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Highly reconfigurable 
oscillator‑based Ising Machine 
through quasiperiodic modulation 
of coupling strength
Dagur I. Albertsson * & Ana Rusu 

Ising Machines (IMs) have the potential to outperform conventional Von‑Neuman architectures 
in notoriously difficult optimization problems. Various IM implementations have been proposed 
based on quantum, optical, digital and analog CMOS, as well as emerging technologies. Networks 
of coupled electronic oscillators have recently been shown to exhibit characteristics required for 
implementing IMs. However, for this approach to successfully solve complex optimization problems, 
a highly reconfigurable implementation is needed. In this work, the possibility of implementing 
highly reconfigurable oscillator‑based IMs is explored. An implementation based on quasiperiodically 
modulated coupling strength through a common medium is proposed and its potential is 
demonstrated through numerical simulations. Moreover, a proof‑of‑concept implementation based 
on CMOS coupled ring oscillators is proposed and its functionality is demonstrated. Simulation results 
show that our proposed architecture can consistently find the Max‑Cut solution and demonstrate the 
potential to greatly simplify the physical implementation of highly reconfigurable oscillator‑based 
IMs.

Unconventional computing paradigms based on natural processes have recently inspired the development of 
various hardware architectures, which can potentially outperform conventional Von-Neuman architectures for 
various applications, including machine  learning1,2,  chemistry3,4 and  planning5. Ising Machines (IMs) belong to 
the class of architectures that employs the Ising Model for solving optimization problems. Optimization prob-
lems often rely on finding the global minimum in a multivariate energy landscape similar to the Ising Model. 
This analogy has been demonstrated by mapping various practically relevant optimization problems to the Ising 
 Model6. Therefore, hardware architectures specifically designed to solve the Ising Model are considered as general 
purpose optimization solvers known as IMs.

The most widely known IMs are quantum  annealers7–9, which are currently commercially available by 
D-Wave10. These systems are based on coupled Josephson junctions and have shown promising results as the 
first step to quantum  computing11. For instance, the new D-Wave architecture includes more than 5000 qubits 
which in combination with their tools can solve optimization problems with up to a million  variables10. However, 
quantum annealers operate at extremely low temperatures (sub Kelvin) requiring large cooling facilities and 
kilowatts of power, limiting the possibility of miniaturization.

Coherent Ising Machines (CIM)12–14 are based on degenerate optical parametric oscillators, which in com-
bination with time-multiplexing allow for problems with thousands of variables to be  solved14. However, CIM 
also have their specific challenges since they require long optical cables.

Digital CMOS  IMs15–22, which are generally based on simulating systems that can solve the Ising Model, have 
been extensively studied in recent years. This approach comes with the advantages of using commercially avail-
able CMOS processes and consequently allow for rapid development and miniaturization.

Various analog based  IMs23–27 have been also proposed. The proposal  in27 utilizes coupled LC electronic oscil-
lator networks for implementing an IM. This approach has recently been further investigated by the research 
 community28–34 since it brings advantages including its potential for on chip implementation using CMOS 
technologies and low power consumption.

In recent years, emerging technologies, such as  memristive35,36, p-bit37,38, spintronic  oscillators39–41 and phase 
change  oscillators42,43, have been also explored for implementing IMs.
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A common design challenge affecting many of the previously discussed implementations is the number of 
coupling elements needed to implement IMs. Moreover, these couplings need to be highly reconfigurable to 
realize a general purpose IM. In this work, we investigate the possibility of implementing oscillator-based IMs 
with highly reconfigurable connectivity utilizing quasiperiodic modulation of the coupling strength. A similar 
approach has previously been explored for realizing oscillatory neuro  computers44–46 and to achieve reconfigur-
ability in quantum annealers based on Josephson parametric  oscillators47. The proposed approach is analysed 
by using a network of Kuramoto oscillators. Further, a scaling scheme for large networks required for solving 
complex optimization problems is proposed. Finally, a proof-of-concept implementation based on CMOS RC 
ring oscillators is proposed and demonstrated.

Theory
The Ising Model describes a discrete magnetic system, where spins s settle to a binary state {+1,−1} . The Ham-
iltonian describing the energy of a spin configuration can be written as:

where N is the number of spins, Ji,j is the coupling between spins i, j and hi is the interaction to an external field. 
However, for the following discussion, we consider hi = 0 . Oscillator-based IMs are based on the similarities 
between the Ising Model and the phase evolution of a synchronized oscillator network under second harmonic 
injection locking (SHIL), operating at the same frequency ω . Considering a network of coupled Kuramoto 
 oscillators48, the differential equations describing the phase evolution in a rotating frame θi(t) = φi(t)− ωt can 
be written  as27,49:

where θi is the phase in the rotating frame, Ks is the coupling strength to the SHIL, which is an externally applied 
signal at twice the fundamental frequency, ωe = 2ω , and Ki,j is the coupling between oscillators i, j. The rela-
tion between (2) and the Ising Model in (1) can be understood through the graphical illustration presented in 
Fig. 1 (for simplicity, only four coupled SHIL oscillators are considered). When an oscillator is perturbed at a 
frequency equal to its operating frequency ω , it approaches a phase locked state relative to the external signal, 
e.g. at 0◦ as is highlighted by the arrows and dot in Fig. 1a. Similarly, if it is perturbed at twice the fundamental, 
two stable phase states appear at 0◦ and 180◦ (as in Fig. 1b), as a consequence of the term proportional to sin(2θ) 
in (2). In oscillator-based IMs, this bistability is used to represent the spin states in the Ising Hamiltonian 
(Eq. 1), where the oscillator settling to an odd/even multiple of π represents a spin state of +1/− 1 . Finally, 
by coupling together a network of oscillators under SHIL, as presented in Fig. 1c, the phase dynamics become 
governed by (2) which has a global Lyapunov function equivalent to the Ising  Hamiltonian27. Consequently, an 
oscillator-based IM can be realized with this relatively simple architecture. However, a major design challenge 
appears as the number of oscillators increases since N all-to-all connected oscillators require O(N(N − 1)) cou-
pling elements. It is worth mentioning that in Fig. 1c only O(N(N − 1)/2) bidirectional coupling elements are 
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Figure 1.  Graphical illustration of (a) fundamental injection locking, (b) SHIL and (c) a network of four 
coupled SHIL oscillators.
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presented, but in circuit implementations O(N(N − 1)) unidirectional coupling elements are generally needed. 
This is graphically illustrated in Fig. 2a where an architecture for 6 all-to-all connected oscillators is presented. 
Moreover, for a general purpose oscillator-based IM these coupling elements need to be highly reconfigurable 
allowing couplings to be turned-off, to have both positive and negative sign and even multilevel amplitude. Here, 
we will address the reconfigurability aspect by exploring one potential approach inspired from an oscillatory 
neurocomputer  proposal44.Conventional oscillator-based IMs described by (2) are based on the assumption 
that all oscillators are synchronized and operate at the same frequency ω . Consequently, in the rotating frame, 
the phase dynamics become governed by (2) which maps to (1) when the phases are binarized using SHIL. By 
substituting θi(t) = φi(t)− ωt into (2) and assuming a uniform coupling strength Ki,j = K for all i, j, the phase 
dynamics in the stationary frame can be written  as50:

By extending this model to include oscillators operating at different frequencies ( ωi  = ωj ), with the minimum 
difference between any i and j given by ωdiff ,min , and assuming that each oscillator i is perturbed by a separate 
second harmonic corresponding to twice its operating frequency 2ωi , (3) can simply be written as:

By re-writing (4) in the rotating frame where φi(t) = ωit + θi(t) (φj(t) = ωjt + θj(t)) and 
dφi(t)/dt = ωi + dθi/dt , the phase dynamics become:

At this point, it is worth highlighting that each phase θi is in a different rotating frame since each oscil-
lator operates at a different frequency ωi . Moreover, assuming that the coupling K in the network is weak 
( K << ωdiff ,min ) and constant, the phase dynamics are relatively unaffected by the second term in (5)44. Conse-
quently, under these conditions, the oscillators can be considered to be uncoupled. However, by modulating the 
coupling strength K with a quasiperiodic function a(t), given by (6a), (5) becomes (6b): 
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Figure 2.  (a) A conventional oscillator-based IM requiring all-to-all coupling and (b) proposed 
implementation using a common medium.
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 When (ωi − ωj) �= (ωk − ωl) for all frequency differences in the system, the average phase dynamics of (6b) 
over a long time-span (proportional to 1/K) become:

For full analysis of the averaging of (6b), the reader is referred to ’Supplementary material’. The average phase 
dynamics given by (7) closely resemble the original oscillator-based IM presented in (2). Consequently, a highly 
reconfigurable IM can be realized based on the modulation signal a(t), since the average coupling between oscil-
lators in the network is purely determined by the coefficients ci,j in (6a). This proposal largely resembles the oscil-
latory neurocomputer explored  in44, but a SHIL signal is additionally applied to all oscillators. In conventional 
oscillator-based IMs as it is presented in Fig. 2a, O(N(N − 1)) coupling elements, connecting each oscillator to 
all others, are required. However, in the proposed implementation, oscillators are mutually connected to a single 
common coupling element that is modulated with O(N(N − 1)) frequency components, as it is presented in 
Fig. 2b. This approach largely moves the complexity outside the oscillator network itself. Any arbitrary network 
can be realized by simply tuning the amplitudes ci,j of the modulation signals, which potentially allows for a 
scalable and flexible implementation. Nevertheless, the trade-off of this approach is that the phase dynamics 
evolve according to (7) on the slow time scale (proportional to 1/K), leading to slower convergence compared to 
conventional oscillator-based IM. However, the potential benefits of a greatly simplified implementation using 
this approach makes it worth exploring.

Results
Numerical simulations. To proof that the system in Fig. 2b can be employed for developing an IM, we per-
formed numerical simulations of (6) solving Max-Cut problems. The Max-Cut problem consists of partitioning 
the vertexes of a graph into two subsets s1 and s2 , maximizing the number of edges crossing between the two sets. 
A simple graph example consisting of 6 all-to-all connected vertexes is presented in Fig. 3a. This simple Max-
Cut problem is undirected ( ci,j = cj,i ) and unweighted (all edges have the same weight ci,j = 1 ). The Max-Cut 
solution of this graph, consisting of three vertexes in s1 while the other three in s2 , is 9. Any other solution than 
three in each set has a lower cut value (number of edges crossing between the two sets). To map this problem to 
an oscillator-based IM, vertexes represent oscillators and edges negative (antiferromagnetic) couplings. In our 
proposal, the antiferromagnetic (ferromagnetic) couplings are realized by setting ci,j = −1 ( ci,j = 1 ), and ci,j = 0 
if two nodes do not share an edge. The frequency of the oscillators, ωi (where i = 1, 2, . . . , 6 ), were chosen such 
that they form a Golomb ruler between ω1 = 2π · 5 MHz and ω6 = 2π · 10  MHz45:
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Figure 3.  (a) An undirected unweighted graph of size N = 6 with all-to-all connections, (b) numerical 
simulations of the proposed oscillator-based IM, (c) solutions found for 100 independent simulations with 
random initial conditions, and (d) average max-cut probability for ten randomly generated graphs of size N = 6 
(100 runs of each graph) for different simulation times tend.
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where 
[

g1, g2, g3, g4, g5, g6
]

= [0, 1, 4, 10, 12, 17] is the Golomb ruler. This approach maximizes the difference 
between any pairs of oscillators in the network, ( ωi − ωj)45. Moreover, the coupling strength was chosen as 
K ≈ ωdiff ,min/20 , where ωdiff ,min ≈ 2π · 0.3MHz , to achieve a weak coupling in the network, while the SHIL 
is ramped up as a function of time to binarize the phases in the system Ks = (0.5K · t)/tend , where tend is the 
simulation time. Figure 3b shows the numerical simulation of the oscillator-based IM solving the graph in Fig. 3a, 
where the solution can be read by analyzing which oscillators settle to an odd/even multiple of π at the end of the 
simulation. In this specific case, three oscillators settle to π while three settle to 0/2π corresponding to the Max-
Cut solution. Figure 3c presents the solutions found for 100 independent simulation runs with random initial 
conditions, showing a 96% probability of finding the Max-Cut solution. To further verify that the couplings are 
determined by the modulation signal, we ran 100 simulations of 10 randomly generated graphs (total of 1000 
runs) for various different simulation times. An example graph and the average probability of finding the Max-
Cut solutions are presented in Fig. 3d. To map the random graphs to the oscillator-based IM, we simply turned 
off (by setting ci,j = 0 ) the modulation signals corresponding to the absent edges in the graphs. The probability 
of finding the Max-Cut solution increases with the simulation time, which is generally also the case for conven-
tional oscillator-based IMs. From the results presented in Fig. 3d, we can conclude that the approach presented 
Fig. 2b can be employed to realize a highly reconfigurable IM. Nevertheless, the need to distribute the operating 
frequencies according to a Golomb ruler for minimizing the unwanted couplings is a major disadvantage of this 
approach. As the number of oscillators increases, the operating frequency range [ωmin,ωmax] becomes imprac-
tical even for relatively small networks, limiting the experimental realization of oscillatory neurocomputers to 
small  networks45. However, this approach is attractive for implementing IMs since IMs do not necessary require 
all-to-all connected networks as neurocomputers.

Our proposed architecture for implementing IM presented in Fig. 4a consists of hexagonal cells with six 
oscillators sharing a coupling network. This architecture allows for a scalable implementation, which brings 
the advantage of re-using operating frequencies of uncoupled oscillators. Moreover, the externally generated 
modulation signals can also be re-used between cells. However, the disadvantage of this approach is that each 
oscillator is now connected to twelve neighbouring oscillators (excluding boundary cases were it is less) instead 
of being all-to-all connected. This limits our implementation to graphs that can be mapped to the hexagonal grid. 
However, graph embedding  techniques51 can potentially address this issue at the cost of additional pre-processing 
step and computational  overhead51,52.

The functionality of the proposed architecture is demonstrated with numerical simulations. We generated 
ten random graphs for 2, 4, 6, 8 and 10 hexagonal cells and performed 100 simulation runs for each graph with 
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Figure 4.  (a) Multiple hexagonal cells demonstrating a scalable implementation (note that the SHIL for each 
oscillator has been left out for clarity), (b) a randomly generated graph for ten cells and (c) average Max-Cut 
probability of randomly generated graphs for 2, 4, 6, 8 and 10 cells.
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random initial conditions. Figure 4b shows one of the ten graphs generated for ten hexagonal cells. Additionally, 
these simulations were performed for four different simulation times tend = [200  µ s, 400  µ s, 600  µ s, 800  µs]. 
The Max-Cut for the ten random graphs (of each size) was found using LocalSolver, a commercially available 
optimization tool, and compared to the results of the numerical simulations for the proposed implementation. 
The resulting average Max-Cut probability for 100 simulation runs of each of the ten random graphs is shown 
in Fig. 4c. As expected, the probability of finding the optimal solutions decreases with shorter simulation time 
and for larger networks (higher number of cells). However, the proposed implementation is able to find the 
Max-Cut solutions consistently, especially for longer simulation times. Moreover, the amplitude of the SHIL 
signal is simply ramped in our simulations to phase binarize the system, but other schedules could greatly 
improve the probability of finding Max-Cut  solutions27. However, the focus of this work is to demonstrate that 
the behaviour of the proposed system is dominated by (7) and that it is suitable to realize an oscillator-based IM. 
These simulation results further confirm that our proposal is a viable approach to realize highly reconfigurable 
oscillator-based IMs.

The implementation explored here is based on hexagonal cells consisting of six oscillators with operating 
frequencies distributed within [ωmin,ωmax] = 2π [5 MHz, 10 MHz]. In principle, the number of oscillators in 
a cell can be increased. However, the feasibility of doing this strongly depends on the practical implementation 
of the oscillator network. Specifically, the impact of increasing the number of oscillators has two implications 
for practical realization. First, for a certain frequency range or bandwidth, e.g. between 5 MHz and 10 MHz, 
the minimum frequency difference ωdiff ,min between two oscillators in the network decreases, which makes the 
design of the oscillators more challenging. Secondly, the coupling K has to be smaller to satisfy K << ωdiff ,min , 
which leads to longer convergence times.

Proof‑of‑Concept Implementation using CMOS Ring Oscillators. To demonstrate that the pro-
posed approach can be implemented using relatively simple circuit elements, a proof-of-concept IM was devel-
oped in a 180 nm CMOS process using RC ring oscillators, as presented in Fig. 5. The implementation of a 
single cell (as it was presented in Fig. 2b) consists of six SHIL ring oscillators with load capacitances Ci chosen 
to achieve operating frequencies ωi ( i = 1, 2, . . . , 6 ) distributed according to a Golomb ruler. The ring oscillators 
are coupled through a resistor Rc to a summing amplifier and the tunable coupling element is implemented with 
a variable voltage controlled resistor Rp , as shown in Fig. 5b. The coefficients ci,j translate into the voltage ampli-
tude of the modulation signal as 2ci,j/(N(N − 1)) V. The resistance is modulated around zero and consequently 
requires both positive and negative values. In this proof-of-concept implementation, Rp is modeled as an ideal 
voltage controlled resistor that can have both positive and negative values and is controlled by the modulation 
signal a(t). In a complete circuit implementation, this resistance can be implemented as  in45 using a transistor in 
series with a negative resistance. The second harmonic injection locking in the ring oscillator shown in Fig. 5a is 
realized with a current source which is injecting a current at twice the fundamental:

The current is ramped up over the simulation time and normalized to the largest capacitance C6 , to achieve 
a uniform SHIL strength in all ring  oscillators53. The advantage of the proposed implementation can be clearly 
observed since only a single tunable element is needed to set the coupling between any oscillators in the network. 
The differential equations describing the voltage on the capacitors can be written as: 
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Figure 5.  (a) A 3-stage SHIL RC ring oscillator and (b) a single hexagonal cell sharing a common coupling 
network consisting of six RC ring oscillators.
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 where ID1,i−D3,i are the drain currents of the MOS transistors and Vcm is the common-mode voltage of the sum-
ming amplifier. The coupling in the network is determined by the last term in (10c) where K ∝ Rp/(RcRf ) . For 
a full analysis of Eq. (10) and how it can be simplified to (7), the reader is referred to ’Supplementary material’. 
The phase of each oscillator relative to its SHIL signal was extracted by comparing the waveforms of the voltage 
Vc1,i with a reference signal Vref ,i = sin(2ωit) . To account for different couplings, as a consequence of the varying 
capacitance Ci , the ci,j were normalized to achieve a uniform coupling, similarly to what was done for the ISHIL in 
(9). Each SHIL RC ring oscillator was implemented with 13-stages (Fig. 5a shows only 3 stages for simplicity), 
RL = 5.75 k � and a capacitance in the range from C1 = 482.5 fF to C6 = 725 fF resulting in ω1 = 2π · 10.75 
MHz and ω6 = 2π · 16.08 MHz. The main motivation behind increasing the number of stages in the RC ring 
oscillators to 13 was to reduce the coupling in the network (which is proportional to the number of  stages53) to 
satisfy K << ωdiff ,min and lower the operating frequency to tens of MHz. Moreover, the resistances Rc = 25 k � 
and Rf = 4 k � were also chosen to achieve a weak coupling in the network. Finally, the amplitude of the tun-
able resistance and the SHIL current are chosen as Rp = 2k�/V and Iinj = 10µ A. To verify the functionality 
of the proposed implementation, transient simulations were performed and the phase difference was extracted. 
Figure 6a presents the phase difference between the oscillators and the reference signal Vref ,i for an all-to-all 
connected graph of six oscillators settling to the Max-Cut solution. Figure 6b presents the average Max-Cut 
probability for 10 runs of ten randomly generated graphs for simulation times tend = [50  µ s, 100  µ s, 150  µ s, 
200  µs]. These simulation results confirm that the proposed implementation shown in Fig. 5 operates as an 
oscillator-based IM and consistently finds the Max-Cut solution.

To further verify that the proposed implementation can be scaled as shown in Fig. 4a, simulations of three 
coupled hexagonal cells were performed. It is important to note that the amplitude of oscillation needs to be 
kept relatively uniform throughout the network for a uniform coupling. Since oscillators on the boundary have 
different operating conditions (as a consequence of being only connected to one or two cells), these ring oscil-
lators were appropriately designed to achieve a uniform oscillation amplitude. The simulation results, presented 
in Fig. 6c, demonstrate that the three hexagonal cells have also a typical oscillator-based IM behaviour.
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Figure 6.  (a) Phase dynamics of a network of six all-to-all coupled ring oscillators solving the Max-Cut 
problem in Fig. 3a, (b) average Max-Cut probability for ten randomly generated graphs of size 6 (10 runs of each 
graph) for different simulation times tend and (c) average Max-Cut probability of randomly generated graphs 
mapped to 3 hexagonal cells (implemented with 13-stage RC ring oscillators).
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Discussion
A major challenge with realizing large scale IMs is the number of highly reconfigurable coupling elements that are 
needed. Consequently, the possibility of implementing a simple and tunable coupling on-chip could be one of the 
determining factors of what technology is best suited for realizing large scale IMs. On the algorithm site, various 
schemes to transform the Ising Hamiltonian from an all-to-all connected problem to a locally connected prob-
lem, such as minor embedding and LHZ, have been  proposed51,52. However, these methods usually come with 
disadvantages such as computational overhead and performance degradation. On the hardware site, approaches 
to simplify the immensely complex hardware needed for IMs, such as time-division  multiplexing14, computing in 
 memory18 or using ferroelectric transistors to realize reconfigurable  couplings54, have been explored. Oscillator-
based IMs open the possibility to realize reconfigurability using different frequencies, similar to frequency divi-
sion multiplexing in communication systems.

In this paper, we have proposed an oscillator-based IM, with high reconfigurability through quasiperiodic 
modulation of the coupling strength. Oscillators operating at distinct frequencies are mutually coupled through 
a common medium and connections are purely determined by the harmonic content of an externally applied 
modulation signal. Therefore, the proposed scheme could greatly simplify the implementation of highly recon-
figurable oscillator-based IMs. The complexity is largely moved outside the oscillator network, specifically to the 
generation of the modulation signals. While a similar approach has previously been explored for Josephson para-
metric oscillator  IMs47, this is the first work exploring oscillator-based IMs based on these principles, in CMOS 
technology. Moreover, although the implementation  in47 shares many similarities with the approach proposed 
here, there is an important difference between the two approaches. Specifically,  in47 the operating frequencies 
are distributed evenly with a unit difference. For this reason, mapping a problem to the architecture requires an 
additional computational step to correctly map a problem to the architecture (as is discussed in detail  in47). In 
the approach proposed here, the need for this additional step is eliminated by a proper choice of the operating 
frequencies according to a Golomb ruler.

Additionally, to address the limitations of the proposed scheme, we investigated the possibility of using 
a hexagonal grid for a potentially scalable implementation. However, unless graph-embedding is combined 
with the hexagonal grid, the architecture is limited to relative sparse graphs. It is important to note that with 
currently available graph-embedding techniques, the computational overhead has the potential to diminish 
any advantages of hardware  IMs51,52. Consequently, more research is required to evaluate the scalability of the 
proposed architecture for arbitrary dense graphs. Theoretically, the proposed approach can be combined with 
conventionally coupled oscillators operating at the same frequency. For example, long range interactions could 
be realized with conventionally coupled oscillators, while clusters of highly reconfigurable oscillators can be 
realized with the method proposed here. The oscillator-based IM has been also demonstrated with a proof-of-
concept implementation based on CMOS RC ring oscillators. Nevertheless, the proposed approach comes at 
the cost of longer convergence times for finding the optimal solutions as a consequence of the weak coupling in 
the network. Quantifying this approach in relation to conventional oscillator-based IMs is challenging without 
exploring much larger benchmark graphs than presented here, which will be addressed in future work. It is 
important to mention that  in27 a network of coupled LC oscillators has K/ω ≈ 0.02 , while the proposed ring 
oscillator proof-of-concept has K/ω ≈ 0.001 . Consequently, the phase dynamics in our proposed implementa-
tion takes place on a time scale ≈ 10x slower than the implementation  in27.

Finally, the proposed approach is not limited to CMOS oscillators and can be applied theoretically to any 
oscillator having a sinusoidal coupling. Thus, it can potentially be explored for realizing novel oscillator-based 
IMs using emerging technologies, such as spintronic oscillator  arrays40,55, where achieving highly reconfigurable 
coupling can be challenging. Moreover, an alternative approach, which it was not discussed in our manuscript, 
based on modulating the coupling signal of each oscillator  separately46,47, could be also explored.

Data availability
The data used and/or analysed during the current study are available from the corresponding author on reason-
able request.
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