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Multitask computation 
through dynamics in recurrent 
spiking neural networks
Mechislav M. Pugavko , Oleg V. Maslennikov * & Vladimir I. Nekorkin 

In this work, inspired by cognitive neuroscience experiments, we propose recurrent spiking neural 
networks trained to perform multiple target tasks. These models are designed by considering 
neurocognitive activity as computational processes through dynamics. Trained by input–output 
examples, these spiking neural networks are reverse engineered to find the dynamic mechanisms that 
are fundamental to their performance. We show that considering multitasking and spiking within one 
system provides insightful ideas on the principles of neural computation.

Viewing the brain as a complex neuronal network (the connectome) and its emerging cognitive activity as a 
multidimensional and multilevel dynamic process (the cognitome) has gradually become an increasingly impor-
tant physico-mathematical description of this biocognitive  enigma1–5. There have been many data-driven and 
theory-motivated approaches that aim to bridge experimentally found neural connections and measured spike 
trains with observed phenomena at cognitive and behavioral  levels6–10. Various models in the form of large-scale 
networks of coupled dynamic neuron-like units have been used to understand fundamental principles. Differ-
ent biological constraints and detail levels have been applied to the design of such  models11–14. An important 
distinction between these models is whether a system is obtained via a bottom-up or top-down  approach15. In 
the former case, one starts from some microscopic connectivity structure and biophysical or simplified neuron 
models and seeks to find features leading to some population patterns of interest. An undoubted advantage of 
this approach is its neurophysiological similarity to the biological prototype; however, even the most complicated 
models of this class lack insight into the emergence of cognitive-like behaviors. Models in the latter case take 
an opposite approach; i.e., the cognitive task or function of interest is explicitly formulated, often in a reduced 
form, and then an artificial neural network with possible biological constraints is machine-trained to produce 
the target  function16–18. Although the model system, usually in the form of a recurrent neural network, may 
lack microscopic similarity with brain networks, it can serve as a practical tool for relating neural dynamics 
and cognitive processes. The resulting neural network is a multidimensional system that can be studied by the 
methods of nonlinear dynamics and complex network theory, and the structure and dynamic mechanisms 
responsible for the observed functions can be  revealed19–23. This approach has been shown to provide insights 
into the neural population-level explanations of a number of cognitive functions, including decision-making 
and working memory.

The vast majority of studies examine neural networks trained to perform one particular task, and the models 
they use are based on the rate description where the neurons are presented as nonlinear activation functions 
of the weighted sum of inputs. A prominent feature of biological neural networks is the possibility of perform-
ing multiple tasks, so uncovering how the same artificial neural network completes different tasks can help to 
understand these undisclosed mechanisms in the biological  prototype24–26. The spiking dynamics produced by 
communicating neurons is another biological property neglected by most models of this  type27–32. Moreover, 
spiking networks have been actively studied in recent years in machine learning and neuromorphic engineering 
communities due to their promising energy capabilities for next-generation artificial neural  networks33,34. In 
this work, we propose spiking recurrent neural networks that are trained to perform several target tasks inspired 
by experimental settings in cognitive  neuroscience16,35–40. An important point is that the trained network is 
considered a multidimensional dynamical system that is reverse-engineered by nonlinear dynamic methods to 
uncover the principles underlying the performed tasks. These principles are formulated both in terms of popula-
tion trajectories in the activity space of neural networks and in terms of specialized and mixed-selective clusters 
responsible for completing different tasks.
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Methods
To construct a functional spiking network capable of implementing multiple tasks inspired by cognitive neu-
roscience, we elaborate our model in the framework of recurrent neural networks trained by machine learning 
methods to produce context-dependent target functions. Considering the resulting neural network as a dynami-
cal system, we study its structural and dynamic features supporting the observed functions. In this section, we 
describe the basic issues of the network design and the methods for revealing the dynamic mechanisms that 
are fundamental to its performance in cognitive-inspired tasks. In “Model” section, we consider the network 
architecture and the model neuron used to build the spiking neural network in our work. “Cognitive tasks” 
section describes the target tasks motivated by cognitive neuroscience experiments that are used for training 
the spiking neural network. In “Training procedure” section, the issues relating to the learning method, the loss 
function calculation and the training procedure are explained. Finally, “Analysis of the trained network” sec-
tion is devoted to the basic methods for evaluating the network accuracy, analyzing its population dynamics and 
determining the role of individual neurons in performing the target tasks.

Model. Network architecture and target functions. The network architecture we use to construct our model 
is shown in Fig. 1. It consists of the input layer, the central recurrent neural network, and the output layer. The 
recurrent neural network consists of N spiking neurons whose structure of connections is given by the weight 
matrix Wrec ∈ R

N×N . Initially, the network is all-to-all coupled, and the entries of Wrec are randomly chosen 
from the normal distribution 

√
2/NN(0, 1) . All the diagonal entries are kept at zero throughout the entire 

simulation to prevent neural self-excitation.
The input stimuli uk(t) ( k = 1, . . . ,Nin ) arrive at the recurrent neural network through the input matrix 

Win ∈ R
N×Nin , where Nin is the number of inputs. The entries of this matrix are initialized in a way that is iden-

tical to Wrec . The output responses yj(t) ( j = 1, . . . ,Nout ) are produced by the network activity via the matrix 
Wout ∈ R

Nout×N and the bias vector b ∈ R
Nout , where Nout is the number of outputs. The entries of Wout and b 

are initialized according to the uniform distribution U (−√
1/N ,

√
1/N).

The target functions used to train our network are inspired by the cognitive tasks described below. Each of 
them is based on a certain mapping of inputs uk(t) to outputs yj(t) during the trial; see Fig. 2. The input signals 
uk(t) input into the network can be divided into three distinct classes. The first class, given by a binary value (0 
or 1), is the so-called fixation signal ufix(t) ∈ R

1 , which marks out two phases in each trial—the stimulus phase 
of the input perception (where ufix = 1 ) and the response phase of the motor output (where ufix = 0 ). The sec-
ond class contains two noisy scalar values (umod1 , umod2) (or one vector umod ), which provide sensory inputs of 
two modalities to the network. Each of these sensory signals can be presented as the sum of the deterministic 
part u0 and the additive white Gaussian noise of standard deviation σ : umod = u0 +N(0, σ) . The third class is 
the task coding input presented by the one-hot vector utasks = (utask1 , utask2 , ..., utaskNtasks

)T , where Ntasks is the 
number of target tasks. During each trial, the unit of utasks corresponding to the current task is equal to 1, while 
the other units are 0. Thus, all the inputs of the spiking neural network can be described by the following vector

whose dimension equals Nin = Ntasks + 3.
The outputs are presented by two response signals (y1, y2) = yout and one fixation signal yfix , which produce 

activity by reading out the recurrent network dynamics. The target of the fixation output is to simply replicate 

(1)u = (ufix , umod , utasks)
T

Figure 1.  Architecture of the spiking neural network. The input layer sends three distinct classes of inputs—the 
fixation signal ufix , the sensory inputs of two modalities umod = (umod1 , umod2) , and the task coding one-hot 
vector utasks—through the input matrix Win . The central element—the spiking recurrent neural network—is 
characterized by the connectivity matrix Wrec . Its activity is output via matrix Wout and vector b by the output 
response units yout = (y1, y2) and fixation yfix.
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the fixation input. The way the network should map the stochastic inputs umod1(t), umod2(t) to the output signals 
y1(t), y2(t) varies for different tasks and is defined in each trial by the task coding vector.

Input–output transformations for different target tasks are schematically shown in Fig. 2 for noiseless inputs. 
The upper part of the plot contains input signals for different tasks denoted by abbreviations, and the corre-
sponding target outputs are given in the bottom part. The blue lines denote the fixation inputs and outputs in 
the upper and bottom parts, respectively; the red and green lines define the sensory inputs and motor outputs. 
It should be noted that the inputs umod1(t), umod2(t) used during training and testing have additive noise terms, 
so the deterministic plots in Fig. 2a–f are given only for illustration purposes.

A detailed description of the prototype neuroscience experiments is given below, and here, we briefly describe 
the input–output transformations used as target functions during training.

• DM (Decision making task)
  During the stimulus phase, one input umod1(t) (or umod2(t) ) is selected from a noisy signal with the mean 

chosen between 0 and 1, and the target output is (y1, y2) = (0, 0) . During the response phase, the inputs are 
zero, the target outputs are (y1, y2) = (1, 0) if the time average of umod1(t) (or umod2(t) ) is below the threshold 
uth = 0.5 , and (y1, y2) = (0, 1) otherwise; see Fig. 2a,g.

• CtxDM (Context decision-making task)

Figure 2.  Target tasks used to train the spiking neural network. The top subplots (a–f) show the inputs, where 
the blue lines correspond to the fixation input ufix and the red and green lines show the input stimuli umod1 and 
umod2 , respectively. The bottom subplots (g–l) show the target outputs, where the blue lines indicate the fixation 
output yfix and the red and green lines show outputs y1 and y2 , respectively. (a) Decision-making (DM) task: 
if the input stimulus u1 is higher on average than the threshold (the dotted line), then the target outputs are 
y1 = 0 and y2 = 1 (g). Otherwise, (y1, y2) = (1, 0) . (b) Context decision-making (CtxDM) task: the context 
signal indicates which of the stimuli u1 or u2 should be compared with the threshold (the dotted line). The 
outputs (h) are analogous to DM. (c) Inputs and (i) corresponding outputs of the go task (Go). (d) Inputs and 
(j) corresponding outputs of the go task with reaction times (GoRt). (e) Inputs and (k) corresponding outputs 
of the delayed go task (GoDl). (f) Working memory Romo task (Romo): if the second input stimulus is larger 
than the first one, then the target output (l) is (y1, y2) = (1, 0) ; otherwise, (y1, y2) = (0, 1) . The blue vertical lines 
show the termination of the fixation phase.
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  During the stimulus phase, umod1(t) and umod2(t) are selected from two noisy signals with particular means 
and the context input utasks reports, and one of the two values should be compared with the threshold uth 
while the other should be ignored. During the response phase, the inputs are zero, and the target output is 
(y1, y2) = (1, 0) if the time average of the input of interest is below the threshold uth = 0.5 and (y1, y2) = (0, 1) ; 
otherwise, see Fig. 2b,h.

• Romo (Working memory Romo task)
  During the stimulus phase, one input umod1(t) (or umod2(t) ) is selected from two consecutive rectangular 

pulses separated by some time delay. In the response phase, the target output is (y1, y2) = (1, 0) when the 
first stimulus is larger than the second and (y1, y2) = (0, 1) otherwise; see Fig. 2f,l.

• Go (Go/no go task)
  During the whole trial, one input umod1(t) (or umod2(t) ) is selected from a noisy signal with a certain mean 

between 0 and 1. In the response phase, the corresponding output y1 (or y2 ) is expected to generate a constant 
signal whose magnitude is equal to the input mean; see Fig. 2c,i

• GoRt (Reaction time go task)
  During the whole trial, the fixation input equals one, and initially, all the inputs are zero. At some random 

moment of the trial, one noisy input umod1(t) (or umod2(t) ) is switched on with some mean, and the target is 
to generate the same-magnitude signal at the output y1 (or y2 ) of the corresponding modality; see Fig. 2d,j.

• GoDl (Delayed version of the go task)
  During the stimulus phase, one input umod1(t) (or umod2(t) ) produces a short rectangular pulse of magni-

tude between 0 and 1. In the response phase, the corresponding output y1 (or y2 ) is expected to generate the 
same-magnitude signal when the fixation input vanishes; see Fig. 2e,k.

Neuron model. As a spiking neuron model, we consider the adaptive exponential (AdEx) integrate-and-fire 
neuron given by the following  system41:

where v is a membrane potential, a is an adaptation variable, and I is a synaptic current. Parameter τm is a time 
constant that characterizes the relaxation rate of the membrane potential, τa is the adaptation time, τs is the syn-
aptic time, acurrent is the adaptation coupling parameter, and θ is the sharpness of the exponential nonlinearity. 
When the membrane potential exceeds the threshold value vth , it resets to v → vreset , and the adaptation variable 
resets to a → a+ as , where vreset and as are the parameters. The synaptic current I(t) takes into account stimula-
tion Iout = Iin + Irec from input connections Iin and recurrent links Irec , and in their absence, it relaxes to zero.

An example of neuron dynamics under the input current is shown in Fig. 3. The adaptation variable is gradu-
ally increased (Fig. 3a) under the influence of the injected rectangular pulse current (Fig. 3b); moreover, the 
membrane potential produces fast oscillations (Fig. 3c), giving rise to spikes (Fig. 3d). During the duration of 
the stimulus, the variable a increases while the spike firing rate decreases until spike generation is completely 
stopped. After switching off the input current, the adaptation variable decreases, leading to the reappearance 
of the neuron’s ability to generate spikes. The neuron model parameters taken for drawing this plot, which are 
mostly used in the current work, are presented in Table 1.

(2)











dv

dt
= 1

τm

�

−v + I + θ exp
�

v−vth
θ

�

− a
�

,
da

dt
= 1

τa
(acurrentv − a),

dI

dt
= − 1

τs
(I + I

out),

Figure 3.  Adaptive exponential neuron (2) under rectangular input pulses: dynamics of (a) the adaptation 
variable a(t), (b) the injected input current uin , (c) the membrane potential v(t), and (d) the resulting spike 
sequence determined by the Heaviside step function H(x). The control parameters are given in Table 1.
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Spiking neural network. During computer simulations, the network of adaptive exponential neurons  (2) is 
described in a discrete form obtained by the Euler method as follows:

where n ∈ Z is the discrete time, �t = 1 ms, Iinj  and Ireck  are the input and recurrent currents, respectively, for 
neuron j = 1, . . . ,N , and win

jk and wrec
jk  are the entries of weight matrices Win and Wrec , respectively. The terms 

zk = H(vk − vth) are the spike detecting variables, where H(x) is the Heaviside step function; that is, H(x) = 0 
if x < 0 , and H(x) = 1 otherwise. The network outputs are obtained by the exponential filters, which smooth 
the effect of the spike trains:

where κ = exp (−�t/τout) is the filter parameter, τout is the filtration time, and wout
jk  and bj are the entries of the 

weight matrix Wout and the bias vector b , respectively.

Cognitive tasks. We consider a family of target tasks inspired by a series of cognitive neuroscience experi-
ments that are similar to those  in24 and study how a single spiking neural network can implement them. The 
trial of each task consists of two phases, stimulus and response, where the fixation input is equal to 1 during 
the first phase and equal to 0 during the second phase. We consider 6 types of cognitive tasks, which are imple-
mented through one of the two stimulus inputs (umod1 , umod2) , giving rise to a total of 12 different target tasks. 
These are the decision-making (DM) task, the decision-making with a context signal (CtxDM) task, the working 
memory Romo (Romo) task, the go/no-go (Go) task, the go/no-go with delay (GoDl) task, and the go/no-go 
with a reaction time (GoRt) task. Thus, the task coding input is given by u . These tasks can be classified into two 
classes—choice tasks (DM, CtxDM, Romo) and repeat tasks (Go, GoRt, GoDl). For the former, the network is 
trained to produce a binary output indicating which of the input stimuli possesses a target feature (e.g., which is 
the largest or greater than a threshold). For the latter tasks, the network is trained to reproduce an input stimulus 
with some additional requirements. Below, we describe in detail the basic features of the cognitive neuroscience 
experiments and the target input–output transformations used in our model framework.

DM In this traditional two-alternative forced choice task, the laboratory animal is trained to make a motor 
decision based on the features of the sensory stimulus. For example, in the experiments reported in Ref.38, during 
the trial, a trained monkey is first presented a fixation point on the screen; then, a random-dot motion picture 
appears, where a controlled fraction of dots move in one of two possible directions while others move randomly; 
see Fig. 4a–c. After that, the animal is presented two target points and expected to saccade to the direction of 
the preferred motion. The control parameters are the fraction of coherently moving dots and the trial time. In 
our reduced setting, during the stimulus phase, the input umod1 (or umod2 ) is presented in the form of a stochastic 
signal with a mean value between 0 and 1, and the network is trained to determine whether its trial average is 
below or above the threshold uth = 0.5 . During the response phase, the target output is (y1, y2) = (1, 0) in the 
former case and (y1, y2) = (0, 1) in the latter case; see Fig. 2a,g. The noise intensity and the input proximity to 
the threshold reflect the level of uncertainty in the experiments.

CtxDM The context decision-making  task16 differs from the previous task in that the random dots are colored 
either red or green, and depending on the context signal, the laboratory animal should extract one of two pos-
sible features—either the preferred direction of dot motion or the predominant color; see Fig. 4d. In our model 

(3)
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(4)yj(n+ 1) = κyj(n)+
N
∑
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jk zk(n)+ bj , j = 1, . . . ,Nout ,

Table 1.  Parameters of the AdEx neuron model used in the current research.

Label Value

τa 2 s

τm 10 ms

τs 5 ms

vth 0.65 mV ( ∀N �= 256 ), 0.45 mV ( N = 256)

vreset 0 mV

θ 0.5 mV

as 0.02 nA

acurrent 4 ns
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setting, the two features are presented as two input stimuli combined in umod , and the context input utasks reports 
which one of the two should be compared with the threshold uth while the other should be ignored; see Fig. 2b,h.

Romo In the working memory task, which is referred to as the Romo  task36,37, the trained monkey performs 
a comparison between two vibrotactile stimuli presented with a time delay; see Fig. 4e. The first—base—and the 
second—comparison—stimuli applied to the animal’s finger have different frequencies, and the monkey chooses 
the highest one by pressing one of two buttons. In our model, during the stimulus phase, the network receives 
two consecutive pulses separated by some time delay via one of the sensory inputs. In the response phase, the 
network is trained to generate an output (y1, y2) = (1, 0) in the case where the first stimulus is larger than the 
second, and (y1, y2) = (0, 1) otherwise; see Fig. 2f,l.

Figure 4.  Schematically shown experimental prototypes of the target tasks used to train the spiking neural 
network: (a)–(c) the decision-making task, (d) the context decision-making task, (e) the working memory task, 
and (f,g) the go/no-go tasks. (a) Random-dot motion visual stimulus with different ratios of coherently moving 
dots. (b) A monkey observing the screen and the positions of the fixation and target points. (c) Sequence of 
events during the trial. The figure is modified  from38. (d) Context decision-making  task16. First, the context 
signal turns on (blue cross or yellow square), and then two target (red and green) points appear. After that, a 
random-dot diagram is shown with a controlled predominant color and the direction (described by an arrow) 
of coherently moving dots. After the delay period, the animal is expected to respond by using saccadic eye 
movements to follow the preferential color or direction depending on the context signal. (e) Working memory 
Romo  task37. First, the probe is placed in the monkey’s hand (PD); then, the monkey places its free hand on 
a stationary key (KD), after which two vibrotactile stimuli with different frequencies are given separated by 
a delay. Finally, the monkey releases the key (KU) and presses one of two push buttons to indicate its choice 
of which stimulus had a higher frequency (PB). (f) Example of the go/no-go  task35. First, the fixation point is 
highlighted on the screen, and then a cue appears at one of 8 or 4 peripheral locations. After the delay period, 
the monkey is expected to saccade to the indicated target. (g) Example of the go/no-go  task39. First, human 
subjects are presented with a fixation visual stimulus, and then one of two possible cues is turned on. After 
the delay period, the go or no-go signal appears, indicating whether the subject should or should not press the 
corresponding button in their hand.
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Go tasks This is a family of tasks where a cognitive subject responds by a motor action (e.g., a saccadic eye 
movement or a button press) to the appearance of some predefined stimulus (a go response) while ignoring 
stimuli with improper features (a no-go response). For example, in the experiment reported in Ref.35, the mon-
key is shown a visual cue on the screen at one of several possible locations, and after a silent period of delay, 
the animal responds by gazing in the same direction (see Fig. 4f). In the other  experiment39,40, human subjects 
were presented with the cue stimulus and selected either a right or left clicker. After a delay time, a go or no-go 
signal appears on the screen indicating whether the subject in fact should or should not do complete the action 
(see Fig. 4g). Based on these examples, we consider three versions of the go tasks in our model. In the simple 
go task (Fig. 2c,i), the network receives a constant input during the whole trial and is expected to generate the 
same-magnitude signal at the output after the fixation input is turned off. In the reaction time (GoRt) task, the 
fixation input is supported at a constant level during the trial, and when the input stimulus is applied, the network 
responds by the same-magnitude output while suppressing the fixation output to zero (Fig. 2d,j). In the delayed 
version (GoDl) of the go task, the network receives a short input and is expected to generate the same-magnitude 
response at the output when the fixation input vanishes (Fig. 2e,k).

Training procedure. Training is conducted over Nepoch epochs. In each epoch, the network performs Nbatch 
randomly selected target tasks in parallel from the tensor of tasks Atask ∈ R

Nstep×Nbatch×Nin , where Nstep is the 
number of time steps and Nin is the number of inputs. As a normal process in supervised learning  methods42, 
the produced network outputs are compared at the end of each epoch to the target values, and the mean-squared 
error over the tensor is computed as follows:

where yil(n) is the i-th network output in the l-th batch at moment n, ŷil(n) is the corresponding target output, 
and mil(n) are the entries of the mask matrix M. The values mil(n) equal 1 during the stimulus phase of the trial 
and 5 during the response phase.

The mean-squared error (5) (MSE) is the first modification applied to the loss function in this work. The 
second (complete) loss function modification is calculated as

where �Er is the regularization term. In this case, the following can be defined:

where fi = [1/(NbatchNtime)]
∑Nbatch

l=1

∑Ntime
n=0 zil(n) is the average firing rate of the i-th neuron, and fth = 30 Hz 

is the threshold frequency. Such regularization allows us to set a top limit on the neural firing rates exceeding 
fth , thus reducing the average network activity. For this type of loss function, the parameter τout is set to 50ms , 
Vth = 0.45 mV, mil(n) = 0.1 for the stimulus phase and mil(n) = 1 for the response phase. For the loss func-
tion without regularization, mil(n) equals 1 during the stimulus phase and 5 during the response phase, while 
τout = 2ms.

After computing the loss function, the network weights are modified according to the stochastic gradient 
descent algorithm, where the error is decreased in the opposite direction of the loss function gradient. To do this, 
the partial derivatives of the loss function are calculated with respect to the weights, and the latter are updated 
after each epoch as follows:

where p is the epoch iteration step and η is the learning rate.
We further applied the so-called surrogate  gradients43 to prevent the problem of discontinuity in the spik-

ing dynamics by taking pseudoderivatives according to the superspike  method44 for the points where the real 
derivative does not exist:

(5)MSE =
∑Nout

i=1

∑Nbatch
l=1

∑Nstep

n=1 mil(n)
[

yil(n)− ŷil(n)
]2

NoutNbatchNstep
∑Nout

i=1

∑Nbatch
l=1

∑Nstep

n=1 mil(n)
,

(6)E = MSE + �Er ,

Er =
N
∑

i=0

fiH(fi − fth),

(7)

wrec
kj (p) = wrec

kj (p− 1)− η

(

∂E

∂wrec
kj

)

(p− 1),

win
jk (p) = win

jk (p− 1)− η

(

∂E

∂win
jk

)

(p− 1),

wout
kj (p) = wout

kj (p− 1)− η

(

∂E

∂wout
kj

)

(p− 1),

boutj (p) = boutj − η

(

∂E

∂boutj

)

(p− 1),

(8)σ ′
j = (1+ |α(vj − vth)|)−2,
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where α = 100 is the scaling parameter that defines the sharpness of the approximate derivative. Therefore, the 
derivatives of the spiking variables are approximated as follows:

The derivatives of the membrane potentials and adaptation variables are calculated as follows:

and

To improve the learning performance, we use the Adam training  method42,45 with standard coefficient values and 
consider three learning rate values: 5× 10−2 , 5× 10−3 , and 5× 10−4 . The best performance is achieved when 
the learning rate is 5× 10−3 . For training, we use the “Norse”  library46 based on a popular “PyTorch” machine 
learning  framework47. This library allows one to apply the backpropagation method for spiking neural networks 
by modifying the optimization parameters.

The trial parameters used for training to perform all the target tasks are shown in Table 2. For all the tasks, 
there is a stimulus phase with duration Tstim and a response phase with Tresp . In general, the first phase is defined 
by ufix = 1 , and the second phase is defined by ufix = 0 . The only exception is the delayed go/no-go task, where 
the fixation input does not vanish and the response moment is indicated by the incoming stimulus. For the two 
target tasks (Romo and GoDl), the delay parameter Tdelay indicates the interstimuli interval for the Romo task and 
the time before the response phase for the delayed go/no-go task. For the GoRt task, the first column indicates 
the fixation time Tfix before the input stimulus, and an output response is expected.

Thus, our spiking neural network is characterized by several important features. First, its spiking dynamics 
are given by the two-dimensional dynamical system—the adaptive exponential neuron—which has a rich rep-
ertoire of activity regimes compared to the typical leaky integrate-and-fire neurons. Second, we do not impose 
structural constraints, e.g., Dale’s principle, but rather allow the network to evolve during training toward the 
most optimized state. Third, it is trained to perform multiple target tasks inspired by cognitive neuroscience 
experiments. Fourth, we used two types of loss functions to supervise network training: a simple mean-squared 
error function and a function with a regularization term that penalizes the highest firing rates.

Analysis of the trained network. Accuracy measurement The trained spiking network performance in 
completing multiple target tasks is computed as follows. There are in total 100 testing trials of randomly selected 
tasks for each trained network unless otherwise stated. In each testing trial, the fixation output is evaluated to 
determine whether its value is larger than the threshold value ( yfix = 0.5 ). Otherwise, the trial is assumed to 
have failed. If the fixation output meets the criterion, the outputs 〈y1,2〉 averaged over the response phase Tresp 
are calculated. For the tasks of choice (DM, CtxDM, and Romo), the trial is considered correct if the average 〈yj〉 
value corresponding to the target value yj = 1 is larger than the other value. For the repeat tasks (Go, GoRt, and 
GoDl), the trial is considered correct if the absolute difference between the corresponding output average and 
the target value does not exceed ≈ 0.15.
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Table 2.  Parameters of the target cognitive tasks. The term U (a, b) indicates the continuous uniform 
distribution of a random variable from a to b, and U ({a1, a2, . . . , an}) denotes the discrete uniform 
distribution of variables ai , i = 1, . . . , n.

Task Tstim or Tfix , ms Tdelay , ms Tresp , ms astim

DM U (300, 1800) – 250 U (0, 1)

CtxDM U (300, 1800) – 250 U (0, 1)

Go U (300, 1800) – 250 U ({0, 1
7
, 2
7
, ..., 6

7
, 1})

GoRt U (300, 1800) – 1500 U ({0, 1
7
, 2
7
, ..., 6

7
, 1})

GoDl U (200, 600) U (200, 1700) 250 U ({0, 1
7
, 2
7
, ..., 6

7
, 1})

Romo U (200, 600) U (200, 1700) 250 U (0, 1)
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PCA The multidimensional spiking activity of the trained network is analyzed by the principal component 
 method48 to uncover dynamic mechanisms underlying task performance. The data matrix Udata ∈ R

N×Ntimes is 
constructed, where each row contains one particular neuron’s dynamic variable over the sequence of trials, while 
each column represents the states of all the neurons at one particular moment. The analysis is performed for 
variables vj and aj , where j = 1, . . . ,N , separately to correctly reflect the difference between their time scales. 
Using this dimensionality reduction technique, we obtain three-dimensional projections of the neural network 
trajectories, allowing us to identify different stages of the trials and the mechanisms of task computation.

DPCA To determine the role of neural activity in mapping particular aspects of cognitive tasks, we adapt the 
method of demixed principal  components49 (dPCA) to analyze model data. In the traditional PCA approach, 
projections of phase trajectories onto the subspaces with maximum data variance can be found, and the infor-
mation about inputs and outputs is not taken into account. Thus, the resulting projections are characterized by 
mixed selectivity as the original time series of individual neurons. The essence of the dPCA method is to find a 
special decomposition of the data matrix X that contains a time series of instantaneous firing rates. In general, 
matrix X has N rows and T columns, where N is the network size and T is the number of discrete time steps in 
the trials. The network can receive S different stimuli, D different decisions can be made at the output, and for 
each parameter set, K trials are implemented. Thus, the i-th row contains information about the firing rate of 
the i-th neuron for different combinations of input stimuli and output responses. Decomposition of matrix X 
results in the following expression:

where the terms Xφ are demixed components of the population activity, two of which depend either on stimuli 
( Xs ) or only on decisions ( Xd ). The combined component is only dependent on time ( Xt ), and Xnoise is a noise 
term.

k-means and hierarchical clustering The k-means  method50,51 is used to identify neural subgroups in the 
trained network responding in a certain way during different tasks. For each of the Ntask target tasks, Ntrials trials 
are carried out, and the average firing rates fj = �zj(n)� are calculated for each j-th neuron, where j = 1, . . . ,N . 
Then, the data matrix K ∈ R

N×(Ntask∗Ntrials) is obtained, and it contains each neuron’s average rate for different 
tasks under various initial conditions. After that, the matrix is normalized to the maximum value of its entries. 
The algorithm minimizes the total quadratic deviation of the distances between the cluster points and the cluster 
centers or centroids:

where C is the set of clusters of power K, and µk is the centroid of cluster Ck.
To analyze the cluster partitioning of the network, we use Ward’s method for agglomerative hierarchical 

clustering. In this method, the distance between two Clusters A and B is determined as follows:

where fi is the firing rate averaged over different trials for each task and µj is the center of the j-th cluster. During 
each step of the algorithm, two clusters are merged, finally leading to a dendrogram of the hierarchical cluster-
ing structure.

Results
Training in detail. In all our simulations, the spiking neural network is trained with Nepoch epochs, and in 
each epoch, it is presented with Nbatch randomly selected tasks. Each task is selected by changing the task cod-
ing vector utasks . The produced network outputs are compared at the end of each epoch to the target values, and 
the loss function over the epoch is computed. We use two types of loss functions in this work. The first one is a 
simple mean-squared error (5) function, and the second one is the sum of the mean-squared error and the regu-
larization term, which imposes a maximum limit on the neural firing rates. Given the loss function, the network 
weights are modified according to the stochastic gradient descent algorithm. For the networks without regulari-
zation, Nbatch = 50 ; for those with the regularized loss function, Nbatch = 32 . Each target task from 12 possible 
tasks is selected with a random duration of the stimulus and response phases so that to correctly assemble the 
tensor Atask , an individual trial duration is aligned to the longest duration in the batch. This is done by extending 
the trial with zero inputs before receiving the original stimuli.

For both loss functions, we calculate how the average task performance of the trained network varies with 
increasing number of epochs for different values of the network size and learning rate (see Supplementary Mate-
rial, Fig. 1). We find that for the case without regularization, the networks containing 400–600 neurons reach a 
performance of more than 95% after Nepoch = 3000 epochs at a learning rate of 0.005. The regularization of the 
firing rates enabled us to obtain similar results for smaller neuron numbers, so in our analysis, we mainly use a 
network with N = 256 neurons for the loss function with regularization and N = 600 neurons otherwise. Better 
performance is obtained by considering appropriate levels of noise intensity during training (see Supplementary 
Material, Fig. 2).

The use of the adaptive exponential neuron (2) allows us to balance the network size and its performance 
by varying the adaptation time τa . This is particularly apparent for the tasks with time delays (Romo and GoDl) 

(12)X =
∑

φ

Xφ + Xnoise ,

(13)J(C) =
K
∑
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∑
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C
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compared to tasks with fast spiking dynamics of model neurons without adaptation, e.g., leaky integrate-and-fire 
ones, because the presence of a slow variable results in greater dynamic memory. We find that better performance 
can be achieved when τa = 2s (see Supplementary Material, Fig. 3), so this value is used in most simulations.

Network outputs. After training, the spiking neural network is capable of completing all the target tasks 
with varying durations of the trial phases and different levels of input noise intensity. The performance evaluated 
separately for each task is the highest for the decision-making tasks and the lowest for the delayed go/no-go task. 
The accuracy of performing other tasks varies depending on the particular network realization. Note that the 
outputs y1,2 play different roles when the network completes the choice tasks and the repeat tasks. In the former 
case, the target signal is binary; thus, the network is expected to respond with only one of two possible values for 
each output. In the latter case, the network has to memorize a continuous interval of values to properly respond. 
Note that with the prolongation of the response phase in the testing trials, the error may increase over time. The 
proper performance is observed if the response phases during testing do not exceed those used in training; see 
Fig. 5. Nevertheless, the trained network is robust against increasing input noise and results in filtered outputs, 
thus showing its generalization ability (see Supplementary Material, Fig. 4).

The two modified loss functions cause the resulting networks behave differently in the autonomous case 
(without inputs) and when switching between different tasks. For the case of training without regularization, the 
neural network exhibits chaotic spiking dynamics in the absence of inputs, thus giving rise to irregular outputs. 
However, when the task coding input is switched on and the sensory and fixation inputs are received, the network 
dynamics are regularized according to the target task, leading to very good trial performance (see Supplementary 
Material, Fig. 5a). Therefore, in terms of nonlinear dynamics, such recurrent spiking neural networks contain 
multidimensional chaotic attractors in their phase space in the absence of inputs. This endogenous random 
activity serves as an exploratory state when the system is expecting to receive informative inputs. The incoming 
stimuli switch phase-space trajectories to some metastable areas formed during training. Passing through these 
areas results in completing the target task. Switching between different tasks occurs by directly moving from one 
metastable area to another without returning to the initial chaotic regime (see Supplementary Material, Fig. 5b). 
Hence, after successfully completing a task, the network begins to process a new task.

In the case of neural networks trained with the regularized firing rates, zero inputs result in a silent station-
ary state, where the random spiking activity only emerge due to the noise in each neuron. The inputs of a target 
task rapidly switch the network to the metastable area responsible for that task. However, the process of output-
ting trajectories from this area and the process of returning to the stationary state occur much slower than the 
initial process because the induced spiking oscillations support the whole network activity for some time; see 
Supplementary Material, Fig. 5c. Switching between different tasks also occurs quite slowly, giving rise to longer 
transient process times when performing subsequent target tasks (see Supplementary Material, Fig. 5d).

Task‑specific neural responses. After the spiking neural network is trained to perform multiple tasks, 
we analyze how individual neurons contribute to the population dynamics during the stimulus and response 
phases. At the single-unit level, the trained neural network exhibits spike sequences tuned to different tasks and 
trial phases in various ways. Neural subgroups that preferentially fire during the implementation of a particular 
task but are almost silent during the completion of other tasks emerge. For example, in Fig. 6a,c, the same group 
of neurons responds during the DM1 and Go2 tasks. However, in Fig.  6b,d, different neural groups respond 
during the same tasks. It can be seen that the neurons in the first group fire more spikes on average than those 
in the second group. These emergent properties are qualitatively consistent with the experimental findings in 
task-performing  animals16,49,52. Figure 6e shows the full network spiking activity when completing the working 
memory Romo task. It can be seen that there are active neurons during the delay period when no input stimuli 
are received, and during the response phase, other neurons participate in the network output. Thus, the conclu-
sions that the functional specialization of spiking neurons is reminiscent of the experimental observations in 
many neurophysiological studies of behaving animals can be  made24,49.

We calculated the average firing rates of each neuron when the network performed different tasks for the two 
trial phases separately. There are two basic differences in the networks with the two types of loss functions. First, 
for the case of the pure mean-squared error, only approximately half of the neurons actively participate in the 
network response, and the remaining neurons remain silent. However for the regularized loss function, almost 
all the neurons exhibit some activity in all the tasks; cf. Fig. 7a,b. Second, the former case gives rise to very high 
firing rates of hundreds of Hertz of active neurons, while for the latter case, most neurons fire in the range of a 
few or at most dozens of Hertz. This property of spiking networks trained without regularization holds even for 
small numbers of neurons (see Supplementary Material, Fig. 6).

Note that for the first type of loss function, active neurons are clearly divided into sensory and motor parts, 
where the first part is mainly active during the stimulus phase, while the second one generates spikes during 
the response phase (see Fig. 7a). Moreover, this almost unchanged division is observed for all the target tasks. 
In contrast, for the second type of loss function, these distributions are much more complicated (Fig. 7b). In 
addition to the fact that this case leads to more biologically relevant firing rates and high performance at lower 
network sizes, the phenomenon of mixed selectivity is similar to that found in neurophysiological experiments 
where the neurons are not clearly tuned to one particular task or stimulus feature but rather fire under different 
 conditions16,49,52.

To obtain more insight into how the neurons are organized after training, we applied the k-means method for 
detecting clusters capable of performing particular tasks and Ward’s method of hierarchical clustering. Figure 8 
shows the contribution of individual neurons to different tasks, where the color intensity reflects the normalized 
average firing rate for different tasks and the dendrograms indicate hierarchical clustering of neurons as well 
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Figure 5.  How the trained neural network performs different target tasks: the inputs (the first column) for the 
indicated tasks, the targets (the second column) and network output responses (the third column). The network 
with N = 256 neurons is trained with the mean-squared loss function, and the other parameters are taken from 
Table 1.
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as the target tasks. The dendrogram in the upper part shows two neural groups in the network, where the first 
largest group consists of neurons with the highest mixed selectivity that are relatively weakly active and whose 
activity is distributed across tasks uniformly. The second group contains clearly distinguished clusters of neurons 
specialized at completing particular tasks.

Therefore, the trained spiking network shows a qualitatively similar property to biological neural networks, 
where neurons are activated by particular stimuli or behaviors, and neurons with highly mixed selectivity 
 exist16,24,49,52. The dendrogram on the left-hand side reflects the similarities and differences between the target 
tasks in terms of the neural activity. For example, in Fig. 8, tasks CtxDM1 and DM1 (as well as CtxDM2 and 
DM2) are located at neighboring branches of the dendrogram tree, showing that their implementation involves 
similar computational mechanisms supported by the network dynamics. Note that while the particular hierarchi-
cal structure vary in different network realizations, their basic features do not change. Similar results are observed 
when the network is trained without regularization (see Supplementary Material, Fig. 7). Some additional aspects 
of cluster identification are given in the Supplementary Material (Figs. 8, 9).

Computation through dynamics. To study dynamic mechanisms underlying the network responses in 
different tasks, we analyzed projections of the high-dimensional phase-space trajectories into the low-dimen-
sional subspace of the first three principal components. We separately considered the projections of the mem-
brane potentials vj and the adaptation variables aj , which evolved at different time scales.

In the case of the DM task, projections to the subspaces of both types clearly show two distinguished stages. 
During the first stage, the trajectories with different input stimulus values umod1 slowly diverge from each other, 
indicating the process of sensory evidence integration, see Fig. 9a,b. During the second stage, the trajectories 
rapidly move to one of the two metastable states, each corresponding to the particular decision alternative. 
Metastability means that these are not asymptotically stable states, but they are preserved during a finite time of 
the response phase and disappear after that. Therefore, training induces input-specific transient trajectories in 
the phase space of the spiking neural network, and two sets of metastable points emerge, indicating two possible 

Figure 6.  Spiking sequences of two neural subgroups of the trained network when performing the DM1 task 
(a, b) and the Go2 task (c, d). The first subgroup dynamics are given by (a) and (c), and the second subgroup 
dynamics are given by (b) and (d). (e) Full network spiking activity when performing the Romo1 task.
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Figure 7.  Neuronal firing rate distributions when performing different tasks during the stimulus and response 
phases. (a) Network of 600 neurons trained with the mean-squared loss function (inactive neurons not shown). 
(b) Network of 256 neurons trained with the regularized loss function. The values are obtained after averaging 
over 100 trials for each task and are sorted in ascending order of the rates during the stimulus phase of the first 
CtxDM1 task.
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outcomes at the end of the trials. Note that this emergent dynamic mechanism is robust to substantial noise, as 
shown in Supplementary Material, Fig. 4.

A similar dynamic mechanism appears after training for the CtxDM task; however, two flows of trajectories 
responsible for the activation of each of the two contexts emerge (see Fig. 9c,d). Within each flow, two distinct 
final states corresponding to two possible decisions can be  observed53. In all the types of decision-making tasks, 
a much clearer distinction of trajectories with varying input stimuli is observed for the projections onto the 
adaptation variable subspace. Hence, completing these tasks with high performance requires slow dynamics 
provided by the adaptation variable of the model neuron.

This fact is particularly supported when analyzing PCA projections for the Romo task shown in Fig. 9e,f. Fast 
spiking dynamics projected onto a three-dimensional subspace cannot form a kind of parametric memory within 
the delay interval (Fig. 9e). In contrast, slow-variable projections can help to explain a basic dynamic mechanism 
of the working memory in the spiking neural network (Fig. 9f). Varying input stimuli give rise to the divergence 
of trajectories in this subspace. During the delay, the trajectories slowly move and maintain their relative posi-
tions, reflecting the input differences. If the delay is extended, trajectories are attracted to a line of metastable 
states that support the memorized first stimulus. After receiving the second stimulus and vanishing fixation input, 
trajectories rapidly jump to one of two metastable attracting sets representing two corresponding decisions.

Therefore, performing all the tasks of choice requires stimulus- and context-specific transient trajectories 
that reflect population coding during the task implementation and two separate sets of metastable states that 
transiently attract the trajectories at the end of the trials. For the repeat tasks, after training, a line of metastable 
states representing the values from the whole range of possible inputs and corresponding outputs emerges. 
Qualitatively similar mechanisms are found in the network trained without regularization (see Supplementary 
Material, Fig. 10).

When the network implements a sequence of alternating tasks, one observes a sequence of metastable states 
and transient trajectories between them in the network’s phase space, see Fig. 10. Each state corresponds to the 
task- and stimulus-specific output emerging at the end of the trial, and the transient trajectories reflect input the 
information accumulation, memory and computation resulting in a specific response.

The method of demixed principal components allows us to obtain complementary information about dynamic 
mechanisms that impact task performance. Similar to the process with PCA, by applying dPCA separately to 
membrane potentials and adaptation variables, we determine how different phases of the trial are processed via 

Figure 8.  Cluster structure of the neural network after training, where the color denotes the normalized 
average firing rate of each neuron during each task. The dendrograms on the left and on the top show the 
hierarchical structures with respect to the tasks and neurons, respectively. The network consists of 256 neurons 
and is trained with the regularized loss function. The average of 100 test trials of each task is obtained.
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Figure 9.  Projections of the neural activity trajectories onto the subspace of the first three principal 
components for variables vj (left column) and aj (right column) for the network with 256 neurons and the 
regularized loss function when performing the DM (a,b), CtxDM (c,d), and Romo (e,f) tasks. The black star 
indicates the beginning of each trial, and the colored stars show the termination points. The black point 
indicates the beginning of the response phase. Pulse symbols indicate the delay periods (f). Trajectories are only 
shown for the minimum and maximum input values for clarity. The colored asterisks in the left column show 
the 100th iteration of the corresponding response phase, and those in the right column show the last iteration of 
the response phase. The results of the network with 256 neurons trained with the regularized loss function are 
shown.
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neural dynamics. For example, Fig. 11 shows the first demixed components for the trials with increasing input 
stimulus when the network performs the go/no-go task with the reaction time. The early stage of the response 
phase (between 600 and 900 ms) is mainly determined by fast spiking dynamics given by membrane potentials, 
which represent the changing input. During the late stage (after 1200 ms), the memory about the input magnitude 
is moved into adaptation variables with slow dynamics, while the membrane potentials do not truly capture the 
input modification. The the initial strong network response due to the membrane potential component and the 
prolonged response due to the adaptation component are observed for other target tasks (see Supplementary 

Figure 10.  Projections of the neural activity trajectories onto the subspace of the first three principal 
components for variables vj (a) and aj (b) for the network with 256 neurons and the regularized loss function 
when performing a sequence of different tasks. The network state at the end of each trial is the initial condition 
for the next task.

Figure 11.  First stimulus demixed components obtained for the adaptation variables (top) and membrane 
potentials (bottom) during the GoRt task with different input stimuli. The network size is N = 256 , it is trained 
with the regularized loss function, and other parameters those shown in Table 1.
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Material, Fig. 11). Moreover, the method of demixed principal components reveals why the performance degrades 
for particular tasks (see Supplementary Material, Fig. 12).

Cluster lesioning. To uncover causal properties of the neural clusters, we study the change in network per-
formance when each cluster is lesioned and when only one cluster is active. The cluster structure is revealed, as 
described earlier. To lesion a certain cluster, the output weights of its neurons in matrices Wout and Wrec are set 
to zero. To make only one cluster active, only its output weights are active, and all the input links from the other 
clusters are set to zero.

Then, the obtained networks are tested, and their performance is evaluated, as described in Sec. 2.4. The top 
part of Fig. 12 shows the resulting performance after particular clusters are lesioned, and the bottom part shows 
the performance when only particular clusters remain active in the network. The last row indicates the original 
network performance for the particular target tasks. Note that a cluster’s role in completing the same task for 
different input modalities can be quite asymmetric, reflecting the complexity of the task and stimulus representa-
tions in neuronal dynamics. For some target tasks, one or several of the most influential clusters, whose lesioning 
disrupts the network performance, can be distinguished, for example, Cluster 13 in the GoDl1 task and Cluster 1 
in GoRt2 . For other tasks, the importance of these terms is distributed among several or all clusters e.g., different 
cluster lesions cause similar performance impacts on Go1.

Note that the lesion of Cluster 1 leads to the most dramatic change in performance for all the tasks except one 
( GoRt2 in Fig. 12); thus, this cluster contains neurons with the highest mixed selectivity for the different tasks. 
Its isolated functioning leads to satisfactory performance compared to other clusters (see the bottom of Fig. 12). 
The complementary results are shown in Supplementary Material Fig. 13; the logarithmic mean-squared error 
function is considered and similar task performance effects are obtained. Therefore, the trained neural network 
is organized in such a way that the tasks can be affected by one, several or all neural clusters, and the target tasks 
can be regarded as one-, several- and all-cluster dependent tasks.

Conclusions and discussion
In this paper, we presented recurrent spiking neural networks as functional models for performing multiple 
cognitive-like tasks. The target tasks were motivated by popular cognitive neuroscience experiments and were 
characterized by a stimulus-response structure. Our work extends the framework of functional neural networks, 
which has recently become popular in the computational neuroscience community as a promising tool for design-
ing models with predefined constraints that, after training, are capable of completing cognitive-like target tasks. 

Figure 12.  Network performance for different tasks is shown below the table when particular clusters, denoted 
on the left-hand side, are lesioned (top part) or switched on (bottom part). The last row indicates the mean-
squared error of the original network performance for particular target tasks. Each data point is obtained for the 
network with 256 neurons trained with the regularized loss function after averaging over 200 test trials.
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In this framework, the neural network is trained on the cognitive functions in a supervised manner, and after 
that, the network is reverse engineered to relate the obtained input–output mappings with features of neural 
activity, thus providing insight into the mechanisms of computation through dynamics.

Most of the results in this study were obtained by using rate-based neural networks for one particular target 
task. In our work, we designed spiking recurrent neural networks that are, on the one hand, more biologically 
relevant in terms of neuronal dynamics and, on the other hand, lie in the actively developing framework of neu-
romorphic computing, which aims at developing next-generation energy effective devices. By using supervised 
learning techniques, the initially random spiking networks were trained to perform multiple cognitive-like tasks 
depending on the task coding input. The trained neural networks were treated as multidimensional dynamical 
systems, and the mechanisms that impact the multitasking performance were analyzed.

Several aspects make the results of our papers distinct from previously obtained results. First, we use the 
adaptive exponential neuron—a more biologically relevant model than the leaky integrate-and-fire neuron. 
Second, the initial structure of our networks is not constrained by Dale’s principle or a modular architecture, 
thus allowing the network to evolve toward the most optimized state. Third, we consider a set of target cognitive-
like tasks, and the network is trained to implement them all depending on the context-like signal. Fourth, two 
modified loss functions are used in the training procedure—the mean-squared error function without and with 
regularized firing rates.

We found several features that are qualitatively consistent with experimental findings observed when study-
ing task-performing animals. First, task-specific functional clusters of neurons that fire preferentially during 
particular tasks or trial phases emerged. Second, some specialized spiking neurons responded to sensory inputs, 
while others mainly focused on producing motor outputs. Third, neurons with high mixed selectivity appeared, 
and they generated activity depending on various factors in a complicated manner. Fourth, we confirmed the 
principles of computation through dynamics, where special trajectories that emerged in the population phase 
space were responsible for information processing. Fifth, causal links between neural dynamics and functional 
properties were observed by activating and lesioning particular clusters. Note that our purpose was not to reach 
a quantitative resemblance between our model and any spike trains but to study if qualitative similarity appeared 
in the spiking network that was trained on simplified versions of cognitive tasks. Our results suggest that this is 
indeed the case, and our approach can serve as a springboard for future investigations.

Data availability
The datasets generated and analysed during the current study are available at https:// github. com/ Pugav kom/ 
cgtas knet and https:// github. com/ Pugav kom/ multy_ task.
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