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Accurate clinical toxicity prediction 
using multi‑task deep neural 
nets and contrastive molecular 
explanations
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James A. Hendler 4, Jonathan S. Dordick 1* & Payel Das 2*

Explainable machine learning for molecular toxicity prediction is a promising approach for efficient 
drug development and chemical safety. A predictive ML model of toxicity can reduce experimental 
cost and time while mitigating ethical concerns by significantly reducing animal and clinical testing. 
Herein, we use a deep learning framework for simultaneously modeling in vitro, in vivo, and clinical 
toxicity data. Two different molecular input representations are used; Morgan fingerprints and 
pre‑trained SMILES embeddings. A multi‑task deep learning model accurately predicts toxicity for 
all endpoints, including clinical, as indicated by the area under the Receiver Operator Characteristic 
curve and balanced accuracy. In particular, pre‑trained molecular SMILES embeddings as input to the 
multi‑task model improved clinical toxicity predictions compared to existing models in MoleculeNet 
benchmark. Additionally, our multitask approach is comprehensive in the sense that it is comparable 
to state‑of‑the‑art approaches for specific endpoints in in vitro, in vivo and clinical platforms. Through 
both the multi‑task model and transfer learning, we were able to indicate the minimal need of in vivo 
data for clinical toxicity predictions. To provide confidence and explain the model’s predictions, 
we adapt a post‑hoc contrastive explanation method that returns pertinent positive and negative 
features, which correspond well to known mutagenic and reactive toxicophores, such as unsubstituted 
bonded heteroatoms, aromatic amines, and Michael receptors. Furthermore, toxicophore recovery 
by pertinent feature analysis captures more of the in vitro (53%) and in vivo (56%), rather than of the 
clinical (8%), endpoints, and indeed uncovers a preference in known toxicophore data towards in vitro 
and in vivo experimental data. To our knowledge, this is the first contrastive explanation, using both 
present and absent substructures, for predictions of clinical and in vivo molecular toxicity.

Toxicity remains a major driver of drug candidate failure in drug development, resulting in the high cost of 
drugs that make it into the  market1,2. This phenomenon has persisted despite the surge in new chemical entities 
(NCEs) resulting from both advances in omics technology and the ability of Machine Learning (ML) models to 
generate novel  molecules3–5. Consequently, there is an increasing need to accurately and efficiently predict the 
safety of new drug candidates in humans. To this end, there has been an escalation of ML models predicting 
toxicity, but not without its challenges. Of the many challenges, one is to correctly model a multi-faceted problem 
across different in vitro, in vivo and clinical platforms of varying granularities. Another non-trivial challenge is 
to comprehensively explain predictions across all these platforms which is non-trivial. To illustrate on the first 
challenge, a variety of ML models have been applied to chemical, biological, and mechanistic data that predict the 
toxicity of chemicals with varying granularity and relevancy to toxicity in humans, i.e., clinical toxicity (Section 1 
in Supplementary). These models have differed in  inputs6–10,  architectures8,11–15, and prediction platforms (i.e., 
endpoints or the specific experimental target including in vivo, in vitro, or clinical). A majority of ML models 
have focused on predicting specific in vitro  endpoints16–19 from only chemical structures , differing mainly in the 
molecular representations  used8–10,20. In particular, nuclear receptor endpoints were a major focus of the Tox21 
Challenge, a data challenge as a subset of the broader “Toxicology in the 21st Century” initiative. The Tox21 
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challenge provides the results of 12 in vitro assays that test seven different nuclear receptor signaling effects and 
five stress response effects of 10,000 molecules in  cells16–19.

Toxicities predicted in vitro or in vivo are not necessarily in concordance with each  other21,22 nor to 
 humans2,23–26, thus reducing their ability to predict clinical  toxicity2. The granularity of toxicity tests varies 
across the in vitro, in vivo, and clinical platforms. In vitro testing is the most granular and captures the ability of 
a chemical to disrupt biological pathways at the cellular level. In contrast, clinical testing is coarse-grained and 
captures the interactions of chemicals at multiple levels in the human, including organs and tissues. Thus, ML 
models trained on in vitro and in vivo data might not reliably capture clinical toxicity.

Despite toxicity being a multi-task problem, majority of ML models have predicted toxicity in each plat-
form separately with single-task models (Section 1 in Supplementary). A single molecule can demonstrate 
simultaneously a multitude of responses in different assays and different living organisms. Various solutions 
for modeling multiple toxic endpoints have been reported, by creating separate binary classification models 
for each  endpoint7,27, or by using multiple classification models that define classes  differently28–36. Yet, thus far, 
the multiplicity problem has been modeled by predicting multiple endpoints within the same testing platform: 
in vitro, in vivo, or in humans, separately.

The second challenge of ML models in predictive toxicology is to explain the predictions made, particularly 
within deep learning-based models. ML toxicity models have increasingly shifted towards deep  learning8,15 
pushed by its superior predictive  performance8 and ability to self-select significant  features37. Deep learning (DL) 
models are “black-box” models with limited explainability, i.e., do not provide reasoning for predicting that a 
molecule is toxic or nontoxic. This explanation is essential for designing new molecules and for providing greater 
confidence to the experimentalist end-users. As a result, the Organisation for Economic Co-operation and Devel-
opment (OECD) strongly recommends that predictions of computational toxicology models be  explainable38. 
Efforts in explaining toxicity predictions have focused on pinpointing the presence of certain features, such as 
toxicophores, derived from a range of methods, including simpler quantitative structure-activity relationship 
(QSAR)  models39,40 and explaining training in Deep Neural Networks (DNNs)8 (Section 1.1 in Supplementary). 
These methods generally do not examine the effect of the absence of these features. Defining minimal and nec-
essary features, as well as present and absent features, might provide a comprehensive explanation that is more 
intuitive to end-users.

Herein, we have developed a deep learning framework with the aim of improving accuracy and explainabil-
ity of clinical toxicity predictions by taking advantage of in vitro, in vivo, and clinical toxicity data, and more 
advanced molecular representations. We simultaneously predicted in vitro, in vivo, and clinical toxicity through 
deep multi-task models, while comparing to their single-task and transfer learning counterparts. Two different 
molecular representations were tested; Morgan fingerprints and in-house created pre-trained SMILES embed-
dings encoding for the relationships among the chemicals. We used this framework for establishing concordance 
across in vitro, in vivo, and clinical datasets. Notably, in response to the adoption of the 3 Rs (Replacement, 
Reduction, and Refinement of animal testing) in global  legislation41,42, we assessed the need for animal data in 
making clinical toxicity predictions. To provide more comprehensive molecular explanations of toxicity predic-
tions, we adopted the Contrastive Explanations Method (CEM) explainability  model43 which explains “black-box” 
DNN predictions by revealing pertinent positive (PP) and pertinent negative (PN) features as chemical structures 
correlating to a given prediction. Specifically, we explained single-task toxicity predictions in vitro, in vivo, and 
clinically. The PPs represent the minimum required substructures for classification of a molecule (toxicophores 
for a toxic prediction), and the PNs represent the minimum changes to a molecule that would flip its predicted 
class label, from toxic to nontoxic or vice versa. Such an explanation should expand the scope of explainability 
in predictive toxicology while providing information on both toxicophores and nontoxic substructures.

Model framework
Two different molecular representations were used as inputs; commonly used Morgan Fingerprints (FP) and 
more complex SMILES embeddings (SE) (Fig. 1A). FP vectorize the presence of a substructure within varying 
radii around an atom. FP are easy to compute and have high performance among other  fingerprints44, and are 
thus widely used. However, FP are simplistic representations of chemical structures, not coding for relationships 
between substructures, unlike molecular graphs, nor for relationships between the chemicals. To improve on 
this, the SE were created using a neural network-based model that translates from non-canonical SMILES to 
canonical SMILES, encoding for the relationship between chemicals within the datasets.

With these molecular representations, toxicities in vivo, in vitro, and clinical, were predicted through multi-
task (MTDNN) (Fig. 1B) and single-task Deep Neural Networks (STDNN) (Fig. 1B). The MTDNN predicts each 
platform (in vivo, in vitro, clinical) as a different task within one model, with each task consisting of a single or 
multiple classes (or endpoints). In contrast, the STDNN predicts each platform with a separate model.

As a proof-of-concept, endpoints from previous benchmarking  efforts45 and data  challenges16 were chosen, 
and are not exhaustive. For the clinical platform, the endpoint was whether or not a molecule failed clinical phase 
trials due to toxicity, as obtained from the ClinTox  dataset45. For the in vitro platform, 12 different endpoints from 
the Tox21  Challenge16 were used, whether or not a molecule is active in disrupting seven neural receptor assays 
and five stress response assays. Finally, for the in vivo platform, one endpoint for acute oral toxicity in mice was 
used from the commercially available RTECS (Registry of Toxic Effects of Chemical Substances) dataset. The 
acute oral toxicity endpoint was defined by an  LD50 (lethal dose for 50% of the population) cutoff of 5000 mg/
kg specified by GHS and EPA (< 5000 mg/kg as toxic, > 5000 mg/kg as nontoxic).

We further tested the need of in vivo data to predict clinical toxicity with the multi-task DNN and its transfer 
learning counterpart. Different combinations of in vivo, in vitro, and clinical tasks in the MTDNN were investi-
gated to determine the most relevant tasks for predicting clinical toxicity. One way to achieve this is to leverage 
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transfer learning, which allows a base model trained on one task to be re-purposed for another related task. 
In our use case, we compared the ability of a base model trained on in vivo or in vitro data to be transferred to 
predicting clinical toxicity.

Further, we explained DNN predictions by adapting the Contrastive Explanations Method (CEM)43 to molec-
ular structure input. Specifically, the CEM was adapted to explain toxicity predictions made by the STDNN 
trained on Morgan fingerprints for in vivo, in vitro, and clinical platforms (Fig. 1C). For an overview of related 
work on explanations for molecular toxicity prediction see Section 1.1 in Supplementary. We had previously 
performed a proof-of-concept46 for this approach by explaining predictions on one specific in vitro endpoint 
(“SR-MMP”, the ability of molecules to disrupt the mitochondrial membrane potential (MMP) in  cells16). In this 
work, we further expand to other in vitro endpoints, and to in vivo and clinical platforms. The CEM explains by 
identifying pertinent positive (PP) and counterfactual pertinent negative (PN) substructures within the input 
molecules. The PPs are the minimal and necessary substructures that correlate to a prediction, while the PNs 
are substructures that would switch the given prediction.

Results
Deep single‑task and multi‑task predictive models: Morgan fingerprints and SMILES embed‑
dings. We evaluated the performance of our framework by metrics of Area under Receiver Operating Char-
acteristic curve (AUC-ROC) and balanced accuracy. We compared the performance of STDNN (blue in Figs. 2, 
3) to MTDNN (multiple colors in Figs. 2, 3) with either SMILES embeddings (SE, darker color in Figs. 2, 3) or 
Morgan fingerprints (FP, lighter colors in Figs. 2, 3) as input. Performance of different platform combinations 
in the MTDNN was contrasted by combining all three in vivo, in vitro and clinical platforms (red in Figs. 2, 
3), clinical and in vitro platforms (purple in Figs. 2, 3), clinical and in vivo platforms (orange in Figs. 2, 3), and 
in vitro and in vivo platforms (yellow in Figs. 2, 3).

Area under the ROC curves (AUC-ROC) was determined against the best performing models in 
 MoleculeNet34 (grey in Fig. 2), a widely used benchmark for molecular predictions. The best model employed 
by MoleculeNet on ClinTox (clinical) was a graph neural net baseline operating on molecular  graphs47 (Weave). 
On Tox21 (in vitro), the best performing model in Moleculenet was a graph convolutional neural net (GC)34. 
MoleculeNet did not benchmark RTECS (in vivo), but we used their provided benchmark methods to train and 
test the models used on ClinTox and  Tox2134, on RTECS. The resulting best model from MoleculeNet on RTECS 
was the influence relevance voting system (IRV), which is an enhanced k-nearest neighbor model augmented by 
weights provided from one-layer  DNNs34.

Figure 1.  Framework adopted in this study for explainable, single-task, and multi-task prediction of in vitro, 
in vivo, and clinical toxicity. (A) Given an input of different molecular representations, fingerprints and latent 
space SMILES embeddings, (B) a multi-task classification model predicts whether a molecule is toxic or not 
for in vitro, in vivo, and clinical endpoints. Furthermore, the Contrastive Explanation method explains (C) 
predictions from single-task models trained on fingerprints for the same endpoints. The method pinpoints 
minimal and necessary chemical substructures that are either present (pertinent positive, PP) or absent 
(pertinent negative, PN) for a specific prediction.
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Area under receiver operating characteristic curve. AUC-ROC performance markedly improved on predicting 
clinical toxicity (ClinTox) using the combination of SE and MTDNN. Compared to Weave, the best perform-
ing baseline model on ClinTox (dark grey in Fig. 2), the single-task DNN with SE (STDNN-SE, dark blue in 
Fig. 2) improved AUC-ROC values from 0.832± 0.037 to 0.987± 0.019. The multi-task DNN trained with SE 
(MTDNN-SE) further improved AUC-ROC performance on ClinTox with similar values when trained on all 
three platforms ( 0.991± 0.011, dark red in Fig. 2) or trained on ClinTox and Tox21 ( 0.994± 0.005, dark purple 

Figure 2.  Test AUC-ROC values for ClinTox, Tox21, and RTECS predictions, comparing multi-task models to 
single-task and baseline MoleculeNet models, with SMILES embeddings and Morgan fingerprints as inputs. The 
best performing model on ClinTox, Tox21, and RTECS from MoleculeNet is displayed. All other MoleculeNet 
models are in Supplementary Fig. S2.

Figure 3.  Average balanced accuracy on the test set for ClinTox, Tox21 and, RTECS predictions, comparing 
multi-task models to single-task models, with SMILES embeddings and Morgan fingerprints as inputs.
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in Fig. 2). For predicting in vitro toxicity (Tox21), the MTDNN and STDNN models performed similarly to 
MoleculeNet’s GC model ( 0.829± 0.006, grey in Fig. 2) when using SE as input. STDNN-SE gave AUC-ROC 
of 0.820± 0.006 (dark blue in Fig. 2). The MTDNN-SE performed comparably trained on all three platforms 
( 0.825± 0.012, dark red in Fig. 2) and on Tox21 and RTECS ( 0.829± 0.015, dark yellow in Fig. 2). Interest-
ingly, for the in vivo endpoint (RTECS), neither the multi-task model nor the use of the SE showed improved 
performance when compared to the fingerprint-based single-task models (light blue in Fig. 2) or MoleculeNet’s 
IRV model (light grey in Fig. 2). Thus, the MTDNN-SE appeared to improve clinical toxicity predictions and 
provided comparable performance on Tox21, but not on RTECS.

Balanced accuracy. Skewed datasets are a prevalent problem in predictive  toxicology7,48,49. Regardless of the 
platform, the distribution of toxic and nontoxic examples is often imbalanced (Supplementary Fig. S3). Within 
the datasets studied here, the imbalance is biased towards the “nontoxic” class in ClinTox and Tox21, and the 
“toxic” class in RTECS (Fig. S4 in Supplementary for single-task models, and Supplementary Fig. S5 for multi-
task models). This biases the AUC-ROC values towards a small fraction of true toxic or true nontoxic pre-
dictions. The balanced accuracy (BA) metric takes into account this imbalance and has been used as a more 
representative metric for predictive toxicology  models7,48,49. Balanced accuracy averages the sensitivity and the 
specificity. The former is the fraction of correctly classified positive classes out of all possible positives in the 
dataset, i.e., fraction of true positives out of correctly classified positives and falsely classified negatives. Con-
versely, the specificity is this measure for the true negatives of the model, i.e., the fraction of true negatives cor-
rectly classified out of the total number of negatives in the dataset (both the correctly classified negatives and the 
falsely classified positives). However, current baseline models in MoleculeNet do not provide balanced accuracy 
performance on the toxicity benchmarks.

We report balanced accuracy for all three platforms (Fig. 3). High balanced accuracy, 0.95–0.96, was achieved 
by both MTDNN-SE and STDNN-SE models for clinical toxicity predictions (ClinTox, dark colors in Fig. 3). 
The best balanced accuracy on the clinical task was given by the MTDNN-SE trained on all three platforms 
( 0.963± 0.028, dark red in Fig. 3). The DNN models also resulted in a balanced accuracy of ∼ 0.64 on Tox21 and 
RTECS predictions, which is still notably better than random classification (balanced accuracy of 0.5) (Fig. 3). 
Overall, use of both the multi-task setting and SMILES embeddings helped improve the balanced accuracy on 
the clinical platform much more so than on in vitro or in vivo.

Testing the relative importance of in vivo data to predict clinical toxicity. The relative impor-
tance for in vivo data for predictions of clinical toxicity was assessed by training different combinations of plat-
forms in the multi-task model, with or without in vivo data, and its transfer learning counterpart. For clinical 
toxicity predictions (ClinTox), MTDNN models without in vivo data (purple in Fig. 2) performed better in terms 
of AUC-ROC values when compared to models with in vivo data (red or orange in Fig. 2). To further examine 
this correlation, the distribution of true/false positives and true/false negatives of clinical toxicity predictions 
was determined using true labels based on in vitro or in vivo datasets (Supplementary Fig. S6). Conclusions on 
this correlation are difficult due to the small number of chemicals common across the platforms. From the small 
overlap of chemicals, a larger number of true positives than false positives was determined for the predictions 
on ClinTox using true labels from Tox21 than using RTECS (Supplementary Fig. S6). The SR-p53 in vitro assay 
(stress response on p53) in Tox21 was the sole exception.

Transfer learning applies knowledge gained from pre-training on a base model to predicting in a related 
 domain50. We contrasted the application of base models trained on in vivo or in vitro data to predicting clinical 
toxicity (Fig. 4A). A base model trained with in vivo (RTECS) data decreased in AUC-ROC performance on 
ClinTox (clinical) when compared to a base model containing only in vitro (Tox21) data (AUC of 0.78 ± 0.06 
versus 0.67 ± 0.01 or 0.69 ± 0.08) (Fig. 4B). Thus, pre-training with an in vitro base model transfers to predicting 
clinical toxicity better than with an in vivo base model.

To investigate whether the type of chemicals within the in vitro, in vivo, and clinical datasets affected the 
ability of in vivo data to predict clinical toxicity, we visualized the relationships between the chemicals using 
t-distributed stochastic neighbor embeddings (t-SNE)51. t-SNE, a method that maps high-dimensional data to 
lower dimensions while preserving local similarities (i.e., distances between datapoints)51. We applied t-SNE 
mapping to SE of the chemicals in the Tox21, RTECS, and ClinTox datasets, with each dot representing a chemical 
and distance representing similarity (Fig. 5). The map is dominated by RTECS chemicals (green) due to the larger 
number of chemicals present in RTECS than both the Tox21 and ClinTox datasets. However, when examining 
overlap of the chemicals, the majority of the overlap is among ClinTox (purple) and Tox21 (red) chemicals, with 
some overlap between ClinTox (purple) and RTECS (green) chemicals. Thus, chemicals present in the clinical 
dataset (ClinTox) are more related to the chemicals present in the in vitro dataset (Tox21) rather than those in 
the in vivo (RTECS) dataset.

Contrastive molecular‑level explanations of toxicity. STDNN and MTDNN have improved the 
accuracy in predicting clinical toxicity. However, these DNNs cannot explain why a molecule was predicted to 
be toxic. To improve the trustworthiness of our results and to expand the current scope of explaining toxicity 
predictions, we adapted the contrastive explanation method (CEM)43 for molecular-level explanations of toxicity 
predictions. Specifically, we have adapted the CEM to explain in vitro, in vivo and clinical toxicity predictions, 
made by the STDNN trained on Morgan fingerprints (STDNN-FPs). STDNN-FPs were chosen as they can pro-
vide easy-to-understand substructure level explanations from their FP input, while maintaining consistent and 
significant accuracy across all platforms.
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The CEM more comprehensively explains DNN predictions by identifying present (pertinent positive, PP) and 
absent (pertinent negative, PN) substructures within the molecules that correlate to a prediction. For instance, for 
a molecule predicted to be “toxic”, the PP substructures are the minimum and necessary substructures within the 
molecule that correlate to the “toxic” prediction. Conversely, the PN substructures represent the minimum and 
necessary substructures missing from the molecule that when added convert the “toxic” prediction to “nontoxic”. 
To this end, we obtained PP and PN substructures for all of the molecules in the ClinTox, Tox21 and RTECS test 
sets. These PP and PN substructures illuminate the decisions made by the STDNN-FPs and provide substruc-
tures that correlate to “toxic” and “nontoxic” predictions. We focused on only correct “toxic” and “nontoxic” 
predictions in the test set of ClinTox, Tox21, and RTECS. The CEM collected PP and PNs for correctly predicted 

Figure 4.  Comparing transfer learning to predicting clinical toxicity from base in vitro and in vivo models. 
(A) Schematic of transfer learning model, with a base model pre-trained on either on in vitro or in vivo data 
transferred to predicting clinical toxicity. (B) AUC results on the ClinTox (clinical) tasks with one epoch training 
during transfer learning to ClinTox tasks.

Figure 5.  t-SNE of SMILES embeddings of chemicals in the Tox21, RTECS, and ClinTox datasets. Distances 
correlate to similarities of the chemicals across these datasets; shorter the linear distance, the more similar are 
the chemicals. ClinTox chemicals overlap more with Tox21 chemicals than with RTECS.
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chemicals in tests datasets of ClinTox, Tox21, and RTECS. For each molecule, up to the first ten explanations by 
weight were collected, totaling 166,308 obtained PP and PN substructures.

Most common PP and PN substructures for “toxic” and “nontoxic” molecules. To focus on prevalent molecular 
features for explanations from the ∼ 170,000 substructures obtained, we analyzed the ten most common PP and 
PN substructures by frequency for correct “toxic” and “nontoxic” in vitro, in vivo and clinical predictions (top 
five are shown in Fig. 6, top ten in Supplementary Figs. S7+S8). Any matches in frequency were resolved by 
using the weight order. These top ten most common PP and PNs represent the ten most common explanations 
for “toxic” and “nontoxic” predictions. However, for the highly skewed ClinTox test set, with only 1–2 “toxic” 
molecules, only the “nontoxic” predictions were examined. Along with the substructures, the CEM also provides 
the most significant (central) atom of the substructure (blue circles in Fig. 6).

Two approaches were used to obtain explanations for “toxic” predictions of molecules by the STDNN: (1) PP 
substructures present in “toxic” molecules, and (2) PN substructures missing from “toxic” molecules which, if 
present, would change the prediction from “toxic” to “nontoxic” (Fig. 6 and Supplementary Fig. S7). From the 
top ten most frequent PPs of molecules predicted to be “toxic”, common substructures were identified for both 
Tox21 and RTECS, heavily involving nucleophilic N, O, and aryl groups (Fig. 6 and Supplementary Fig. S7). The 

Figure 6.  Most common PP and PN substructures of correctly predicted toxic and nontoxic molecules across 
the Tox21, RTECS, and ClinTox endpoints. ClinTox only had 1–2 examples of toxic molecules in the test set and 
thus was excluded here. All top 10 in Supplementary Figs. S7 and S8.
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most common was just a carbon fragment, perhaps due to the abundance of this substructure in the Morgan 
fingerprints. Substructures with oxygen were also common, either as a carbonyl (Tox21 and RTECS), ketone 
(Tox21), or as an ether (RTECS). Different portions of aromatic rings were identified multiple times, within an 
aryl ring (Tox21 and RTECS), or within a benzyl group (Tox21 and RTECS). Finally, N was obtained for both 
Tox21 and RTECS. Thus, the presence of nucleophilic N, O, and aryl containing substructures was commonly 
identified as explanations for in vitro and in vivo predictions of toxicity.

Explanations of “toxic” predictions obtained from the absence of PN substructures from molecules predicted 
to be toxic, most commonly contained carbon fragments and substructures with N and O for both Tox21 and 
RTECS, but also identified aryl halides for Tox21 and sulfur (S) containing substructures for RTECS (Fig. 6 
and Supplementary Fig. S7). For O containing substructures, aromatic and aliphatic carboxylic (Tox21 and 
RTECS) moieties were identified. N containing substructures were present as an aromatic amine (Tox21), as 
the heteroatom in cephalosporins (RTECS), an imine (RTECS), or a nitrite (Tox21). For substructures that dif-
fered between Tox21 and RTECS, Tox21 specified an aryl chloride, while RTECS specified S within an aromatic 
sulfonic acid group.

Similarly, the ten most common explanations for molecules predicted to be “nontoxic” were obtained (Fig. 6, 
Supplementary Fig. S8). From the PP of molecules predicted to be “nontoxic”, common substructures were 
identified for ClinTox, Tox21, and RTECS to be aryl fragments, and small substructures with N and O (Fig. 6, 
Supplementary Fig. S8). Aryl fragments were present for Tox21 and ClinTox. Small substructures with O were 
frequent for all datasets, specifying only O, a hydroxyl, or a carbonyl. Substructures with only the N (Tox21, 
RTECS, ClinTox) or as an amide (RTECS) were also present.

Explanations of “nontoxic” predictions obtained from the absence of PN substructures from molecules pre-
dicted to be nontoxic contained various complex aromatic substructures with N, O, S, P, I and F, and heavy 
metals (Tin, Sn and Mercury, Hg) (Fig. 6 and Supplementary Fig. S8). The difference among Tox21, RTECS, and 
ClinTox was in the complexity of the aryl structures and type of heteroatom. ClinTox had the most complex aryl 
substructures with different combinations of N, O, P, or F, followed by RTECS with complex aryl substructures 
containing N, O, S, and the halide I. Finally, Tox21 had the least number of complex aromatic structures with N 
as a heterocyclic amine or an aromatic amide, with Hg as a substituent (organomercury), or with O as a phenol. 
N and O containing aliphatic substructures were also common through all the endpoints, while Tox21 also 
specified aliphatic substructures with Sn.

The importance of the top ten most frequent pertinent features extracted by the CEM was verified by a simple 
implementation of the Genetic Algorithm (GA)52. We matched the obtained PP and PN substructures to features 
selected by GA, a classical feature selection  method52. The GA selects optimal input features for a prediction by 
an algorithm inspired by natural  selection52. Features selected from the GA were also identified within the top 
ten most frequent pertinent substructures obtained by the CEM (Supplementary Figs. S9, S10). From the top ten 
explanations of “toxic” predictions, carbon fragments and aryl groups from both PP and PNs (Tox21, RTECS) 
matched with features obtained by the GA. Other matches to GA features within the top ten “toxic” explanations 
included ether (Tox21), ketones (Tox21), or amines (RTECS) as PPs, and aromatic amines (Tox21), or hydroxyl 
(RTECS) as PNs. GA features matched to the top ten pertinent substructures for “nontoxic” predictions as well 
(Supplementary Fig. S10). Matches to PPs contained aryl fragments (Tox21, ClinTox), O (Tox21), carbonyl 
(Tox21), ether (RTECS), hydroxyl (ClinTox, RTECS, Tox21), and amines (ClinTox). Complex aryl substructures 
with N, Hg (Tox21), O, P, F (ClinTox), and a phenol ether (RTECS) matched as PNs of nontoxic predictions. Thus, 
there is agreement seen between the features selected by the GA, and the top most frequent pertinent features 
extracted by the CEM. The advantage of examining CEM features over GA features, is the ability of the CEM to 
indicate the minimal necessity of a certain feature (substructure) for a specific “toxic”/“nontoxic” prediction by 
both the presence and absence. The GA simply gives a broad indication of near optimal input features for the 
entire model. Using a probabilistic stochastic  search52, the GA may not return the same results each run even 
with the same parameters.

In the process of explaining “toxic” and “nontoxic” predictions, the CEM obtains PP and PN substructures 
correlating to toxicity and nontoxicity, i.e. computationally extracting toxicophores and nontoxic substructures. 
PP of “toxic” predictions and PN of “nontoxic” predictions are both substructures that correlate to toxic predic-
tions, i.e., toxicophores. Conversely, PP of “nontoxic” predictions and PN of “toxic” predictions are substruc-
tures correlating to nontoxic predictions, i.e., nontoxic substructures. Thus, the above identified PP and PN 
substructures are also the top ten most commonly identified toxicophores and nontoxic substructures by the 
CEM within each dataset.

Verification of pertinent features extracted to known toxicophores. To verify the correlation between the obtained 
PP and PN substructures and the toxicity predictions, we matched the PP and PN substructures correlating to 
toxicity with known toxicophores. PP and PNs correlating to toxicity, or toxicophores, are obtained from the 
CEM by: (1) PPs of molecules correctly predicted to be “toxic”, and (2) PNs of molecules correctly predicted to 
be “nontoxic” that would flip the molecule to be classified as “toxic”.

The literature contains a vast and diverse array of known toxicophores. Mutagenic toxicophores, in particu-
lar, have been widely used to verify results of computationally predicted  toxicophores8,53. Here, we matched the 
toxicophores obtained from the CEM to known mutagenic toxicophores collected in vitro  experimentally54 
(Fig. 7), or  computationally53 (Supplementary Fig. S11), and known reactive substructures commonly used to 
filter  molecules55 (Supplementary Fig. S11). The CEM was able to identify toxicophores across all these types of 
known toxicophores, both from PP substructures of correctly predicted toxic molecules and PN substructures 
of correctly predicted nontoxic molecules.
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Examining the top three (ClinTox, RTECS) or the top five (Tox21) most frequently matched toxicophores, the 
CEM identified known toxicophores that are common to all endpoints (purple in Fig. 7), to ClinTox and Tox21 
(magenta in Fig. 7)), to Tox21 and RTECS (orange in Fig. 7), or unique to Tox21 (red in Fig. 7)) or to RTECS 
(green in Fig. 7)). For Tox21, top five most frequent matches were examined due to the large number of matches. 
Both Tox21 and RTECS recovered toxicophores common with ClinTox (unsubstituted heteroatom-heteroatoms, 
aromatic amines, and Michael receptors); however, only Tox21 identified thioesters, a reactive substructure pre-
sent in ClinTox. Aromatic nitro, aliphatic halide, alkyl halide, heteroatom-heteroatom single-bond substructures 
were matched toxicophores found in both Tox21 and RTECS, but not in ClinTox. Uniquely, PPs and PNs in Tox21 
matched to reactive cyanide, three-membered heterocycle, azo-type, carbonyl/ether, epoxides, thioepoxides, 
and disulfide substructures, while only RTECS matched to 1,2-dicarbonyls within the top three to five matched 
toxicophores. Notably, a larger number of toxicophore matches were found in vitro (in the 1000 s) or in vivo (in 
the 100 s), compared to the clinical endpoint (in the 10 s).

Thus far, we have matched known toxicophores to only PP and PNs correlating to toxicity. To discern whether 
the CEM correctly pinpoints PP and PNs substructures correlating to toxicity, we further matched all collected 
PP and PNs to known toxicophores. We expect to see a larger number of matches with PP and PN substructures 
correlating to toxicity (toxicophores), than to the converse (nontoxic substructures). Indeed, for ClinTox and 
Tox21, but not for RTECS, there are a larger number of matches to known toxicophores with CEM-derived 
toxicophores than with CEM-derived nontoxic substructures (Supplementary Fig. S12).

Discussion
We have demonstrated an improvement in predicting clinical toxicity using pre-trained SMILES embeddings 
as input molecular representations within a multi-task deep neural network that simultaneously learns in vitro, 
in vivo, and clinical toxicity tasks. Through our multi-task model, we investigated the benefits of learning from 
more diverse toxicity data in in vitro, in vivo, and clinical platforms for predicting clinical toxicity. We also 
leveraged pre-trained molecular SMILES embeddings as inputs, which better captured intermolecular relation-
ships within a larger corpus. Compared to the existing MoleculeNet baseline and our single-task models, both 
the multi-task setting and SMILES embeddings contribute to the marked improvement in AUC-ROC on the 
clinical platform while providing comparable performance on the in vitro platform and no improvement on the 
in vivo platform (Fig. 2, “Deep single-task and multi-task predictive models: Morgan fingerprints and SMILES 
embeddings”). Regarding the balanced accuracy, the multi-task model improved on the clinical platform and 
showed no improvement on the in vitro or in vivo platforms (Fig. 3,  “Deep single-task and multi-task predictive 
models: Morgan fingerprints and SMILES embeddings”).

Figure 7.  Matched toxicophores. Top three (ClinTox, RTECS) or top five (Tox21) matched known toxicophores 
to toxicophores collected from the CEM as PP of toxic molecules and PN of nontoxic molecules. For Tox21, 
the top five most frequent matches were examined due to the large number of matches. Three types of 
known toxicophores were matched: experimental and computational mutagenic toxicophores, and reactive 
substructures commonly used to filter molecules. The table provides the number (#) of matches, and specific 
examples (Ex.). Only mutagenic toxicophores are displayed in table, full list is given in Supplementary Fig. S11.
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The improvement in AUC-ROC correlates with the size of the datasets. ClinTox is the smallest dataset ( ∼ 
1000 compounds), followed by Tox21 ( ∼ 8000 compounds) and RTECS ( ∼ 40,000 compounds). It is possible 
that leveraging the relationships among chemicals from a large corpus and among in vitro, in vivo and clinical 
tasks improves learning on smaller datasets but not on larger datasets. Additionally, the poor performance in 
RTECS could result from the distinct nature of chemicals within RTECS, as displayed by the lack of overlap of 
RTECS chemicals with ClinTox or Tox21 chemicals in the t-SNE mapping (“Testing the relative importance of 
in vivo data to predict clinical toxicity”, Fig. 5). A multi-task setting does not appear to help with a larger dataset 
of dissimilar chemicals but does help for the smaller clinical toxicity dataset.

The top-performing baseline model from MoleculeNet benchmark for each platform (Weave on ClinTox, GC 
on Tox21, IRV on RTECS) either considered graph neural nets or an ensemble of models. These MoleculeNet 
models were optimized via additional hyperparameter tuning. In contrast, without any additional hyperpa-
rameter tuning, leveraging bond connectivity information, or ensemble modeling, our multi-task deep predic-
tive model provided reasonable accuracy across all platforms, even on RTECS (AUC-ROC of 0.78± 0.02 with 
SMILES embeddings).

The ability to predict accurately and consistently across the in vitro, in vivo, and clinical platforms is impor-
tant. Currently, predictive toxicology models primarily focus on predicting within one platform (Fig. S1 in Sup-
plementary). Even though these toxicities are measured at differing granularities, the relationships among these 
different platforms might not be apparent if modeled separately, e.g., performance on the ClinTox task improved 
using the multi-task model (MTDNN-SE) as compared to the single-task models (STDNN-FP and STDNN-FE) 
(Fig. 2, “Deep single-task and multi-task predictive models: Morgan fingerprints and SMILES embeddings”). 
A multi-task model can overcome the small overlap in common chemicals across these platforms by sharing 
weights while training. For instance, even with the small overlap of the RTECS dataset with ClinTox or Tox21, 
the MTDNN-SE could still reasonably predict the RTECS endpoints. Predicting across these platforms together 
also provides a methodology to test the ability of a particular type of platform to predict clinical toxicity.

Using our multi-task model and its transfer learning counterpart, we demonstrated the minimal relative 
importance of in vivo data to make accurate predictions of clinical toxicity. The addition of in vivo data in the 
MTDNN or its transfer learning counterpart did not improve clinical toxicity (“Testing the relative importance 
of in vivo data to predict clinical toxicity”). Instead, the addition of in vitro data to clinical data was sufficient in 
improving the predictions of clinical toxicity by AUC-ROC (Fig. 2, “Deep single-task and multi-task predictive 
models: Morgan fingerprints and SMILES embeddings”). In vivo data only helped increase balanced accuracy 
on the clinical task when the MTDNN was trained on Morgan fingerprints as input (light red versus light purple 
or light orange in Fig. 3), but not when trained on SMILES embeddings (dark purple versus dark red or dark 
orange in Fig. 3). Thus with the use of SMILES embeddings as input, in vivo data is not needed for high AUC-
ROC and balanced accuracy performance on the clinical task. Moreover, the chemicals in the clinical dataset 
(ClinTox) were more similar to chemicals in the in vitro dataset (Tox21) than in the in vivo dataset (RTECS), as 
examined through the t-SNE mappings (Fig. 5). The present study examines the ability of acute oral toxicity data 
in mice as in vivo data, and nuclear receptor and stress response assays as in vitro data, to predict the failure of 
drugs in clinical phase trials in humans. Broader in vivo and in vitro datasets could augment our conclusions 
and will be investigated in the future.

We have improved accuracy in predicting clinical toxicity using DNN models, but with the caveat of reduced 
explainability in the models which we tackled in this  study56. DNNs are known for being “black-box” models 
due to their inability to describe why a prediction was  made57. Explainability of models can improve trust and 
adoption of models into the healthcare  industry57. Traditionally, explanations of toxicity predictions have been 
limited to pinpointing the presence of substructures (Section 1.1. of Supplementary). Recent work provides 
molecular counterfactual explanations on  toxicity58 and other molecular property  predictions59, using model 
 agnostic59 or reinforcement learning-based deep graph  explainers58. Contrastive Explanations, provide both 
present and absent substructures correlating to a prediction, and to our knowledge has only been applied by our 
previous work on one specific in vitro  endpoint46. This current work expands on current molecular explanations 
by providing more complete, human-understandable, contrastive explanations on toxicity predictions across 
in vitro, in vivo, and clinical platforms, with both substructures that are absent and present in the chemicals. 
For this purpose, we explain predictions made by the STDNN-FP model. We chose this model because of its 
consistent performance across all tasks, agreeing with an earlier observation that simple descriptor-based (e.g., 
FP) models can provide better performance and higher computational efficiency than more complex models 
such as the graph-based  ones60. We explained toxicity predictions across in vitro (Tox21), in vivo (RTECS), and 
clinical (ClinTox) tasks. The PP and PN substructures obtained by the CEM not only provided explanations on 
toxicity predictions, but also suggested possible toxicophores and nontoxic substructures. The uniqueness of 
this approach is the computational identification of toxicophores from substructures absent from a molecule 
that would flip the prediction from nontoxic to toxic. We have thus, in the process of explaining DNN toxicity 
predictions, created a new and more comprehensive approach of obtaining computational toxicophores and 
nontoxic substructures.

Common toxicophores were obtained across all platforms, both by PPs of “toxic” predicted molecules and 
PNs of “nontoxic” predicted molecules, containing O and N groups, P, S, I and F, or aryl substructures of varying 
complexity with the most complex substructures present in ClinTox (“Contrastive molecular-level explanations 
of toxicity”, Fig. 6). Similar nontoxic substructures were also identified across all platforms by PP substructures 
of nontoxic molecules and PNs of toxic molecules, containing aryl groups, and smaller O- and N-containing 
substructures. The mismatch was in PNs of toxic molecules, with RTECS containing S substructures (i.e., sulfonic 
acid) and Tox21 containing aryl chlorides (Fig. 6). These toxicophores identified from the CEM were verified by 
matching to known toxicophores, both by PP substructures present in toxic molecules and PNs substructures 
absent in nontoxic molecules (“Contrastive molecular-level explanations of toxicity”, Fig. 7).
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The CEM-derived and verified toxicophores for the clinical task were found for both the in vitro and in vivo 
tasks, supporting the validity of initial virtual screening for known in vitro and in vivo toxicophores. A larger 
number of verified toxicophores was found for the in vitro (Tox21) task ( ∼ 1000 s), followed by the in vivo 
(RTECS) task ( ∼ 100 s), and the last by the clinical task ( ∼ 10 s), perhaps due to the known toxicophores primar-
ily being collected from other in vitro experiments, as well as due to difference in dataset size. The more extensive 
toxicophore recovery from in vitro and in vivo endpoints potentially uncovers a preference in toxicophore data 
towards in vitro and in vivo experimental data.

The relevance to the computationally obtained toxicophores and nontoxic substructures from CEM explana-
tions beyond the three datasets (Tox21, ClinTox, RTECS acute oral toxicity) used here will be explored in future 
work. Also, the model trained here can also be further fine-tuned on additional labeled datasets not covered 
in this study to cover a larger set of chemicals. Applicability domain (AD) can establish the appropriateness of 
applying our current model to new  chemicals61. Though a variety of methods can determine  AD61, estimating the 
uncertainty of prediction probabilities from an ensemble of deep models is an easy to implement non-Bayesian 
 solution62,63. To determine whether a new chemical is within the chemical landscape of our model for a specific 
task, the uncertainty of the predictive probability of the new chemical should be less than the largest uncertainty 
found on training  chemicals61 (Supplementary Fig. S13). The uncertainty was estimated by the maximum vari-
ance in predictive probabilities from five randomly initialized MTDNN-FPs62 trained on the three platforms 
(Tox21, RTECS, ClinTox) (Supplementary Fig. S13). The provided uncertainties demonstrate the procedure to 
obtain the applicability domain of the MTDNN-FP model trained on all three datasets, but can be expanded to 
any of our models.

The obtained toxicophores are thus most relevant to the studied endpoints within these small molecule data-
sets, i.e., to the nuclear receptor and stress response assays (Tox21), to the acute oral toxicity in mice (RTECS), 
and to the toxicity in clinical phase trials (ClinTox). Though toxicophores are used across different endpoints, 
their usage remains restricted to the initial screening for potentially toxic  molecules55. It is important to note 
that our toxicity explanations are also an initial approach to provide more confidence and interpretation in tox-
icity predictions made from DL models, which can help in initial screening for toxic molecules, including drug 
candidates. The presence or absence of a toxicophore, physiologically, does not necessarily guarantee a molecule 
will be toxic; as potential biological targets, pathways and interactions are not taken into account in this analy-
sis. Another limitation of our approach is only the identification of missing substructures (PNs) and not their 
relative location on the compound. Often carbon fragments were identified as both PP and PN substructures, 
due to their prevalence in Morgan Fingerprints, however more meaningful substructures were also pinpointed.

The CEM is focused on explaining neural network decisions, which is a good starting point to illuminate 
“black-box” DNN-based models that have increasingly been applied to the chemical and drug toxicity pre-
dicitions while also providing a list of potential toxicophores and non-toxicophores. Future work will address 
comparison of explanations resulting from different predictive models with varying architectures and input 
modality, as well as of different post-hoc interpretability methods. We hope studies like ours can help chart a 
path toward optimizing the number of future toxicity screen experiments across different in vivo, in vitro and 
clinical endpoints.

Conclusion
We have demonstrated the advantage of employing a deep neural net to predict toxicity across in vitro, in vivo, 
and clinical platforms. With pre-trained molecular SMILES embeddings as input, the multi-task model yielded 
improved or on par clinical toxicity predictions to current baseline and state-of-art molecular graph-based 
models. Unlike graph neural nets, our framework takes advantage of reduced inference costs from language 
models when using pre-trained SMILES embeddings. The results presented here strongly suggest that there is 
a minimal relative importance of in vivo data for predicting clinical toxicity in particular when unsupervised 
pre-trained SMILES embeddings were used as an input to multi-task models; thus, providing possible guidance 
on what aspects of animal data need not be considered in predicting clinical toxicity. We further provided a more 
complete and consistent molecular explanation of the predicted toxicities of a performant deep neural net across 
different platforms by analyzing the contrastive substructures present within a molecule. To our knowledge, this 
is the first work to explain with both present and absent substructures predictions of clinical and in vivo toxic-
ity. Thus we have created a framework to provide improved and explainable clinical toxicity predictions, while 
limiting the amount of animal data used.

Methods
Deep single‑task and multi‑task predictive models. Input molecular representations. Two types of 
computable molecular representations of chemical structures were used as input to the multi-task and single-
task deep predictive models: Morgan fingerprints (FP), and pre-trained SMILES embeddings (SE). FPs, simpler 
and more widely  used44, represent molecules as a vector indicating presence of a circular substructure within 
varying radii around an atom. FPs were calculated by  RDKit64, with a Morgan radius of 2 and bit size of 4096. 
SE were created using a neural network-based translation model that translates from non-canonical SMILES to 
canonical SMILES, similar to the model proposed by Winter et al.65. The neural network is a bidirectional Gated 
Recurrent Unit (GRU) with three encoder and decoder layers an embedding size of 128. The encoder layers have 
a dimension of 512 units and the decoder layers have a dimension of 256 units. Further, in order to learn a better 
representation, we jointly train a regression model that can predict molecular properties that can be computed 
from the molecular structure. The properties predicted by the regression model are: logP, molar refractivity, 
number of valence electrons, number of hydrogen bond donors and acceptors, Balaban’s J value, topological po-
lar surface area, drug likeliness (QED) and Synthetic Accessibility (SA). This model was trained on 103 million 
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chemicals in  PubChem66 and 35 million chemicals in  ZINC1267. The trained translation model was then applied 
to the chemicals present in the in vitro, in vivo, and clinical datasets to obtain their embeddings.

Datasets: in  vitro, in  vivo, clinical. The single-task and multi-task models predict binary classes, whether a 
chemical is toxic or not, for each of the in vitro, in vivo, and clinical platforms. Twelve binary classes were defined 
for the in vitro platform, collected from the Tox21 challenge, a subset of the broader “Toxicology in the 21st 
Century” initiative that experimentally tests in vitro the ability of a large number of chemicals to disrupt bio-
logical pathways through high-throughput screening (HTS)  techniques17–19. In particular, twelve in vitro assay 
results were provided in Tox21, testing seven different nuclear receptor signaling effects, and five stress response 
 effects16 of 8014 molecules in  cells45.

One binary class was defined for the clinical platform from the ClinTox  dataset45, as whether a chemical 
was approved or failed due to toxicity in clinical phase trials. ClinTox is a curated dataset by  MoleculeNet45, a 
benchmark for molecular machine learning models specifying datasets, models and evaluation criteria. ClinTox 
contains 1491 drugs that have either been approved by the FDA (collected from the SWEETLEAD  database68) 
or failed clinical trials as reported by the Aggregate Analysis of ClinicalTrials.gov (AACT)  dataset69.

One in vivo class was parsed from the commercially available RTECS (Registry of Toxic Effects of Chemical 
Substances) dataset. This dataset contains in vivo toxicity data curated from literature across various endpoints 
(acute, mutation, reproductive, irritation, tumorigenic, multiple-dose toxicities) in the form of different toxic 
measurements. We focused on acute oral toxicity in mice due to the largest number of examples. For 42,639 
chemicals, binary class was defined by  LD50 (lethal dose for 50 percent of the population) cutoff of 5000 mg/
kg ( ≤ as toxic, > as nontoxic) as specified by EPA (Environmental Protection Agency) and GHS (The Globally 
Harmonized System of Classification and Labeling of Chemicals).

Multi‑task and single‑task DNN architecture. The Multi-task Deep Neural Network (MTDNN) consists of an 
input layer of either Morgan fingerprints (radius = 2) or SMILES embeddings, passed to two layers (2048, 1024 
nodes) shared by all tasks, and further two layers (512, 256 nodes) for each separate task. The output layer (one 
node) corresponds to toxic/nontoxic labels for each endpoint and is activated by a sigmoid (Fig. S14 in Supple-
mentary). The datasets are split into training/validation/test sets of 0.8/0.1/0.1. The model is trained on random 
batches of 512 per training step. The number of epochs is set at the lowest validation loss (one to four epochs 
depending on the seed). Binary cross entropy was chosen as the loss function, and it was optimized using the 
Adam optimizer with a learning rate of 0.001.

The Single-task Deep Neural Network (STDNN) consists of two layers (512, 256 nodes) and one output layer 
(one node) activated by a sigmoid. For tasks with multiple classes, the average of the area under the receiver 
operating characteristic curve (AUC-ROC) and balanced accuracy was taken. The same data splits, and training 
hyperparameters are used as the MTDNN. The STDNN and MTDNN models were run with NVIDIA k80 GPUs 
on the Cognitive Computing Clusters at IBM.

To obtain baseline results from MoleculeNet on RTECS, the provided benchmark methods in the  DeepChem70 
MoleculeNet GitHub (https:// github. com/ deepc hem/ deepc hem/ tree/ master/ deepc hem/ molnet) was adapted to 
train and test the same models run on ClinTox and  Tox2134, on RTECS. The MoleculeNet models tested were: 
Weave, GC, Bypass, Multitask, IRV, RF, XGBoost, KernelSVM, and Logreg. Wu et al.34 provide details on these 
models.

AUC-ROC and balanced accuracy were used as metrics of performance for the models. Balanced accuracy is 
the average of sensitivity and specificity. The former is the fraction of correctly classified positive classes out of 
all possible positives in the dataset, i.e., fraction of true positives out of correctly classified positives and falsely 
classified negatives, such that,

Conversely, the specificity is this measure for the true negatives of the model, i.e. the fraction of true negatives 
correctly classified out of the total number of negatives in the dataset (both the correctly classified negatives and 
the falsely classified positives), such that,

Thus, balanced accuracy takes into account both the true negative and true positive distribution in the overall 
performance of model, such that,

The graphs for AUC-ROC (Fig. 2) and balanced accuracy (Fig. 3) were obtained from  R71. The legend and 
labels were formatted on PowerPoint, and the final figures were converted to .eps file on Adobe  Illustrator72.

Transfer learning. The base model was trained with the multi-task DNN on different combinations of 
in vitro (Tox21) and in vivo (RTECS) tasks for 2–8 epochs depending on the lowest validation loss. From the 
base multi-task DNN model, the two layers shared among the tasks were extracted, and their weights frozen. To 
this, two additional layers were added for the ClinTox task on which transfer learning was needed. The number 
of epochs on this additional training with the transfer learning task was varied; one epoch was chosen to limit 

(1)Sensitivity =
TP

TP + FN
.

(2)Specificity =
TN

TN + FP
.

(3)Balanced Accuracy =
Sensitivity + Specificity

2
.

https://github.com/deepchem/deepchem/tree/master/deepchem/molnet
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the training on the transferred task. The same ClinTox, Tox21, and RTECS testing data as the MTDNN were used 
to evaluate the models.

t‑Distributed stochastic neighbor embedding. t-Distributed stochastic neighbor embedding or 
t-SNE73 visualizes high-dimensional data by mapping them to a low-dimensional space indicating the similari-
ties between different points. We visualized SMILES embeddings of the chemicals present in the Tox21, RTECS, 
and ClinTox datasets through a t-SNE set at 40 perplexity, 5000 iterations, and 1000 learning rates. sklearn.mani-
fold.TSNE method in the sckit-learn package was  used74. The t-SNE figure (Fig. 5) was graphed on  Matplotlib75.

Genetic algorithm for feature selection. Genetic algorithm (GA) searches for optimal features for a 
prediction with a process adopting natural  selection52. A simple implementation of the GA was used to select 
features (substructures) for prediction of “toxic”/“nontoxic” for each of the endpoints. The input used were FPs 
with the same training set as the single-task models. The GA identifies bits within the FP that are the most opti-
mal for a toxicity prediction. The bits match to a specific substructure. Matches to the pertinent substructures 
obtained by the CEM was done by matching bits.

The sklearn-genetic package in the sckit-learn74 was used for the GA. Using the GeneticSelectionCV method 
in sklearn-genetic  package74, simple single-task Random Forest classifiers were used as estimators, with five-fold 
cross validation, scoring with accuracy, crossover independent probability of 0.5, mutation independent prob-
ability of 0.04. Number of generations was 50 for Tox21 and ClinTox, and 45 for RTECS. Maximum features was 
set to 1000 for ClinTox, 100 for Tox21, and 300 for RTECS. Size of population was selected as 300 for ClinTox, 
and 100 for Tox21 and RTECS. The full selected features from the GA are given in the supplied code.

Applicability domain. Applicability domain was defined by uncertainty in predictive probabilities calcu-
lated over five  ensembles61,62 of the MTDNN-FP trained on all three platforms (Tox21, ClinTox, RTECS). Seeds 
of 122, 123, 124, 125 and 126 were used to randomly initialize each MTDNN-FP. The architecture, loss, and 
hyperparameters were kept the same as our defined MTDNN-FP. The datasets were split into training/valida-
tion/test sets of 0.8/0.1/0.1. The variance in predictive probability on the training chemicals over the five models 
was calculated as an estimate of the uncertainty of the  model62. A new chemical falls within the AD of the model 
if the variance of its predictive probability is less than the maximum variance found for each task for a given 
 model61. We have provided the maximum variance for the MTDNN-FP trained on all three platforms (Supple-
mentary Fig. S13).

Contrastive explanations method. The contrastive explanations  method43 provides explanations to 
rationalize the classification of an input by identifying the minimal and necessary features which are both pre-
sent and absent for a particular classification. The CEM thus introduces the notion of Pertinent Negative (PN) 
and Pertinent Positive (PP). A PN is a subset of the feature set necessary for a classifier to predict a given class, 
while a PP is the minimal subset of features whose presence gives rise to its prediction.

The CEM obtains the PN and PP via an optimization problem to look for a required minimum perturba-
tion to the model, using a projected fast iterative shrinkage-thresholding algorithm (FISTA)43. A given input 
example (x0, t0) is perturbed, with x0 belonging to data space χ (x0 ∈ χ) and its class label t0 predicted from a 
neural network model. The perturbed example (x ∈ χ) is given by x = xo + δ , with δ defining the perturbation. 
The PP and PNs are obtained by optimizing on this δ perturbation. Further, an autoencoder AE(·) is used to 
assure closeness of the perturbed example x to the original example x0 , with AE(x) defined at the autoencoder 
reconstructed example x. The optimization problem for obtaining the PN of (x0, t0) is given by,

While the optimization problem for obtaining PP for the given example is,

Here, κ defines the minimum confidence gap between the changed class probability and the original class 
probability, β controls the sparsity of the solution, and γ controls the degree of adherence to an additional 
autoencoder. Refer to Dhurandhar et al.43 for more details. Code is provided at https:// github. com/ IBM/ Contr 
astive- Expla nation- Method.

For Tox21, ClinTox and RTECS, κ of 0.01 and β of 0.99 was used for PNs, while κ was set at 0.01 for PPs. β for 
PPs was set at the minimum possible to obtain a substructure: 0.1 for ClinTox and RTECS, and 0.31 for Tox21. 
γ was 0 for both PPs and PNs as an additional adherence to an autoencoder was not used. Maximum of 1000 
iterations were allowed, with an initial coefficient of 10 used for the main loss term and permitting nine updates 
to this coefficient. The seed was set at 122.

As verification, toxicophores obtained by the CEM were matched to known toxicophores. Known toxico-
phores were curated as known mutagenic toxicophores from in vitro  data54 and computational  models53, or as 
commonly filtered reactive  substructures55.

Data availibility
The full Tox21 (https:// github. com/ deepc hem/ deepc hem/ tree/ master/ datas ets) and ClinTox (https:// github. com/ 
deepc hem/ deepc hem/ tree/ master/ examp les/ clint ox/ datas ets) datasets are publicly available. The RTECS dataset 
is commercially available from BIOVIA for a fee or by way of subscription, and cannot be shared.

(4)min
δ∈χ/x0

c · f
neg
κ (xo, δ)+ β�δ�1 + �δ�22 + γ �x0 + δ − AE(x0 + δ)�22.

(5)min
δ∈χ∩x0

c · f
pos
κ (xo, δ)+ β�δ�1 + �δ�22 + γ �δ − AE(δ)�22.

https://github.com/IBM/Contrastive-Explanation-Method
https://github.com/IBM/Contrastive-Explanation-Method
https://github.com/deepchem/deepchem/tree/master/datasets
https://github.com/deepchem/deepchem/tree/master/examples/clintox/datasets
https://github.com/deepchem/deepchem/tree/master/examples/clintox/datasets
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Code availability
We provide the code and the splits used for Tox21 and ClinTox datasets (https:// github. com/ IBM/ multi task- 
toxic ity).
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