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Multiparameter prediction model 
of immune checkpoint inhibitors 
combined with chemotherapy 
for non‑small cell lung cancer based 
on support vector machine learning
Zihan Zhou 1,2, Wenjie Guo 3, Dingqi Liu 4, Jose Ramon Nsue Micha 1,2, Yue Song 1,2 & 
Shuhua Han 1,2*

The reliable predictive markers to identify which patients with advanced non-small cell lung cancer 
tumors (NSCLC) will achieve durable clinical benefit (DCB) for chemo-immunotherapy are needed. 
In this retrospective study, we collected radiomics and clinical signatures from 94 patients with 
advanced NSCLC treated with anti-PD-1/PD-L1 combined with chemotherapy from January 1, 2018 to 
May 31, 2022. Radiomics variables were extracted from pretreatment CT and selected by Spearman 
correlation coefficients and clinical features by Logistics regression analysis. We performed effective 
diagnostic algorithms principal components analysis (PCA) and support vector machine (SVM) to 
develop an early classification model among DCB and non-durable benefit (NDB) groups. A total of 26 
radiomics features and 6 clinical features were selected, and then principal component analysis was 
used to obtain 6 principal components for SVM building. RC-SVM achieved prediction accuracy with 
AUC of 0.91 (95% CI 0.87–0.94) in the training set, 0.73 (95% CI 0.61–0.85) in the cross-validation set, 
0.84 (95% CI 0.80–0.89) in the external validation set. The new method of RC-SVM model based on 
radiomics-clinical signatures provides a significant additive value on response prediction in patients 
with NSCLC preceding chemo-immunotherapy.

Nowadays, for advanced non-small cell lung cancer tumors (NSCLC), immune checkpoint inhibitors (ICIs) 
combined with chemotherapy are recommended as standard first-line treatment without oncogenic driver altera-
tions. However, a significant proportion of patients remain subjected to treatment resistance, efficacy biomark-
ers for ICIs plus chemotherapy are urgent needed to early forecast which patients will achieve durable clinical 
benefit (DCB)1.

The most established biomarker to predict the efficacy of immune checkpoint inhibitors (ICIs) in NSCLC is 
PD-L1 expression2. However, PD-L1 has some shortcomings including low sensitivity and specificity as a predic-
tive biomarker of response3,4. Among the most recently recognized are ctDNA (circulating tumor DNA), and 
TMB (tumor mutational burden)5,6, but the testing technology of these biomarkers is immature and costly, and 
the conclusions of various researches are still inconsistent7–9. Therefore, routine tests of peripheral blood markers 
characterized by clinically convenient and practically noninvasive remain to be explored.

Radiomics applies data mining algorithms to medical images to obtain quantitative variables from tumor 
tissue imaging data10,11. Since tumors are heterogeneous in time and space12, it is possible to provide a more 
full-scale view of the tumor using imaging, which will make personalized treatment more accurate. As a non-
invasive tool, radiomics can explore tumor heterogeneity, monitor tumor evolution, and evaluate treatment 
response. Therefore, the growing field of radiomic analysis has opened up new approaches to identify predictive 
biomarkers13,14. With the progress of computer science, machine learning has gradually applied to deal with large 
and complex data in medicine, which has been applied in many medical fields, including oncology, genomics, 
radiomics15–17. Support vector machines (SVM) is a new machine learning method based on statistical learning 
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theory and high-dimensions groups have small sample sets can be classified accurately because multiple param-
eters in applied data sets has no negative effect on it18.

In this study, we developed baseline clinical information and radiomics signatures from pretreatment CT 
scans to predict response to immunotherapy combined with standard chemotherapy in patients with advanced 
NSCLC. We therefore set out to develop a multivariable model by SVM that integrated CT-based radiomics and 
clinical data for early identification of patients with advanced NSCLC who could realize durable clinical benefit 
from PD-(L)1 blockade-based ICI treatment and chemotherapy.

Results
Patient characteristics.  A total of 94 patients were included in the study who accepted ICIs in combina-
tion with chemotherapy, including 20 patients for independent external validation. The clinical characteristics 
of these patients are summarized in Table 1. According to progression-free survival, 34 (45.9%) patients who 
did not achieve durable clinical benefit constituted the NDB group and the remaining 40 (54.1%) patients in 
the DCB group. Of the 94 patients, 4 without measurable lesions per RECIST 1.1, 90 had CT scans available for 
analysis of radiomics characteristics. 70 patients for training model and fivefold cross-validation, of which 38 
(54.3%) were in the DCB group and 32 (45.7%) in the NDB group.

Univariable analysis of biomarkers for progression‑free survival (PFS).  We examined six basic 
characteristics and fourteen peripheral blood parameters measured before treatment initiation to identify clini-
cal biomarker candidates for chemo-immunotherapy (Table 2). Univariable Logistics regression analysis of these 
factors revealed that males tended to be associated with better treatment benefits than females (p < 0.1). PD-L1 
expression was identified as a significant predictor of durable clinical benefit (p < 0.05), notably, 3/12 (25%) 
patients with PD-L1 less than 1% also achieved DCB. Surprisingly, non-smokers seem to have a worse prognosis 
than smokers (p < 0.05). Among peripheral blood parameters, higher hemoglobin and albumin seem to tend 
to be associated with a better PFS (p < 0.05; p < 0.1). In contrast, a trend toward a worse PFS was apparent in 
patients with higher CFYRA-211 (p < 0.1). Furthermore, we observed that the degree of smoking appeared to be 
positively correlated with PD-L1 expression (p < 0.05). All the results are shown in Fig. 1.

Table 1.   Study population characteristics.

Parameter Total n (%) NDB group n (%) DCB group n (%)

Total 74 34 (45.9%) 40 (54.1%)

Sex

 Male 61 (82.4%) 25 (41.0%) 36 (59.0%)

 Female 13 (17.6%) 9 (69.2%) 4 (30.8%)

Age

 < 75 years 62 (83.8%) 29 (46.8%) 33 (53.2%)

 ≥ 75 years 12 (16.2%) 5 (41.7%) 7 (58.3%)

BMI

 < 18.5 4 (5.4%) 3 (75.0%) 1 (25.0%)

 18.5–24 39 (52.7%) 16 (41.0%) 23 (59.0%)

 ≥ 24 26 (35.1%) 14 (53.8%) 12 (46.2%)

 ≥ 28 5 (6.8%) 1 (20.0%) 4 (80.0%)

Smoking state

 Never 21 (28.4%) 15 (71.4%) 6 (28.6%)

 Former 30 (40.5%) 10 (33.3%) 20 (66.7%)

 Current 23 (31.1%) 9 (39.1%) 14 (60.9%)

Histologic subtype

 Adenocarcinoma 49 (66.2%) 21 (42.9%) 28 (57.1%)

 Squamous cell carcinoma 25 (33.8%) 13 (52.0%) 12 (48.0%)

Line of immunotherapy

 First 40 (54.1%) 16 (40.0%) 24 (60.0%)

 Second 18 (24.3%) 9 (50.0%) 9 (50%)

 ≥ Third 16 (21.6%) 9 (56.3%) 7 (43.8%)

PD-L1 TPS, %

 < 1% 12 (16.2%) 9 (75.0%) 3 (25.0%)

 1–50% 24 (32.4%) 13 (54.2%) 11 (45.8%)

 ≥ 50% 38 (51.4%) 12 (31.6%) 26 (68.4%)
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Radiomics features.  Low reproducible features with an intraobserver ICC of 0.7 and less have been 
excluded, and twenty-six radiomics features with Spearman correlation coefficient of 0.3 or greater were retained 
which consist of 3 shape metrics (SM), texture features (TA) including 1 Gray Level Co-occurrence Matrix 
(GLCM), 1 Neighbouring Gray Tone Difference Matrix (NGTDM), 1 Gray Level Dependence Matrix (GLDM), 
wavelet features (WF) including 1 first order (FO), 1 NGTDM, 6 Gray Level Dependence Matrix (GLDM), 2 
Gray Level Run Length Matrix (GLRLM), 4 Gray Level Run Length Matrix (GLRLM), 3 Neighbouring Gray 
Tone Difference Matrix (NGTDM), 2 Gray Level Size Zone Matrix (GLSZM), 1 Gray Level Co-occurrence 
Matrix (GLCM).

Principal component analysis (PCA) and predictive model development.  After principal com-
ponent analysis of the data, six main principal components were finally obtained from 32 features (including 
6 clinical features and 26 radiomics features) by dimensionality reduction, and the cumulative variance con-
tribution rate was 87.64% (Fig. 2a), which the six principal components could explain 87.64% of the total data, 
indicating that the principal components had a good interpretation effect on the whole. The first principal com-
ponent (PC) extracted from all feature signatures primarily correlated with Gray Level Non-Uniformity, Surface 
Area and Busyness in radiomics (Proportion of variance = 60.3%). The first 2 PCs explained 68.28% of the total 
variance, which PC2 reflecting the Zone Variance and CTFRA21-1 (Supplemental Table S1). Figures 2b shows 
the two-dimensional scatter plots of the two PCs score between the DCB and NDB groups, which show differ-
ences between groups when we compared PCs. PC3 mainly contains characteristics of gender, smoking status, 
and PD-L1 expression. The last 3 PCs mostly reflect Correlation in Co-occurrence Matrix, Median in first-order 
wavelet features, ALB and HGB (Supplemental Table S2). Coefficient of components are showed in Supplemen-
tal Table S3.

Regarding classification performance, RC (Radiomics-Clinical)-SVM training set achieved an AUC of 0.91 
(95% CI 0.88, 0.94), the cross-validation set had an AUC of 0.73(95% CI 0.61, 0.85), and the external valida-
tion set had an AUC of 0.85(95% CI 0.80, 0.89). To compare the performance between the different models, we 
also tested the data by Linear Discriminant Analysis (LDA, AUC 0.73, CI 0.68, 0.79) and Logistic Regression 
(LR, AUC 0.89, CI 0.85, 0.92, Fig. 3). Clinical-only and radiomics-only signatures did not perform as well as 
the radiomics-clinical signature (Table. 3). Sensitivity, specificity, negative predictive value (NPV), and positive 
predictive value (PPV) for distinguishing patients with durable clinical benefit or not are summarized in Table 3.

Table 2.   Univariate logistic regression analysis.

Parameter Category OR 95% CI P Value

Sex Male 3.24 0.898–11.695 0.073

Age ≥ 75 years 1.23 0.352–4.3 0.745

Histologic subtype Adenocarcinoma 1.444 0.549–3.8 0.456

BMI

< 18.5 0.332

18.5–23.9 4.312 0.411–45.282 0.223

24–27.9 2.571 0.235–28.089 0.439

> 28 12 0.514–280.089 0.122

Smoking status

Current 3.889 1.099–13.764 0.035

Former 5 1.486–16.826 0.009

Never 0.026

PD-L1

< 1% 0.026

1–50% 2.538 0.548–11.766 0.234

≥ 50% 6.5 1.487–28.407 0.013

WBC 1.048 0.953–1.153 0.334

HGB 1.035 1.005–1.066 0.023

ANC 1.039 0.957–1.128 0.356

ALC 0.955 0.831–1.098 0.517

AMC 2.207 0.438–11.13 0.337

dNLC 0.899 0.691–1.168 0.423

PLT 0.997 0.991–1.002 0.264

LDH 0.998 0.992–1.004 0.490

ALB 1.11 0.991–1.244 0.071

PNI 0.996 0.975–1.018 0.743

CEA 1.001 0.997–1.006 0.582

NSE 0.992 0.968–1.017 0.537

CYFRA21-1 0.96 0.918–1.004 0.072

ProGRP 1.003 0.978–1.028 0.827
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Figure 1.   Pre-treatment clinical characteristics predict response to ICI plus chemotherapy. (a–c) Outcomes 
of patients stratified by Sex, Smoking status and PD-L1 expressing. p value was calculated by Univariate 
Logistic Regression Analysis (DCB n = 40; NDB n = 34). (d–f) Pre-treatment HGB, ALB and CYFRA21-1 in 
patients. p values were calculated using Univariate Logistic Regression Analysis. (g) Probability of PFS for male 
(median = 437 day) and female (median = 347 day). (h) Probability of PFS for current smokers (median = 689 
day), former smokers (median = 336 day) and never smokers (median = 491 day). (i) Probability of PFS for 
PD-L1 expression < 1% (median = 507 day), PD-L1 expression ranged from 1 to 50% (median = 328 day) and 
PD-L1 expression ≥ 1% (median = 437 day). (j) Degree of smoking positively correlated with PD-L1 expression 
(p < 0.05).
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Next, we estimated clinical usefulness by decision curve analysis and counting the sensitivity at 95% specific-
ity. The decision curve analysis provided insight into the range of predicted risks, and results showed that the 
model provided benefit value to patients, with a threshold range of about 0.12–0.98 and a maximum net benefit 
of about 0.13 (Fig. 4a). The sensitivity for the Radiomics-Clinical-SVM, Radiomics-SVM, and Clinical-LR was 
64.2% (95% CI 59.7 to 68.3%), 60.5% (95% CI 56.2 to 64.3%), and 57.7% (95% CI 53.8 to 61.5%) at 95% specific-
ity (Fig. 4b). Overall performance of the RC-SVM was quantified as the Brier score, we obtained that the Brier 
scores of the training set and the cross-validation set were 0.1 and 0.17, which were both close to 0, indicating 
good prediction ability. Furthermore, patients with a high score (score > 0) calculated by radiomics and clinical 
features showed improved PFS compared with those with a low score (score ≤ 0), but this difference was not 
significant (p = 0.06 in training set, p = 0.0.51 in validation set, Fig. 5).

Discussion
Although immune checkpoint inhibitors have shown conspicuous promise for the treatment of advanced NSCLC, 
response rates remain suboptimal, and reliable predictive markers to identify which patients will achieve durable 
clinical benefit for chemo-immunotherapy are needed. In addition, most of the existing studies aimed to develop 
prediction model for mono-immunotherapy, as far as we know, a significant part of patients received ICIs com-
bined with chemotherapy as first-line therapy to avoid hyperprogression. To our knowledge, few studies have 
published which develop principal component analysis and support vector machines based on a comprehensive 
analysis of a wide range of baseline pretreatment clinicopathological factors and radiomic features that may 
accurately predict clinical prognosis for chemo-immunotherapy in NSCLC. Unlike many proposed molecular 
markers under development (e.g. ctDNA and TMB), these conventional clinical parameters and CT scans are 
readily available in the clinic at the start of treatment. They should be useful tools when discussing first or further 
lines of treatment with patients.

Our study suggests that CT-based radiomics features can be used to distinguish the prognosis of the NSCLC 
patients with immunochemotherapy. Imaging reflects features of tumors, including PD-L1 expression sta-
tus and CD8 infiltration11,19. Imaging features have been proved are related to genomic profiles which called 

Figure 2.   Principal component analysis of full feature signatures. (a) Figure of PCA value and cumulative 
variance contribution rate. Six main principal components were obtained from 32 features (including 6 clinical 
features and 26 radiomics features), and the cumulative variance contribution rate achieved 87.64%. (b) PCs 
scores of PC1 and PC2 in DCB group (blue dots) and NDB group (red dots).

Figure 3.   Receiver operating characteristic curves of (a) SVM, (b) LDA and (c) LR for predicting response to 
chemo-immunotherapy. CV cross validation, AUC​ area under the curve.
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radiogenomics and it is to applied in assessment of the response to immunotherapy in patients with non-small 
cell lung cancer and glioblastomas20,21.

In this study, we developed principal component analysis to reduce the dimension of radiomics features and 
retained features with diagnostic value that decrease the effects of redundant features on model classification. 
Most of the features included in the model are wavelet-transformed second-order texture features, and only 5 
are the original first-order texture features. The second-order texture features can describe the variation of gray 
level between adjacent voxels, while the wavelet transform filters from original features. The results of this study 
suggest that the wavelet transformed second-order texture may be more valuable in reflecting the microscopic 
information of tumors. Furthermore, we observed that the negative coefficient of Gray Level non-uniformity, 
Busyness, and Zone Variance features, maybe indicating homogeneity of tumors, were associated with a better 
immune response. Conversely, radiomics features reflecting lesion size like Surface Area were associated with a 
worse probability of response.

Table 3.   Radiomics-clinical, radiomics, and clinical-only signature performance in different machine learning 
models. RC Radiomics-Clinical, SVM Support Vector Machines, LDA Linear Discriminant Analysis, LR 
Logistic Regression, Rad-SVM Radiomics-SVM, Cli-LR Clinical-LR, AUC​ area under the curve, NPV negative 
predictive value, PPV positive predictive value. Radiomics signature including 26 variables from histogram, 
shape, and local–regional texture. Clinical signature including Sex, Smoking status, PD-L1 expressing, HGB, 
ALB and CYFRA21-1.

Models AUC (95%CI) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Training set

 RC-SVM 0.91 (0.87–0.94) 86.8 82.9 83.5 86.3

 RC-LDA 0.73 (0.68–0.79) 66.4 74.3 72.1 68.9

 RC-LR 0.89 (0.85–0.92) 89.5 74.3 77.7 87.6

Cross-validation set

 RC-SVM 0.73 (0.61–0.85) 71.1 71.9 75.0 67.7

 RC-LDA 0.61 (0.47–0.74) 57.9 65.6 66.7 56.8

 RC-LR 0.73 (0.61–0.85) 81.6 62.5 72.1 74.1

External validation set

 RC-SVM 0.85(0.80–0.89) 86.6 60.0 86.6 60.0

Training set

 Rad-SVM 0.79 (0.69–0.85) 65.4 83.3 81.0 69.0

 Cli-LR 0.84 (0.73–0.95) 76.9 66.7 73.2 71.0

Cross-validation set

 Rad-SVM 0.75 (0.67–0.83) 63.6 66.7 70.0 60.0

 Cli-LR 0.84 (0.67–1.00) 91.7 62.6 57.1 93.2
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Figure 4.   Clinical usefulness of radiomics-clinical SVM. RC Radiomics-Clinical, SVM Support Vector 
Machines, LDA Linear Discriminant Analysis, LR Logistic Regression, Rad-SVM Radiomics-SVM, Cli-LR 
Clinical-LR. (a) Decision curve analysis of RC-SVM, with a threshold range of about 0.12–0.98 and a maximum 
net benefit of about 0.13. (b) Sensitivity at 95% specificity for the RC-SVM, Rad-SVM and Cli-LR (64.2%, 60.5% 
and 57.7%).
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We performed SVM to establish the classification model, and applied two other machine learning algorithms 
including logistic regression and linear discriminant analysis, to compare the classification accuracy and evalu-
ate the model performance by calculating the area under the curve (AUC), accuracy, sensitivity, PPV and NPV. 
RC-SVM achieved good prediction accuracy and clinical usefulness in the training set with an AUC of 0.91, a 
86.8% sensitivity and a specificity of 82.9%. It performs well in the cross-validation set and external validation 
set, and the other indicators were also higher than LR and LDA. In RC-SVM, patients with higher scores were 
also shown to have longer PFS and better prognostic outcomes.

Moreover, we suppose there is a plausible biological explanation for clinical components of our model: (1) 
Smoking status: it may be linked to the number of tumor copies, which, in turn, increases immunogenicity, result-
ing in better response to ICI at higher levels22–24; (2) PD-L1 expression: a factor in the tumor microenvironment 
which can act to modulate the existing activated antitumor T cell immune response is an approved biomarker to 
predict PD-(L)1 blockade in NSCLC25; (3) Hemoglobin: In our study, higher hemoglobin is associated with longer 
PFS with chemo-immunotherapy, however, the biology behind this finding is yet to be defined and few studies 
have explored hemoglobin’s role as a biomarker for predicting immunotherapy outcomes. Tumor hypoxia, a char-
acteristic of the immunosuppressive tumor microenvironment26, has been proven to cause resistance to current 
anticancer therapeutics including chemotherapy, photodynamic therapy, radiotherapy and immunotherapy27,28. 
Therefore, high level of hemoglobin, might indicating an oxygen-enriched environment which is characterized by 
having higher nutrient availability and by being rather immunostimulatory, was associated with a more efficient 
treatment response. (4) CFYRA21-1: serum level of CFYRA21-1 is related to the tumor size, lymph node status, 
distant Metastasis and the stage of disease29,30 which could assist in predicting immunotherapy efficacy31 and 
baseline level was positively correlated with the patient’s risk score before immunotherapy32.

Our study had some limitations. First, due to the retrospective, there could not be standardization of image 
acquisition parameters. Second, the sample size is insufficient according to the PROBAST guidelines. To solve 
this dilemma, we will keep collecting NSCLC patients receiving immunotherapy combined with chemotherapy 
on the one hand, and explore new methods of small sample learning to optimize the model on the other hand. 
Third, in some cases, patients received ICIs as a secondary line of treatment or beyond, which may have had an 
impact on their nutritional status and baseline inflammation, although the number of lines of immunotherapy 
was not related to clinical outcomes of our study. In addition, since some patients did not routinely receive next-
generation sequencing during the sample collection period, the targetable driver alterations were not counted in 
this study. Thus, further exploration is necessary to determine how the model would perform in these different 
patient subsets.

In summary, our model which has the advantages of non-invasiveness, convenience, and economy integrated 
multidimensional data including routinely collected clinical factors and CT-based radiomics signature. 
Ultimately, it is expected to provide new tools for early prognostic assessment and guiding treatment decisions 
for NSCLC, thereby promoting individualized treatment of lung cancer, possibly contributing to the selection 
of the most appropriate ICI treatment for patients with NSCLC, reducing the treatment cost of patients and 
improve their survival and quality of life.

Method
Study population and therapy scheme.  From January 1, 2018 to May 31, 2022, we consecutively 
included 94 patients with the initial diagnosis of NSCLC, for whom a whole-body assessment revealed tumor 
stage IIIB to IV or recurrent NSCLC and who were subsequently treated with anti-PD-1/PD-L1 combination 
chemotherapy at Zhongda Hospital Southeast University, of which 20 patients did not participate in model train-
ing as independent external validation. This study excluded participants who met the following criteria: patients 
with missing follow-op data, who had complicated factors such as infectious fever, blood system or immune 
system diseases that may affect blood test results, discontinuation of the drug due to intolerable toxic effects 
(non-disease progression), and non-measurable lesions as per Response Evaluation Criteria in Solid Tumors 

Figure 5.   Kaplan–Meier overall survival curve analysis in training (a) and validation set (b). (a) Probability of 
PFS for high-score (median = 493 day) and low-score (median = 297 day) in training set. (b) Probability of PFS 
for high-score (median = 347 day) and low-score (median = 337 day) in validation set. The CT-based radiomics 
and clinical score was defined as high (> 0) or low (≤ 0), score = Features * β Model Coefficient + Bias Model 
Coefficient.



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:4469  | https://doi.org/10.1038/s41598-023-31189-4

www.nature.com/scientificreports/

(RECIST) 1.1. The study was approved by the ethics review board at Zhongda Hospital Southeast University with 
a reference number of No.2021ZDSYLL213-P01 and was performed by the Declaration of Helsinki. Informed 
consent was obtained from all participants. As shown in Fig. 6, the study flowchart illustrates the process.

Image acquisition and analysis.  We obtained and analyzed CT scans within 30 days before the date of 
treatment start. CT scans were acquired by using 64-channel CT scanners (SIEMENS SOMATOM) in the axial 
plane with tube voltage of 120 kV, and section interval of 1.25–5 mm. All lung lesions for each patient were seg-
mented twice by a physician, blinded to the clinical outcome, with 5 years of experience in oncologic imaging, 
by using the 3DSlicer version 5.1.9 (3D Slicer, National Institutes of Health, Bethesda, MD, USA) semiautomatic 
contouring tool. Radiomics features based CT (first order, shape, texture and wavelet) were generated by using 
the SlicerRadiomics package (version a57d142) for Python (version 3.7.1). The following features classes were 
extracted: statistical first order (FO), shape metrics (SM), texture features (TA) including Gray Level Co-occur-
rence Matrix (GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM), Neigh-
bouring Gray Tone Difference Matrix (NGTDM), Gray Level Dependence Matrix (GLDM), wavelet features 
(WF) for all the above features, except shape, were calculated by combining High and Low pass filters for each 
dimension. In total, we extracted 851 features from each image volume (18 FO, 14SM, 24 GLCM, 16 GLRLM, 16 
GLSZM, 14 GLDM, 5 NGTDM, and 744 WF).

Clinical data.  Data from electronic records was used to collect basic patient information and laboratory 
results. These included age, sex, tumor type, BMI, Smoking status, PD-L1, white blood cell count (WBC), red 
blood cell count (RBC), absolute lymphocyte count (ALC), absolute monocyte count (AMC), derive neutrophil-
to-lymphocyte ratio (dNLR), platelet count (PLT), lactate dehydrogenase (LDH), albumin level (ALB), prognos-
tic nutritional index (PNI, ALB + ALC × 5), carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), 
pro-gastrin-releasing peptide (ProGRP), and CYFRA21-1. Outcome data, similar to the concept of durable 
clinical benefits (DCB) proposed by previous studies33, defined DCB as PFS of at least 9 months from ICIs-based 
combination therapy and non-durable benefit as PFS < 9 months from combination treatment.

Statistical analysis and model building.  PCA was applied in our algorithm, it is a multivariate statisti-
cal technique that turns a series of initial relevant variables to fresh irrelevant variables named principal com-
ponents according to the maximum variance. According to their similar variances, PCA can be used to classify. 
The PC scores show the intensity of each PC loading in dataset group and the first PC loading shows the most 
corrected clinical benefit features in the dataset. Then we could identify durable clinical benefit or not through 
the scores from individuals of a population according to variations of the clinical and radiomics characteristics34.

In the classification part of algorithm we perform SVM which is a technology used for binary classification 
and the basic principle is to render a problem linearly separable by making use of a nonlinear mapping function 
that transforms data in input space to data in feature space35. The SVM will discovers the optimal separating 
hyperplane automatically and achieve accurate classification despite small sample sets and multiple parameters. 
At the same time, we use regularization in support vector machine to avoid overfitting problem. AUC, accuracy, 
sensitivity, positive predictive value and negative predictive value were calculated by PCA and SVM analysis 
of the whole dataset collected from the patients by using the Statistics Toolbox of MATLAB R2021b (Math 
Works, Natick, MA). Brier score was calculated based on the prediction probability calculated by the model 

Basic characteristics

Tumor biopsy

PD-L1

Sex, Age, Smoking status

Peripheral blood
WBC, HGB, TLC, ALB,
LDH, CYFRA-211…

CT scans
Feature extraction

Durable Clinical Benefit
(DCB) PFS ≥ 9 months

Non Durable Benefit
(NDB) PFS 9 months

Radiomics Features

Clinical characters
Logistics regression p 0.1

Radiomics Features
Sperman correlation ρ 0.3

Statistical analysis

PCA+SVM

Figure 6.   Study flowchart.
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in MATLAB. The calculation formula of Brier score is BS = 1N
∑N

t=1

(

ft − ot
)2 . The DCA curve was performed 

using R software (4.2.2).
SPSS (version r2021b) was used for statistical analysis. Logistics regression analysis was applied to find 

independent clinical indicators associated with clinical benefit. We incorporated the statistically significant 
factors in the univariate analysis into the PCA. A p value < 0.1 was considered statistically significant. Spearman 
correlation coefficients were calculated for radiomics features, and we incorporated elements with correlation 
coefficients greater than 0.3 into the PCA. A fivefold cross-validation analysis internally validated model 
predictions.

Data availability
The datasets generated and analysed during the current study are available from the corresponding author on 
reasonable request.
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