, preceding works, and our models 
are presented in Table 1. The models were evaluated on the most common Open-I dataset, as well as on the big 
and rarely reported data from the MIMIC-CXR with free-text radiology reports. We implemented the most 
commonly used metrics for evaluation—BLEU-n, CIDEr and ROUGE_L. The proposed approach outperforms 
the existing models in terms of the NLG metrics—BLEU-n, CIDEr and ROUGE. BLEU-n measures the accu-
racy, ROUGE_L measures the recall of the generated report while CIDEr helps estimate the ability of the model 
to capture context information in the ground truth report. The higher the metrics values, the better the perfor-
mance of the model.

We additionally illustrated the performance of our model in Fig. 4 containing 4 original X-ray images from 
the MIMIC-CXR dataset, the ground truth expert label, and the model predictions (Approaches 1 & 2). We 
manually underlined the similarities and identical diagnoses in texts to guide the eye. Table 2 presents the 
measured clinical efficacy (CE) metrics on the MIMIC-CXR dataset for the baseline models and our proposed 
Approaches 1 and 2. The metrics are calculated by comparing the critical radiology terminology extracted from 
the generated and the reference reports.

Discussion. The first language model (SAT) learned to generate a short summary at the beginning of the 
report, based on the findings from a given medical image to provide the content details. This offers text genera-
tion direction seed for the second model. The preprocessing of the medical reports enabled these high metrics. 
We also address the biased data problem by applying domain-specific text preprocessing while using the NegBio 
labeller. In a radiology database, the data is unbalanced because abnormal cases are rarer than the normal ones. 
The NegBio labeller allowed us to get a not negative-biased diagnosis clinical records as it added short sentences 
at the beginning of the ground truth reports, making this task closer (in some ways) to a classification task, when 
the state-of-the-art models had already managed to achieve a strong performance. The SAT also provides 2D 
localization heatmaps of pathologies, assisting and accelerating the diagnosis process.

The second language model, the Generative Pretrained Transformer GPT-3, showed promising results in 
the medical domain. It successfully continued the extracted texts from the first language model, taking into 
consideration all the findings provided. As GPT-3 is a rather powerful transformer, it summarizes and provides 
more details on the findings. Natural language generation metrics suggest that using two language models 
subsequently provides a notable advantage. Such an approach can be considered as accurate and efficient for 
the medical captions  generation.

One may notice a gap in the context-related performance (CIDEr)as each ground truth image is accompanied 
by multiple reference captions. The drawback in the CIDEr performance points to a suboptimal suitability of 
the generated output, whereas the Approach 2 does its best. This is due to the image-relevant n-grams occurring 



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:4171  | https://doi.org/10.1038/s41598-023-31223-5

www.nature.com/scientificreports/

frequently in the respective set of reference sentences. The drawback is in the sampling from the GPT-3 dis-
tribution. The Approach 2, featuring SAT followed by the GPT-3, outperformed the reported state-of-the-art 
(SOTA) models in all the 3 datasets considered. Notably, the proposed approach outperforms SOTA models 
on MIMIC-CXR, demonstrating the highest performance in all the metrics. The performance for the main 
evaluation dataset, the MIMIC-CXR, is measured by the CE metrics using micro-averaging and demonstrates 
0.861 for the proposed SAT + GPT-3 Approach 2 model vs. 0.840 with the Approach 1, and 0.743 for the SAT, 
respectively, as reported in Table 2.

Examples of the reports generated jointly via the SAT + GPT-3 with Approaches 1 and 2 are shown in Fig. 4. 
One may notice that some generated sentences coinside with the ground truth. For example, in both generated 
and the true reports, for the first X-ray it reads “no acute cardiopulmonary abnormality”. Some sentences are 
close in their meaning, even if they are different in terms of chosen words and n-grams (“no pneumonia. no 
pleural effusion. no edema. ...” compared to “ without pulmonary edema or pneumothorax”).

Conclusions
We introduced a new technique of combining two language models for the medical image captioning task. 
Principally, the new preprocessing and squeezing approaches for clinical records were implemented along with a 
combined language model, where the first component is based on attention mechanism and the second one rep-
resents a generative pretrained transformer. The proposed combination of the models generates a descriptive 
textual summary with essential information on found pathologies along with their location and severity. Besides, 
the 2D Grad-CAM67 heatmaps localize each pathology on the original scans. The results, measured with the 
natural language generation metrics on both the MIMIC-CXR and the Open-I datasets, speak for an efficient 
applicability to the chest X-ray image captioning task. This approach also provides well-interpretable results and 
allows to support clinical decision making.

We investigated various approaches to automatic generation of X-ray image captioning. We proved that the 
SAT is a strong baseline, outperforming models with Transformer-based decoders. With the help of GPT-3 
pre-trained language model, we managed to improve this baseline. The simple method, where the GPT-3 model 
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Figure 4.  Image sample cases with the disease classes (DC) along with original (ground truth) and generated 
reports by the proposed SAT + GPT-3 model implemented as in Approach 1 and 2, respectively. Insets in the 
upper corners of the original images feature localization heatmaps. Heatmaps are generated using Matplotlib 
v.3.7.064.
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finishes the report extracted by the Show-Attend-Tell model, yields significant improvements to the standard 
text generation scores. Recent advancements in interactive training, such as active  learning68 and dialog-based 
 ChatGPT69, have the potential to improve the performance of medical image captioning models even further. 
This is an area of research that will be explored in the future.

Data availability
All data generated or analysed during this study are included in this published article. The datasets used and/or 
analysed during the current study available from the corresponding author on reasonable request.
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