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Hybrid artificial electric field 
employing cuckoo search 
algorithm with refraction learning 
for engineering optimization 
problems
Oluwatayomi Rereloluwa Adegboye 1 & Ezgi Deniz Ülker 2*

Due to its low dependency on the control parameters and straightforward operations, the Artificial 
Electric Field Algorithm (AEFA) has drawn much interest; yet, it still has slow convergence and 
low solution precision. In this research, a hybrid Artificial Electric Field Employing Cuckoo Search 
Algorithm with Refraction Learning (AEFA-CSR) is suggested as a better version of the AEFA to 
address the aforementioned issues. The Cuckoo Search (CS) method is added to the algorithm to boost 
convergence and diversity which may improve global exploration. Refraction learning (RL) is utilized 
to enhance the lead agent which can help it to advance toward the global optimum and improve 
local exploitation potential with each iteration. Tests are run on 20 benchmark functions to gauge 
the proposed algorithm’s efficiency. In order to compare it with the other well-studied metaheuristic 
algorithms, Wilcoxon rank-sum tests and Friedman tests with 5% significance level are used. In order 
to evaluate the algorithm’s efficiency and usability, some significant tests are carried out. As a result, 
the overall effectiveness of the algorithm with different dimensions and populations varied between 
61.53 and 90.0% by overcoming all the compared algorithms. Regarding the promising results, a set of 
engineering problems are investigated for a further validation of our methodology. The results proved 
that AEFA-CSR is a solid optimizer with its satisfactory performance.

In real world applications, optimization problems are frequently non-differentiable, non-convex and discontinu-
ous. Before the introduction of the most extensively used metaheuristic optimization technique, gradient descent 
approach was one of the optimization techniques employed as well as the Gauss–Newton  technique1,2. The 
gradient-based optimization method is vulnerable to getting over the local optimums and reduces the precision 
of optimization. On the other hand, metaheuristic optimization algorithms are able to find ideal or nearly ideal 
solutions in a manageable time. These algorithms have been studied by many researchers in order to deal with dif-
ficult optimization problems, some of them are Genetic Algorithm (GA)3, Particle Swarm Optimization (PSO)4, 
Hybrid Artificial Humming Bird-Simulated Annealing (HAHA-SA)5, Differential Evolution (DE)6, Hybrid Flow 
Direction Optimizer-dynamic oppositional based algorithm (HFDO-DOBL)7, Firefly Algorithm (FA)8, Artificial 
Electric Field Algorithm (AEFA)9,10, Artificial Bee Colony Optimization (ABC)11, Hybrid Heat Transfer Search 
and Passing Vehicle Search Optimizer (MOHHTS–PVS)12, Cuckoo Search (CS)13, Chaotic Marine Predators 
Algorithm (CMPA)14 and Nelder Mead-infused INFO algorithm (HINFO-NM)15. AEFA has become the focus 
of research among these algorithms in recent years with its few parameters and its simple principle.

AEFA is a stochastic optimization algorithm based on swarm intelligence. Due to the interaction between the 
charged particles via electrostatic force; attraction or repulsion. The particles travel along the electrostatic field 
with the most charged particle leading. When it was first introduced, academics were intrigued by the efficiency 
of AEFA. It has been used extensively in numerous fields, such as machine  learning16,17, assembly  lines18, engi-
neering  problems19,20, feature  selection21 and economic load dispatch  problem22. The leading charged particle 
controls each iteration of the search process of AEFA.

In multimodal problems, the leading charged particle may occasionally enter a sub-optimal  location23. The 
population is nevertheless subject to local optimal, when the leading charged particle becomes stranded in a 
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sub-optimal location. Less diversity in population becomes inevitable because of the significant convergence of 
other particles toward the leading charged particle. Consequently, the standard AEFA has the similar problems 
as the majority of metaheuristic algorithms such as; lack of population variety and tendency to be trapped in 
local optimum points.

The aforementioned problems are the main motivation of this study. Therefore, a hybridized version of Arti-
ficial Electric Field Algorithm (AEFA) with Cuckoo Search (CS) using Refraction Learning (RL) is proposed 
and called AEFA-CSR. In this hybrid version, two search methods with different properties are introduced to 
provide new solutions in the population. One of them makes use of the idea of light refraction to learn opposite 
solution. This method is proposed in order to enhance the lead particle search functionality and broaden its 
range to avoid sub-optimality. Additionally, the CS method is used to increase population variety. By weakening 
the leadership of the leading particle and allowing particles to identify viable solutions will enable particles to be 
moved from other sub-optimal solutions. Using the aforementioned strategies in combination, the performance 
of AEFA-CSR becomes quite noticeable.

There are many AEFA variations in the literature. However, to the best of our knowledge, AEFA-CSR is the 
first variant of AEFA that employs CS and RL. In order to overcome the limitations of AEFA, CS is chosen in 
particular for enhancing the population diversity and RL was specifically applied for increasing the ability of 
escaping from multiple local optimums. These features assess the AEFA-CSR to perform contributions to the field 
with an enhanced solution quality and for real-world engineering problems. The steps are specifically investigated 
to obtain enhanced and strengthened features in order to overcome the limitations of AEFA.

The rest of the paper is structured as follows. In Section “Related work”, related metaheuristic optimization 
techniques, in particular AEFA variations and their contributions are given. In Section “Methodology”, the 
methodology used to form AEFA-CSR is discussed. The algorithms; AEFA, CS, RL are elaborated individually 
by mentioning the main motivation of this study. In Section “Experimental results”, the experimental results 
obtained by the proposed algorithm AEFA-CSR with the counterpart algorithms such as well-studied and com-
monly used ones, recently developed ones and hybrid ones for the benchmark functions are presented. Addi-
tionally, some particular tests to observe the efficiency of AEFA-CSR are employed and the results are discussed. 
Moreover, to measure the suitability of the algorithm for real world engineering design problems, some problems 
are studied and analyzed. Finally, in Section “Conclusion and future work”, the concluding statements and the 
future work are given.

Related work
There is a widespread use of metaheuristic optimization techniques. These techniques are used to address opti-
mization challenges and can be categorized into three groups: physics-inspired algorithms, evolution-inspired 
algorithms and swarm-inspired algorithms. Physics-inspired algorithms imitate the physical laws that govern 
how individuals engage with each other and their search space. These laws include the laws of inertia, light 
refraction, gravitation and many  others24. Few of the popular algorithms in this category are Gravitational Search 
Algorithm (GSA)25, Colliding Bodies Optimization (CBO)26 and Henry Gas Solubility Optimization (HGSO)27. 
Evolution-inspired algorithms simulate the natural process of evolution by trying different combinations of indi-
viduals to find the best solution. The best individuals are combined to form a new generation, which is the key 
advantage of this technique. Few of these algorithms are Genetic Algorithm (GA)3, Differential Evolution (DE)6 
and Evolutionary Programming (EP)28. Swarm-inspired algorithms aim to develop intelligent swarm behaviors 
like animal grazing and bird flocking. In the search space, promising areas will be discovered by a population 
that collaborate and interact. Few of the recent swarm-inspired algorithms are Whale Optimization Algorithm 
(WOA)29, Seagull Optimization Algorithm (SOA)30, Particle Swarm Optimization (PSO)4, and Harris Hawks 
Optimization (HHO)31.

Each of the numerous metaheuristic algorithms has its own drawbacks. The local and global search balance in 
Grey Wolf Optimizer (GWO) is  weak24. Rodríguez et al. investigated the possibility of altering the initial control 
parameters to improve the exploration process in  GWO32. GWO does not have an effective diverse population, 
so Lou et al. switched from the typical real-valued encoding method to a complex-valued one which makes 
the population more  diverse33. WOA easily enters the local optimum and suffers from premature convergence. 
Using chaotic maps, Oliva et al. modified WOA to prevent the population from entering local  optima34. Shi et al. 
proposed a new chaos-based operator and a new neighbor selection strategy to speed up the convergence of 
Artificial Bee Colony (ABC) both of which improved the standard  ABC35.

AEFA is a type of physics-inspired algorithm that mimics the group of particles interact and move along 
the search space. It is simple to implement and has fewer parameters. As a result, a variety of optimization 
problems have been successfully solved using this algorithm. Controller  design36, multi-objective optimization 
 problems37, soil shear strength  prediction38, pattern search 39, vehicle routing 40 and tumor detection 17 are some 
of the examples of the research problems solved by AEFA. To improve performance and address the shortcom-
ings of the AEFA, numerous academics have developed variants of the original AEFA in recent years. Malisetti 
and Pamula used Moth Levy methodology to create Moth Levy Artificial Electrical Field Algorithm (ML-AEFA) 
to solve the problem of entering the sub-optimality41. An algorithm with new strategy for velocity update and 
population initialization known as improved Artificial Electrical Field Algorithm (IAEFA) has been introduced 
in order to enhance the robustness of AEFA in handling complex  problems42. Furthermore, due to the algorithm’s 
focus primarily on local search, it is unable to effectively perform efficient global exploration across the entire 
solution space. Cheng et al. used a log-sigmoid function in order to strike a balance between exploration and 
 exploitation16. AEFA with inertia and repulsion known as improved Artificial Electrical Field Algorithm (IAEFA) 
is introduced by Bi et al. to avoid premature convergence and improve population  diversity43. Modified Artifi-
cial Electrical Field Algorithm (mAEFA) is proposed by Houssein et al.23. Levy flight, local escaping operator 
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and opposition learning are introduced to avert stagnation in regions of local  optimal23. Extensive experiment 
shows improvement in convergence rate and search ability of AEFA. To attain better exploitation and exploration 
balance, Anita, Yadav and Kumar introduced AEFA for solving constrained optimization problems (AEFA-C) 
by constraining particle interaction to the search space’s border using new velocity and location  updates19. The 
improved version of the AEFA that was proposed by Demirören et al. as Opposition based Artificial Electrical 
Field Algorithm (ObAEFA) makes use of the opposition-based learning strategy to improve the AEFA explora-
tion  capabilities36. The improved performance of ObAEFA was vetted through several experiments. Petwal and 
Rani’s experimental findings show that the proposed algorithm is highly competitive and achieves the desired 
level of population  diversity37. AEFA based on opposition learning is proposed to enhance its global exploration 
and local development capabilities. The opposition learning strategy is used to increase population diversity 
and exploitation, while the chaos strategy is used to improve the quality of the initial population, experiments 
demonstrate the algorithm’s superior  performance44. Furthermore, Levy flight mechanism that provides multiple 
distinct evolutionary strategies and enhances the local search capability was introduced to AEFA by Sinthia and 
 Malathi17. The elitism selection theory ensures that the fittest survive and mutation operators increase population 
diversity. The performance of the multi strategy Artificial Electrical Field Algorithm (M-AEFA) is enhanced by 
the dynamic combination of these adaptive strategies.

Hybridizing AEFA with other types of algorithms like swarm-inspired or physics-inspired algorithms to 
enhance the performance of AEFA is another area of research interest. The poor exploitation as a result of the 
stochastic nature of AEFA is be improved by hybridizing AEFA with Nelder-Mead (NM) simplex. AEFA performs 
the global search while NM performs the local search. Test on popular functions show improved  performance20. 
One of the well-known optimization algorithms DE is applied to create an effective hybrid by combining the 
capabilities of AEFA and DE (AEFA-DE). On IEEE Congress on Evolutionary Computation-2019 (CEC-2019) 
test functions, the performance of the suggested hybrid method is validated. The experimental findings imply 
that AEFA-DE performs better than the compared  algorithms45.

AEFA is able to conduct a more in-depth search across the solution space using the local search  mechanism18. 
It was discovered that the location of the charged particle and the mutual attraction of the nearby particles influ-
ence how the artificial electric field algorithm updates its position. Despite of the strong local search ability of 
AEFA, it has limited global search capacity. It is because of the charged particles have a strong ability to interact 
with information. The Sine–Cosine Algorithm (SCA) can better balance local and global search than AEFA. As 
a result, SCA’s update mechanism is included into the AEFA (SC-AEFA) by changing the iterative process of 
the  algorithm40.

The major goal of the derivatives of AEFA is to increase search accuracy and convergence speed, in accordance 
with the numerous improvement methodologies indicated above. As a result, this study presents the AEFA-CSR, 
an improved Artificial Electric Field Algorithm based on Cuckoo Search (CS) with Refraction Learning (RL).

Methodology
Artificial electrical field algorithm. The Coulomb’s law states that "electrostatic forces of repulsion or 
attraction among two different charge particles are in direct proportion with the product of charges and in 
inverse proportion with the square of the distances between their positions". This idea serves as the basis for the 
limitation of  AEFA9. In this case, the charged particles are referred to as agents and the charges of particles are 
used to evaluate the agents’ potentials. All charged particles may experience an electrostatic force of either repel-
ling or attracting as a result of the movement of objects in the search space. The charges use electrostatic forces 
to communicate directly and their positions provide the best solution. As a result, charges are referred to as a 
function of the population’s fitness and the potential solution. The electrostatic force of attraction states that the 
charged particles with the least charge are drawn to the charged particles with the most charge. In addition, the 
solution with the highest charge is thought to be the  best46. The pseudocode of AEFA can be seen in Algorithm 1.

Assuming Yj =
(

Y1
j ,Y

2
j , . . . ,Y

DN
j

)

∀j = 1, 2, . . . ,N where the jth particle has dimension DN . By employing 

the location and best personal fitness value of particular particle, that particle is able offer the best global fitness 
value in AEFA. To acquire the optimum position fitness value of any particle j throughout interval formulas are 
expressed  below43,

where a particle’s personal best fitness and current position are represented as Bj and Yj respectively. Furthermore, 
the force on the charge l  exacted by j throughout interval I is given in the following Eq. (2)9,

where ql and qj are charge of any particle l  and j is expressed as,

(1)BDN
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Worst(t) and Best(t) represent the worst and best fitness among all charges. K(t) and ε denote the Coulomb’s 
constant and a positive epsilon constant, respectively. The Euclidean distances between two independent particles 
at interval  t   is therefore represented as DISTjl(t) and are calculated as follows.

In addition, Eq. (6) gives the assessment of max iter and current iteration with respect to the Coulombs rule. 
The parameters of the Coulombs rule are represented by K0 and γ respectively.

where max iter refers to total number of iteration preset at the beginning and iter is the current iteration number 
when computing Coulomb’s constant.

The total electric force on jth particle with the dimension DN is thus stated as follows,

where R depict random number from the range of [0–1]. Individual charge divided by total individual charge of 
all particles is expressed as Ql(t) as follows.

Equations (9) and (10) describe the equations for the respective electric field EFDN
j (t) and acceleration 

AccDN
j (t) of the jth particle having the dimension as DN over interval t ,

where Maj(t) represent the mass of particle j. Equations (11) and (12) provide the update equations for the 
velocity and location of the jth particle as follows,

Algorithm 1 Pseudo-code of AEFA 
Initialization of Population size  within search range , ; 

Set the Initial velocity to 0; 

Compute each agent fitness value; 

Set iteration 1; 

while stopping requirement is not met do 

    Compute , Best and Worst 

    for 1 to  do 

       Compute fitness values 

      Compute the total force in each direction Eq. (7) 

      Compute acceleration Eq. (10) 

1 Acc

1 1

   End for 

End while 

(4)
{

Best(t) = min(Fitness l(t))l = (1, 2, . . . ,N)

Worst (t) = max(Fitness l(t))l = (1, 2, . . . ,N)

}

(5)DISTjl(t) =
∥

∥Yj(t),Yl(t)2

∥

∥

(6)K(t) = K0 × exp

(

−γ
iter

max iter

)

(7)Total Force DN
jl (t) =

N
∑

l=1,l �=j

R ×
[

Force DN
jl (t)

]

(8)Ql(t) =
ql(t)

∑N
l=1 ql(t)

(9)EFDN
j (t) =

Total Force DN
jl (t)

Ql(t)

(10)AccDN
j (t) =

Qj(t)× EFDN
j (t)

Maj(t)

(11)VDN
j (t + 1) = R × VDN

j (t)+ AccDN
j (t)

(12)YDN
j (t + 1) = YDN

j (t)+ VDN
j (t + 1)
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Cuckoo search. The strong reproductive strategy of some cuckoo species encourages the idea of Cuckoo 
Search (CS)13,47 which is a type of metaheuristic algorithm inspired by the swarm intelligence. Three rules regu-
late CS operations and the last rule entails adding some fresh random solutions to the  process48. An approxi-
mation of it is a fraction Pa of the n number of host nests to create new nests. The basic steps of the CS can be 
determined by following the cuckoo breeding behavior, which can be found  in49 and was summed up  in50. The 
optimization issue to be tackled is portrayed as f (Y) where nests are represented as Y = {Y1,Y2,Y3, . . .YD} 
with D dimensions. Within the designated search space there are N host nests {Yi , i = 1, . . . ,N} . Each of the 
Yi = {Yi1, . . . ,YiD}  nests indicates a potential solution to the optimization task at hand. Finding the new popu-
lation of Yi(t + 1) nests is one of the algorithm’s crucial phases. Additionally, the following equation shows the 
use of the Levy flight to gain the new nests at a time t ,

where � is a Lévy flight parameter, ⊕ is an entry-wise multiplication operation, and α is the step size. As afore-
mentioned the third rule imitate this notion, host birds will abandon nest given alien eggs are found. In this case, 
the following method can be used to regenerate new nest with probability Pa,

where two randomly chosen nest from host of nests are Yy(t) and Yj(t) . R is a random value between [0,1]. The 
step by step execution of CS can be seen in Algorithm 2.

Algorithm 2 Pseudo-code of CS 
Determine objective function , , , , …

Initialization of Population size  within search range , ; 

while stopping requirement is not met do 

   Get cuckoo  using Eq. (13) 

   Compute the fitness of each Cuckoo 

   Select   randomly from host nest 

   If  > 

      Substitute  with new solution 

   End if 

 With probability of  abandon a fraction of worst nest, create new nest Eq. 14  

 Keep nest with quality solution 

  Analyze and rank solution to determine current best 

End while 

Artificial electric field employing Cuckoo search algorithm with Refraction learning 
(AEFA-CSR). AEFA-CSR algorithm has been proposed with the proper use of the previous techniques. The 
algorithm does not only combine the benefits of the Artificial Electric Field Algorithm (AEFA) but two of the 
algorithms; Cuckoo Search (CS) and Refraction Learning (RL) as well as incorporating a sub-optimal avoidance 
technique. This offers quite noticeable global search capabilities as well as the ability to avoid being trapped into 
local optimum points. In the Algorithm 3, the detailed steps of AEFA-CSR are given.

(13)Yij(t + 1) = Yij(t)+ α ⊕ Levy(�)

(14)Yi(t + 1) = Yi(t)+ R ×
(

Yy(t)− Yj(t)
)
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Algorithm 3 Pseudo-code of AEFA-CSR 
Initialization of Population size  within search range , ; 

Set the Initial velocity to 0; 

Compute each agent fitness value; 

Set iteration t 1; 

while stopping requirement is not met do 

    Compute , Best and Worst 

    for 1 to  do 

      Compute fitness values 

      Compute the total force in each direction Eq. (7) 

      Compute acceleration Eq. (10) 

1 Acc

       If R < 

             Replace a fraction of bad agent with Eq. 15 

       End if 

Update lead agent with Eq. (16) 

1 1

   End for 

End while 

Motivation. An algorithm may become inefficient, if the exploration ability performs excessive. In the same 
way excessive exploitation may trap the algorithm in sub-optimal prematurely and may provide unacceptable 
results. Consequently, the balance between exploration and exploitation is crucial for an algorithm’s  efficiency51. 
It was discovered that the location of the charged particle and the mutual attraction of the nearby particles cause 
the position update of the candidate solutions. AEFA has good exploitation ability with limited global search 
capacity due to the strong ability of interaction of the  particles40. AEFA solely uses the electrostatic force. This 
technique of updating population only draws other agents to the lead agent quickly by limiting population vari-
ety. As a result, AEFA is susceptible to becoming temporarily trapped.

Figure 1 displays the migration of 20 agents utilizing the Sphere function, with the dimension set to 2 for 
visualization. The upper and lower bounds set to 10, − 10 and agents are shown at various iterations. The lead 
agent leads the migration as the other agents begin to transverse the solution space at iteration one. At iteration 
10, AEFA starts to collect agents around the ideal area in the problem space as informed by the lead agent. The 
strong attraction force discourage exploration in other particles. This leads to reduction in population diversity 
as seen in Fig. 1. Peradventure the lead agent is trapped in some local optimal, other agents will also become 
trapped. In other words, the lead agent dominates the exploring capabilities of AEFA. The other particles need to 
be more capable of exploration and exploitation by weakening the leadership of lead agent. Also, the lead agent 
requires a local optimum avoidance approach. This drawback serves as the foundation for this work’s motive.

Figure 1.  Distribution of 20 agents in AEFA with (a) the random distribution of agents, (b) the updated 
locations of agents after 10 iterations and (c) the gathered positions of agents.
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Cuckoo search nest replacement strategy. Cuckoo Search (CS) nest replacement operator is used to replace some 
nests randomly with newly produced solutions to enhance the algorithm’s exploration capability. With the use 
of this replacement operator in the CS, the exploration capability of the algorithm is quite  strong52–54. Due to the 
efficiency that CS has, this method is applied to AEFA as an aid tool for its poor exploration ability.

This process involves by replacing a set of nests with new values based on a probabilistic selection. It is pos-
sible to choose any nest Yi(i ∈ [1, . . . ,N]) with a probability of pa ∈ [0, 1] . A uniform random number R within 
[0, 1] is assigned in order to carry out this procedure. When R falls below pa , the nest Yi is chosen and adjusted 
as shown in Eq. (15). In all other respects, Yi is unchanged. The Eq. (15) is shown as follows,

where y and j are random numbers from 1 to N and rand is a random number with normal distribution.

Refraction learning. Refraction Learning (RL) is based on the idea that light rays bend when they pass through 
an air-to-water transition. As an object’s medium shifts the velocity shifts as well, bending in the direction of the 
boundary’s normal. This theory aims to assist a candidate’s solutions in leaving the sub-optimal while retaining 
 variety55. This kind of opposition-based learning can be considered more advanced to avoid sub-optimality. 
Refraction learning is used in Whale Optimization Algorithm (WOA) and Equalized Grey Wolf Optimizer 
(EGWO)24,56. In both of the applications, it can be seen from the statistical results that the local optimality is 
avoided via RL method. RL equations are stated as follows,

where x∗ represents a variable in the potential solution and η is the specified refraction index which is expressed 
as follows,

The refraction absorption index k is expressed as,

where Fig. 2 depicts the light’s refraction with all variables,  x and x′ denote the incidence point and the refraction 
point, respectively. Serving as upper limit, upper limit and center are the symbol of LB,UB,O . The parameters h 
and h′ define the distances from x to O and from x′ to O . The refracted solution of x∗ is x′∗.

Experimental results
Experiments are carried out on 20 standard benchmark functions to confirm the efficiency of AEFA-CSR for 
solving global optimization functions. The algorithms; Artificial Electric Field Algorithm (AEFA)9, Cuckoo 
Search (CS)47, Differential Evolution (DE)6, Firefly Algorithm (FA)8, Particle Swarm Optimization (PSO)4, Jaya 
Algorithm (JAYA)57, Hybrid-Flash Butterfly Optimization Algorithm (HFBOA)58, Sand Cat Swarm Optimization 
(SCSO)59, Salp Swarm Algorithm with Local Escaping Operator (SSALEO)60, Transient Search Optimization 
(TSO)61 and Chaotic Hybrid Butterfly Optimization Algorithm with Particle Swarm (HPSOBOA)62 were cho-
sen for a detailed observation. The algorithms are chosen in a way to give a better insight to the readers such as 
well-studied and commonly used ones, recently developed ones which gained attention from the researchers in 
a short period of time and finally hybrid algorithms that are made up of powerful optimizers. Each algorithm is 
individually tested on the functions for 30 independent trials to ensure about their problem solving capabilities. 
The Wilcoxon Rank Sum test and the nonparametric Friedman test are used for statistical testing to represent the 
variations in the algorithms’  performances63,64. Several parameter combinations are put up to examine the influ-
ence of each control parameter on each of the algorithms. Additionally, convergence analysis, overall effectiveness 
with changing populations and dimensions, exploration and exploitation analyses, computational complexity 
tests are conducted. Afterwards, the efficiency of AEFA-CSR is validated using such real-world engineering 
problems; optimization of antenna S-parameters, welded-beam and compression designs.

Benchmark functions. Table  1 displays the fundamental properties of the 20 functions that were cho-
sen for testing. F1 through F7 are unimodal functions that have just one global optimum solution within the 
specified boundary and are typically used to gauge the algorithm’s ability to exploit regions of potential solution. 
F8–F20 are multimodal functions, F8–F13 are high-dimensional multimodal functions and F14–F20 are fixed-
dimensional multimodal functions. These functions have multiple local extremes in each self-defined function’s 
domain which are capable of detecting global exploration and can cause the algorithm’s premature convergence.

(15)Yi(t + 1) =
{

Yi + rand ·
(

Yy − Yj

)

, with probability pa,
Yi , with probability

(

1− pa
)

,

(16)x
′∗ = (LB+ UB)/2+ (LB+ UB)/(2kη)− x∗/(kη)

(17)η =
sinθ1

sinθ2

(18)sinθ1 =
(

(LB+ UB)/2− x∗
)

/h

(19)sinθ2 =
(

x
′∗ − (LB+ UB)/2

)

/h
′

(20)k = h/h
′
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Parameters. The values published in the original publications or often used in many research are chosen as 
parameters for the corresponding algorithms which are provided in Table 2.

Overall effectiveness. In this study, the results from Tables 3, 4, 5, 6 and 7 were used to evaluate the Over-
all Effectiveness (OE) of the AEFA-CSR to that of its counterparts. Equation (21) demonstrates that the number 
of test functions and losses for each algorithm can be used to determine the OE of the comparison  algorithms60.

Figure 2.  Fundamentals of light refraction.

Table 1.  Benchmark functions.

No Function Dimension Range Fmin

F1 f1(x) =
∑n

i=1x
2
i N [−100, 100] 0

F2 f2(x) =
∑n

i=1|xi | +
∏n

i=1|xi | N [−10, 10] 0

F3 f3(x) =
∑n

i=1

(

∑i
j−1xj

)2 N [−100, 100] 0

F4 f4(x) = mini{|xi |, 1 ≤ i ≤ n} N [−100, 100] 0

F 5
f5(x) =

∑d
i=1

∑i
j=1 x

2
j

N [−65.536, 65.536] 0

F6 f6(x) =
∑n

i=1([xi + 0.5])2 N [−100, 100] 0

F7 f7(x) =
∑n

i=1ix
4
i + random[0, 1) N [−1.28, 1.28] 0

F8 f8(x) = 1− cos

(

2π

√

∑d
i=1 x

2
i

)

+ 0.1

√

∑d
i=1 x

2
i N [−100, 100] 0

F9 f9(x) =
∑n

i=1

[

x2i − 10cos(2πxi)+ 10
]

N [−5.12, 5.12] 0

F10 f10(x) = −20exp

(

−0.2
√

1
n

∑n
i=1x

2
i

)

− exp
(

(1/n)
∑n

i=1cos(2πxi)
)

+ 20+ e N [−32, 32] 0

F11 f11(x) = 1/4000
∑n

i=1

∑

x2i −
∏n

i=1cos
(

xi/
√
i
)

+ 1 N [−600, 600] 0

F12

f12(x) = π/n
{

∑n−1
i=1

(

yi − 1
)2[

1+ 10sin2
(

πyi+1

)]

+
(

yn − 1
)2
}

+
∑n

i=1u(xi , 10, 100, 4)+ π/n10sin
(

πy1
)

yi = 1+ xi + (1/4)u(xi , a, k,m) =

{

k(xi − a)m xi > a
0 −a < xi < a
k(−xi − a)m xi < −a

N [−50, 50] 0

F13 f13(x) = 0.1
{
∑n

i=1(xi − 1)2
[

1+ sin2(3πxi + 1)
]

+ (xn − 1)2
[

1+ sin2(2πxn)
]}

+0.1sin2(3πx1)+
∑n

i=1u(xi , 5, 100, 4) N [−50, 50] 0

F14 f14(x) =
∣

∣x2 + y2 + xy
∣

∣+ |sin(x)| + |cos(y)| 2 [−500, 500] 1

F15 f15(x) = sin2(3πx)+ (x − 1)2
(

1+ sin2(3πy)
)

+ (y − 1)2
(

1+ sin2(2πy)
)

4 [−10, 10] 0

F16 f16(x) = 4x21 − 2.1x41 + 1/3x61 + x1x2 − 4x22 + 4x42 2 [−5, 5] − 1.0316

F17 f17(x) =
(

x2 − 5.1/4π2x21 + 5/πx1 − 6
)2 + 10(1− (1/8π))cosx1 + 10 2 [−5, 5] 0.398

F18
f18(x) =

[

1+ (x1 + x2 + 1)2
(

19− 14x1 + 3x
2
1
− 14x2 + 6x1x2 + 3x

2
2

)]

×
[

30+ (2x1 − 3x2)
2 ×

(

18− 32x1 + 12x
2
1
+ 48x2 − 36x1x2 + 27x

2
2

)]
2 [−2, 2] 3

F19 f19(x) = −
∑4

i=1ciexp
[

−
∑3

j=1aij
(

xj − pij
)2
]

3 [1, 3] − 3.86

F20 f20(x) = x2 + 2y2 − 0.3cos(3πx)cos(4πy)+ 0.3 2 [−100, 100] 0
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where N is the total number of function and L is number the number of losses incurred by an algorithm. In the 
tables, W and T indicate the number of wins and the number of ties respectively.

Dimension analysis. Given that dimensionality has a substantial impact on optimization accuracy, F1 
through F13 are expanded from 30 to 100 dimensions to test the algorithms’ abilities in solving the problems. 
The outputs of each algorithm is then assessed. The mean value (Avg) and standard deviation (Std) are used as 
the assessment indices to give the experiments greater credibility. Avg might indicate the algorithm’s quality and 
accuracy of the solutions, while Std indicates the algorithm’s stability. Population size is 30 and the maximum 
number of iterations for all algorithms is set to 1000.

The experimental findings with a dimension of 30 are displayed in Table 3. The analysis suggests that with 
unimodal functions (F1–F7), AEFA-CSR finds the best near ideal solution. It is noticeable that AEFA-CSR out-
performs the other algorithms by a larger margin. This is because of the included RL mechanism which improves 
the algorithm’s ability for local search as well as exploitation. With F8–F20 which are multimodal functions, 
AEFA-CSR performs the best on F8–F12, F14–F20 and obtained the global optimum for F9 and F11. All of the 
outcomes produced by AEFA-CSR are superior to those that are produced by AEFA. This suggests that after 
incorporating CS approach the improved population variety, the algorithm’s exploration ability has increased in 
comparison to AEFA. A solid balance between exploitation and exploration is also successfully achieved by the 
algorithm as observed in the results of the fixed dimension functions.

Tables 3, 4 and 7 show the experimental study for varying dimensions while the population size kept as con-
stant 30. Tables 4, 5 and 6 show the experimental study for varying population size while the dimension kept 
as constant 50. It can be observed that for a fixed population size, when the problem size grows in all the cases 
AEFA-CSR is superior to other compared algorithms in terms of Overall Effectiveness (OE) ranging from 76.93 
to 90.0%. Similarly, it is apparent that for a fixed dimension size, when the population size grows, AEFA-CSR 
produced higher OE values ranging from 61.53 to 76.93%.

Convergence analysis. The convergence trajectories of 12 algorithms are presented in Fig. 3 to further 
analyze how well different algorithms accomplish convergence while addressing optimization functions. The 
dimension for the functions; F1–F13 is set to 30, while the functions F14–F20 are the fixed dimension functions. 
It is evident that the convergence precision of AEFA-CSR is significantly better on unimodal functions; F1–F6. 
AEFA-CSR maintained an extraordinary convergence rate and converges to the global optimal on F9, F11, F14, 
F16 and F20 in it performance with multimodal functions; F8–F20.

The convergence efficiency of AEFA-CSR is noticeably better than the AEFA. It is demonstrated that the popu-
lation diversification adjustments and the introduction of RL technique are quite successful. The experimental 
findings show that AEFA-CSR has improved its optimization capability and convergence performance. Worthy 
of note is the algorithm’s rapid convergence will be applicable in optimization problems that the convergence is 
the essential component.

Statistical test. Garcia et al. made the point that it is insufficient to compare metaheuristic algorithm per-
formance using only mean and standard  deviation65. Therefore, during the iterative process, inescapable factors 
that have an impact on the experimental outcomes have been  added66,67. The Wilcoxon Rank Sum test and the 
Friedman test are used in this study to examine the effectiveness of the algorithms.

The Friedman test is used to evaluate the experiment’s validity by comparing the proposed AEFA-CSR to other 
algorithms. The Friedman test, one of the most popular and commonly applied statistical tests which is used to 

(21)OE =
(

N − L

N

)

× 100

Table 2.  Parameter settings.

Algorithms Parameter setting

AEFA Coulombs constant k0 = 500 , γ = 30

CS Probability to regenerate nest Pa = 0.25 , Mutation rate r  = 0.05

DE Mutation factor F = 0.5, Crossover ratio CR = 0.7

FA Light absorption coefficient ζ = 1 , step size s = 0.2

PSO wmax = 0.9,wmin = 0.2, c1 = c2 = 2, vmax=6

AEFA-CSR Refraction absorption k = 1000, Refractionindexη = 1000, Probability replacing bad particle Pa = 0.1 , Coulombs constant 
k0 = 500,γ = 30

HFBOA Power exponent a = 0.1 Switch parameter p = 0.6
Chaotic factor µ = 4 initial value for attractiveness β0 = 1,α0 = 0.2 sensory modality c0 = 0.35

SCSO Roulette wheel selection [0, 360], C = 0.35, SM = 2

SSALEO C1 = [2/e, 2]
TSO k = 2, z ∈ [0, 2]

HPSOBOA afirst = 0.1, afinal = 0.3, c(0) = 0.01, p = 0.6
x(0) = 0.315, ρ = 0.295, c1 = c2 = 0.5
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find significant differences between the outputs of two or more  algorithms68. Table 8 displays the results of the 
Friedman tests. The algorithm with the lowest ranking is thought to be the most effective algorithm according 
to the Friedman test findings. The suggested AEFA-CSR is always rated first in the various scenarios; 30, 50 and 
100 dimensions with population set to 30 according to the results in the Table 8. The AEFA-CSR has stronger 
competitive edge over the other algorithms.

The significance threshold p for the Wilcoxon Rank Sum test is set at 0.05. The technique is shown to be 
statistically better when p < 0.05. Table 9 displays the results achieved by Wilcoxon Rank Sum test. The symbols 
+/−/= denote that the suggested ways are better, worse or equal to than the existing  approach67. Table 9 dem-
onstrates that AEFA-CSR consistently offers R + values that are greater than R- values. Additionally, AEFA-CSR 
is superior than the other algorithms as an observation from Table 9 which shows that p values of the six algo-
rithms are less than 0.05. That is an indication of which imply they are substantially different from AEFA-CSR. 
Table 8 further reveals when the dimension expanded from 30 to 100 with population set to 30, the + value of 
AEFA-CSR increased. This indicates the performance of AEFA-CSR does not decline like other algorithms. It is 

Table 3.  F1–F20 comparison with dimension = 30 and population = 30.  Significant values are in bold.

AEFA-CSR AEFA CS DE FA PSO JAYA HFBOA SSALEO TSO HPSOBOA SCSO

F1
Avg 8.70E−55 6.92E−24 6.24E−3 3.95E−13 2.63E−3 4.44E−8 2.21E−13 7.06E−19 1.11E−8 3.31E−18 3.00E−9 1.31E−34

Std 2.00E−56 3.77E−24 3.28E−3 3.63E−13 6.35E−4 1.57E−8 1.45E−13 3.09E−20 1.82E−9 3.00E−18 7.76E−10 8.38E−38

F2
Avg 1.29E−28 1.06E+2 1.71E−1 1.12E−7 3.91 8.45 1.68E−9 7.73E+12 2.11E−4 5.13E−8 4.49E−1 9.52E−22

Std 2.17E−30 3.07E+1 5.92E−2 6.58E−8 7.46E−1 4.82 6.15E−10 2.42E+11 5.63E−5 5.66E−7 4.63E−2 2.09E−23

F3
Avg 9.52E−48 2.09E+3 3.47E+2 8.53E+3 9.39E+1 1.42E+1 6.58E+3 4.16E−19 8.64E−6 5.76E−8 9.61E−8 4.78E−17

Std 6.59E−49 6.81E+2 1.15E+2 3.43E+3 6.77E+1 4.77 1.70E+4 2.45E−20 1.74E−6 8.07E−28 4.65E−8 6.21E−18

F4
Avg 9.55E−27 1.60 5.35 8.57 1.11E−1 6.42E−1 1.02E+1 2.63E−12 5.99E−4 8.72E−11 5.72E−6 3.33E−10

Std 2.30E−27 9.41E−1 1.56 5.34 3.79E−2 1.71E−1 7.06 4.30E−15 5.42E−4 6.52E−15 2.28E−6 3.72E−13

F5
Avg 1.44E−54 6.86 3.73E−2 2.30E−12 8.04E−1 2.75E−8 2.73E−13 4.59E−17 1.11E−6 1.32E−22 1.94E−7 2.65E−28

Std 3.32E−55 2.37E−1 1.91E−2 2.50E−12 3.79E−1 7.87E−9 1.11E−13 2.46E−18 6.39E−7 0 2.72E−7 3.76E−28

F6
Avg 0 2.03 6.30E−3 4.43E−13 2.28E−3 2.87E−9 3.45 5.00 1.07E−8 2.84E−3 6.28 6.08

Std 0 5.00E−1 3.44E−3 5.10E−13 6.41E−4 2.61E−9 6.71E−1 7.96E−2 6.36E−10 1.12E−3 1.02 2.87

F7
Avg 1.31E−3 1.33 4.41E−2 1.84E−2 5.42E−1 5.61 2.31E−2 8.99E−5 5.24E−4 3.98E−4 2.96E−4 1.31E−4

Std 1.00E−4 3.87E−2 1.58E−2 5.73E−3 1.76E−1 3.58 1.37E−2 2.13E−5 2.50E−4 1.36E−4 1.25E−4 9.12E−5

F8
Avg 8.59E−19 1.36 1.42 2.78E−1 5.63E−1 4.09E−1 5.45E−1 1.16E−16 3.74E−2 1.77E−12 4.93E−6 2.70E−18

Std 4.39E−19 3.47E−1 2.28E−1 4.49E−2 1.32E−1 6.07E−2 4.91E−1 5.15E−20 8.37E−7 6.39E−17 4.17E−6 4.61E−19

F9
Avg 0 3.94E+1 7.84E+1 1.58E+2 8.23E+1 9.02E+1 6.61E+1 0 5.49E−9 7.57E−15 2.21E−6 0

Std 0 1.44E+1 1.40E+1 1.20E+1 2.68E+1 2.85E+1 2.96E+1 0 3.76E−10 0 5.26E−7 0

F10
Avg 4.44E−16 2.66E−1 1.36 2.70E−7 1.79E−1 5.14E−5 5.31E−7 1.43E−13 2.39E−5 2.66E−10 2.60E−5 3.87E−15

Std 0 2.08E−13 7.49E−1 1.46E−7 1.53E−3 1.88E−5 1.03E−7 3.76E−13 6.08E−6 6.57E−14 1.79E−5 0

F11
Avg 0 4.87E−1 8.66E−2 8.21E−5 1.22E−2 1.01E−2 8.92E−3 0 4.20E−8 0 1.34E−10 0

Std 0 4.58E−1 5.33E−2 4.04E−9 8.00E−3 1.42E−3 5.44E−5 0 5.90E−10 0 8.70E−11 0

F12
Avg 4.26E−24 2.17 1.30 2.78E−11 1.25E−5 1.03E−2 5.26E−1 4.72E−1 8.20E−11 4.71E−5 9.48E−1 9.77E−1

Std 1.99E−25 1.04 6.18E−1 4.30E−13 5.09E−6 9.35E−10 4.05E−1 1.11E−1 7.27E−12 1.52E−5 3.94E−2 9.87E−2

F13
Avg 5.44E−3 7.41 6.81E−1 2.73E−7 4.55E−3 4.02E−3 1.39E+3 2.58 7.57E−3 4.47E−5 2.89 2.85

Std 5.69E−4 6.81 1.21 9.77E−11 4.51E−3 2.68E−9 2.64E+2 7.89E−3 4.31E−4 1.02E−6 2.94E−1 7.72E−2

F14
Avg 1.00 1.00 1.00 1.00 1.00 1.00 9.90 1.00 1.00 1.00 1.00 1.00

Std 0 3.42E−5 0 0 1.05E−4 0 1.59 0 5.00E−7 0 3.50E−6 0

F15
Avg 1.35E−31 4.01E−27 1.35E−31 1.35E−31 7.54E−9 1.35E−31 3.94E−5 1.22E−4 5.68E−14 1.88E−4 2.26E−1 5.63E−2

Std 0 4.42E−27 6.68E−47 6.68E−47 5.44E−9 6.68E−47 5.16E−5 6.60E−5 3.65E−14 3.11E−4 4.66E−2 3.17E−3

F16
Avg − 1.03 − 1.03 − 1.03 − 1.03 − 1.03 − 1.03 − 1.02 − 9.41E−1 − 1.03 − 4.37E−1 − 7.94E−1 − 1.02

Std 0 4.51E−16 4.51E−16 4.51E−16 4.51E−16 4.51E−16 1.74E−2 5.76E−2 0 3.81E−2 3.38E−2 1.02E−3

F17
Avg 3.97E−1 3.97E−1 3.97E−1 3.97E−1 3.97E−1 3.97E−1 3.97E−1 3.98E−1 3.97E−1 8.44E−1 4.13E−1 4.06E−1

Std 0 5.64E−17 5.64E−17 5.64E−17 5.64E−17 5.64E−17 1.61E−4 1.84E−4 0 2.08E−5 1.03E−1 8.44E−3

F18
Avg 3.00 3.00 3.00 3.00 3.00 3.00 3.62 3.00 3.00 2.59E+1 5.22 3.03

Std 0 1.22E−2 0 0 0 0 2.99 7.26E−4 0 1.30E+1 2.63 1.96E−2

F19
Avg − 3.86 − 3.62 − 3.86 − 3.86 − 3.86 − 3.86 − 3.65 − 3.23 − 3.86 − 3.45 − 3.25 − 3.27

Std 0 3.45E−1 1.80E−15 1.80E−15 1.80E−15 2.40E−3 1.15E−1 3.25E−1 0 2.21E−1 2.60E−1 1.47E−1

F20
Avg 0 0 0 0 2.20E−6 0 1.22 0 1.12E−11 0 2.48E−9 0

Std 0 0 0 0 2.24E−6 0 1.53E−1 3.52E−13 0 5.90E−9 0 0

W/L/T 9/2/9 0/17/3 0/13/7 1/12/7 0/16/4 0/14/6 0/20/0 1/15/4 0/16/4 0/18/2 0/20/0 0/16/4

OE 90% 15% 35% 40% 20% 30% 0% 25% 20% 10% 0% 20%
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able to produce substantial improvement compared to the other algorithms as dimension increase. The findings 
demonstrate that the suggested AEFA-CSR has higher level of solution accuracy.

Conclusively, AEFA-CSR is more competitive than both traditional algorithms such as DE, PSO and innova-
tive algorithms such as FA, JAYA, CS, SCSO and hybrid algorithms such as HPSOBOA. The newly introduced 
strategies are to be credited for the proposed algorithm’s greater achievements. Due to the RL solution strategy, 
improves local optimal escape mechanism and the CS lessen the dominance of the lead agent. Therefore, combin-
ing the two approaches significantly enhance the ability of AEFA to solve multimodal and unimodal functions.

Sensitivity analysis to parameters. Assessment to the sensitivity of parameters is also carried out in this 
part to investigate the impact of various parameters of AEFA-CSR. Population size, iteration number and dimen-
sion are maintained at 30, 1000 and 30 throughout the experiment. The starting values of the k , η in Eqs. (15) and 
(16) are set to 1 and 0.25, then are altered throughout the test. The parameter Pa is varied within the range [0, 1] 
and the author of CS suggests a value of 0.25, while parameters k and η is varied within [1,  1000]47. As indicated 
in Table 10, there are eight variations of the AEFA-CSR developed. Each of which represents a combination of 
various parameters. Note that these settings can be changed to fit the particular problem. It can be also noted 
that for k , η and Pa , the values of 1000, 1000 and 0.1 are used in earlier experiments. The variation of AEFA-CSR 
with these parameters performed best based on the Friedman rank.

As seen in Table 10, AEFA-CSR with the parameters set as k = 1, η = 1 and Pa = 0.25 finds poorer results on 
all of the test functions compared to when the parameters of AEFA-CSR is set as k = 1000, η = 1000 and Pa = 0.1 
with the exception of F1, F13 and F14-F20 where results are comparable, this imply that in functions with high 
dimensions (F1-F13), k = 1000, η = 1000 and Pa = 0.1 is more robust to handle them with more accuracy. Also, 
result from Table 10 shows that with the parameters k = 1000, η = 1000 and Pa = 0.25 AEFA-CSR performance 
is comparable to, when the parameters are set as k = 10, η = 10 and Pa = 0.25 and k = 100, η = 100 and Pa = 0.25 
with the exception of F8, F9 and F12 where the performance of k = 10, η = 10 and Pa = 0.25. Additionally, the 
result of varying Pa from 0.1 to 0.3 keeping k and η at 1000 have no significant difference on the extraordinary 
performance of the AEFA-CSR. From Table 11, it can be seen that there is no significant difference between the 
best set of parameters which is k = η  = 1000 and Pa = 0.1 against k = η  = 100 and Pa = 0.25, is k = η  = 1000 and 
Pa = 0.25, k = η  = 1000 and Pa = 0.2 and is k = η  = 1000 and Pa = 0.3 as depicted by the P-values.

The average objective function values are illustrated for all test functions with number of independent runs as 
30 are shown in Fig. 4 for various combinations of the k , η , and Pa . As shown in Fig. 4, the parameter combination 

Table 4.  F1–F13 comparison with dimension = 50 and population = 30.  Significant values are in bold.

AEFA-CSR AEFA CS DE FA PSO JAYA HFBOA SSALEO TSO HPSOBOA SCSCO

F1
Avg 1.85E−54 1.37E+1 2.61 7.20E−6 1.29E−2 1.44E−3 3.11E−7 1.31E−15 4.29E−8 8.96E−27 6.09E−9 1.66E−12

Std 1.88E−55 1.92E−1 7.48E−1 4.85E−6 3.07E−3 1.70E−3 1.15E−6 1.31E−17 8.63E−9 7.76E−28 5.10E−9 2.05E−13

F2
Avg 6.75E−28 2.23E+2 2.18 1.07E−3 4.56E+1 2.64E+1 1.15E−6 7.40E+23 5.86E−4 8.31E−11 1.91E+23 1.71E−18

Std 1.54E−28 3.88E+1 1.63 5.95E−4 3.50E+1 1.51E+1 1.07E−6 1.32E+23 5.52E−4 1.20E−14 1.51E+21 2.65E−20

F3
Avg 5.92E−46 4.78E+3 3.84E+3 6.99E+4 1.45E+4 5.58E+2 6.08E+4 1.61E−17 5.67E−5 2.75E−14 2.96E−7 4.11E−25

Std 3.05E−48 1.12E+3 7.48E+2 9.93E+3 5.76E+3 1.65E+2 1.33E+4 1.20E−18 3.76E−6 1.50E−18 2.59E−7 4.28E−25

F4
Avg 4.75E−26 8.42 1.41E+1 5.32E+1 3.96 2.34 5.07E+1 1.78E−12 1.02E−3 9.25E−13 8.25E−6 1.64E−13

Std 2.78E−26 2.22 2.33 2.03E+1 3.45 3.39E−1 1.04E+1 2.96E−18 1.67E−4 8.13E−13 3.81E−8 8.90E−15

F5
Avg 5.08E−52 8.47E+2 2.44E+1 5.13E−5 1.40E+2 1.85E−2 1.03E−6 1.82E−17 4.58E−6 4.00E−18 5.52E−7 8.91E−22

Std 6.08E−55 6.67E+2 9.87 4.52E−5 2.47E+1 1.49E−2 1.47E−8 1.99E−18 2.72E−6 1.61E−21 1.66E−9 0

F6
Avg 0 9.42E+1 2.93 7.53E−6 1.34E−2 1.29E−3 7.76 9.76 4.77E−8 5.07E−3 1.13E+1 1.10E+1

Std 0 6.17E+1 1.13 6.97E−6 3.36E−3 3.14E−3 6.05E−1 2.94E−1 8.16E−9 2.48E−3 2.53E−1 6.34E−2

F7
Avg 1.32E−3 4.13E+2 1.63E−1 6.48E−2 1.01 3.09E+1 5.26E−2 1.16E−4 5.51E−4 3.85E−4 3.84E−4 2.02E−4

Std 2.66E−4 4.99E+1 4.56E−2 2.31E−2 3.03E−1 2.29E+1 3.53E−2 3.46E−5 1.08E−5 1.09E−4 6.23E−5 4.27E−5

F8
Avg 7.56E−19 3.16 3.58 7.45E−1 1.22 6.66E−1 7.77E−1 1.81E−14 2.07E−2 4.34E−11 7.61E−6 7.02E−14

Std 2.18E−18 5.67E−1 4.63E−1 9.66E−2 1.52E−1 7.88E−2 2.84E−1 7.46E−17 2.89E−5 1.65E−13 2.04E−6 1.52E−20

F9
Avg 0 1.66E+2 1.68E+2 3.58E+2 1.72E+2 2.75E+2 1.40E+2 0 2.50E−8 0 7.99E−6 0

Std 0 4.41E+1 1.81E+1 2.30E+1 3.47E+1 4.39E+1 5.06E+1 0 3.18E−9 0 1.99E−5 0

F10
Avg 4.44E−16 3.57 3.49 1.19 4.88E−1 6.00E−1 7.29E−5 1.88E−13 3.79E−5 1.00E−8 2.40E−5 1.86E−15

Std 0 1.39 6.50E−1 1.45E−4 1.98E−2 6.44E−1 3.56E−5 0 2.41E−6 0 5.39E−5 0

F11
Avg 0 7.76 9.45E−1 1.41E−3 2.20E−2 4.34E−3 4.60E−3 0 2.14E−7 2.36E−15 1.13E−10 0

Std 0 2.11 8.85E−2 4.05E−3 5.75E−3 5.54E−3 1.99E−2 0 5.13E−9 0 1.10E−10 0

F12
Avg 6.43E−3 6.20 3.70 4.23E+1 4.87E−1 1.86E−2 1.28 7.22E−1 2.42E−10 3.47E−5 1.09 1.07

Std 5.18E−4 1.93 8.71E−1 1.05E−2 3.09E−3 2.79E−4 6.06E−1 1.74E−2 4.07E−11 5.31E−6 9.19E−2 1.14E−3

F13
Avg 4.45E−2 5.28E+2 3.23E+1 9.36 5.50E−3 8.48E−3 1.52E+3 4.87 3.80E−1 9.23E−5 4.88 4.88

Std 3.86E−4 4.73 1.32E+1 7.81E−1 3.17E−4 1.18E−4 1.21 2.39E−3 1.41E−3 6.26E−5 1.12E−2 4.76E−2

W/L/T 8/3/2 0/13/0 0/13/0 0/13/0 0/13/0 0/13/0 0/13/0 1/10/2 1/12/0 1/11/2 0/13/0 0/11/2

OE 76.93% 0% 0% 0% 0% 0% 0% 23.07% 7.69% 15% 0% 15.38%
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obtained show comparable exceptional outcomes for the majority of test functions when k and η  = 1000, incases 
pairings of the k and η  = 1, and 10. AEFA-CSR tends to perform poorly compared to when k and η  = 1000. The 
illustrated convergence trajectory depict that to attain the best performance for AEFA-CSR, k and η  may be 
tuned to a somewhat big number ideally 1000.

Exploration and exploitation analysis. Exploration is an ability of an optimization algorithm pursu-
ing the diverse solutions in the unexplored area while exploitation is an ability of an optimization algorithm 
pursuing the solutions around the optimum solution of a problem. Since F1 and F2 are unimodal functions, 
they are quite appropriate to observe the algorithm’s exploitation ability. Similarly, F10 and F12 are multimodal 
functions which have multiple local optimums and they are quite suitable for measuring the exploration ability 
of the algorithm.

When there is an increase in the dimension, the local optimum points in the multimodal functions increase 
drastically. As it is indicated in Tables 3, 4 and 7, the proposed AEFA-CSR produced better results on varying 
dimensions 30, 50 and 100. It is a good indication that the algorithm overcome the multiple local optimum points 
by reaching the global optimum. This is achieved by a balanced exploration and exploitation.

Additionally, Fig. 5 is given to show the exploration and the exploitation stages of the algorithm AEFA-CSR 
graphically. For the functions analyzed in this figure, it is seen that the algorithm starts with a broad exploration 
and narrow exploitation. As the optimization process goes on, the balance between these are assembled.

Computational complexity. The computational complexity Big O notation is one of the metrics to evalu-
ate the performance of metaheuristics. As it is shown in the Algorithm 3, there is only one loop and it is consid-
ered as O (N) where N is the number of agents in the population. When it comes to the entire complexity which 
include modifying the agents towards the optimum solution by calculating the fitness values, it is considered as 
O ( max iteration x N x D) where max iteration is the number of iterations and D is the dimension.

AEFA-CSR is compared with its competitors with respect to their computational time in Table 12. When we 
have a separate glance on the algorithms AEFA and CS, it is obvious that these algorithms require higher CPU 
time than the others. Since the proposed algorithm AEFA-CSR is a combination of AEFA, CS and RL, each of 
the method needs to be carried out during the optimization process individually. Therefore, the CPU time of 
AEFA-CSR is not always better than the compared methods because of its complex nature. Overall, it can be 

Table 5.  F1–F13 comparison with dimension = 50 and population = 60.  Significant values are in bold.

AEFA-CSR AEFA CS DE FA PSO JAYA HFBOA SSALEO TSO HPSOBOA SCSCO

F1
Avg 3.65E−43 1.72E−3 4.86 1.20E−2 1.43E−2 2.06E−5 1.99E−9 1.34E−21 2.83E−8 1.80E−21 6.47E−9 4.69E−36

Std 2.35E−43 8.62E−4 1.40 4.28E−3 3.67E−3 1.37E−6 2.34E−10 1.13E−22 4.31E−9 1.24E−22 1.62E−9 2.06E−42

F2
Avg 2.17E−21 9.25E+1 9.18 1.18E−1 4.73E+1 2.00E+1 2.19E−7 1.89E+21 2.58E−4 1.33E−8 8.19E+21 5.12E−11

Std 7.29E−22 3.19E+1 2.74 4.80E−2 4.58E+1 4.58 1.09E−7 1.72E+20 1.53E−4 5.72E−10 2.65E+21 4.43E−12

F3
Avg 2.31E−24 2.24E+3 7.16E+3 9.22E+4 4.13E+3 3.29E+2 5.68E+4 8.33E−20 8.46E−6 3.13E−14 7.02E−7 2.30E−28

Std 2.10E−24 4.00E+1 9.25E+2 9.38E+3 2.01E+3 8.59E+1 2.09E+3 2.55E−22 8.11E−6 1.32E−14 9.34E−8 5.64E−29

F4
Avg 6.26E−20 1.61 1.12E+1 7.92E+1 1.06 1.85 4.45E+1 4.78E−17 3.81E−4 5.48E−11 4.43E−6 1.94E−10

Std 2.87E−20 9.88E−1 9.76E−1 7.71 1.74E−2 1.55E−1 3.94 2.76E−21 2.40E−4 1.51E−16 2.59E−6 2.02E−15

F5
Avg 5.68E−42 6.88E+1 3.98E+1 8.87E−2 1.12E+2 1.41E−4 2.90E−8 1.70E−23 1.13E−6 2.48E−19 5.91E−7 1.22E−16

Std 3.76E−42 2.75E+1 1.06E+1 3.30E−2 3.30E+1 5.39E−5 2.51E−8 1.25E−30 9.01E−7 1.06E−24 5.71E−7 3.04E−41

F6
Avg 0 3.73 4.63 1.34E−2 1.25E−2 2.70E−5 7.75 9.61 2.84E−8 7.06E−4 1.09E+1 1.05E+1

Std 0 3.00 1.16 4.68E−3 3.70E−4 4.55E−6 2.56E−1 1.25E−1 4.96E−9 1.04E−4 3.50E−1 3.75E−1

F7
Avg 1.49E−3 7.96E+1 9.06E−2 7.58E−2 5.27E−1 3.06E+1 3.07E−2 3.12E−5 3.74E−4 2.50E−4 4.60E−4 8.70E−5

Std 1.10E−3 1.01E+1 1.54E−2 1.67E−2 1.53E−1 1.86E+1 6.26E−3 2.32E−5 2.04E−4 9.53E−5 1.42E−4 1.75E−5

F8
Avg 1.05E−13 1.42 3.12 1.31 8.99E−1 5.93E−1 7.18E−1 2.01E−15 1.18E−2 3.54E−10 3.80E−6 9.57E−14

Std 1.32E−14 2.01E−1 2.65E−1 1.20E−1 5.00E−2 8.16E−2 1.47E−1 3.31E−18 2.44E−3 2.60E−15 1.17E−6 7.89E−24

F9
Avg 0 6.41E+1 1.74E+2 3.75E+2 1.61E+2 2.31E+2 1.05E+2 0 1.43E−8 0 5.84E−6 0

Std 0 2.48 1.78E+1 1.55E+1 4.97 3.20E+1 4.21 0 2.20E−9 0 4.39E−7 0

F10
Avg 4.44E−16 2.32E−1 3.96 4.05E−1 3.62E−1 1.29E−1 1.02E−5 1.71E−13 3.04E−5 4.39E−7 3.81E−5 7.99E−16

Std 9.86E−32 2.42E−3 3.45E−1 9.68E−3 3.38E−1 1.18E−3 3.72E−7 0 2.20E−7 0 7.66E−7 0

F11
Avg 0 1.90 1.03 2.03E−2 2.22E−2 3.12E−3 1.98E−2 0 7.98E−8 6.49E−15 4.21E−11 0

Std 0 7.10E−1 1.82E−2 4.93E−3 3.23E−3 2.90E−8 6.36E−5 0 2.33E−8 0 2.47E−11 0

F12
Avg 4.14E−3 1.36 2.46 1.80E−1 8.36E−2 6.22E−3 9.84E−1 6.76E−1 7.91E−11 9.60E−6 1.02 1.04

Std 1.55E−2 8.02E−2 4.52E−1 1.57E−1 7.16E−6 4.94E−9 4.29E−2 9.45E−2 5.86E−12 1.26E−6 8.28E−2 4.97E−2

F13
Avg 6.64E−3 1.59E+1 1.07E+1 2.77E−1 6.46E−3 6.23E−3 6.99E+1 4.71 6.67E−1 3.51E−5 4.93 4.87

Std 5.48E−3 1.04 4.79 8.57E−2 3.54E−4 5.22E−6 3.66 2.76E−3 5.49E−3 2.24E−5 3.20E−3 2.80E−2

W/L/T 6/5/2 0/13/0 0/13/0 0/13/0 0/13/0 0/13/0 0/13/0 2/9/2 1/12/0 1/11/001 0/13/0 1/10/(2)

OE 61.53% 0% 0% 0% 0% 0% 0% 30.76% 7.69% 15.38% 0% 23.07%
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said that AEFA-CSR requires more computational time, but its efficiency is a way ahead of these algorithms. By 
considering the significant contributions of the AEFA-CSR, even in real engineering problems, an equilibrium 
can be constructed between the high accuracy and the amount of time required to solve the problems.

Engineering problems application. Optimization of antenna S‑parameters. The suitability and effi-
ciency of the algorithm in solving engineering problems are shown in this section. In order to demonstrate the 
suitability of the algorithm, a test suite that is made up of eight test problems for antenna design is chosen. The 
results are compared to those of other algorithms. Several formulas aimed at analyzing different antenna design 
problem known as test functions make up the test  suite69,70. These enable effective assessment of an algorithm’s 
performance.

It is not practical to evaluate optimization algorithms using electromagnetic simulation, since doing so for 
an antenna often takes a lot of time. Therefore, it is desirable for the pre-test of many antenna optimization 
techniques to have an effective test suite with analytical test functions. Several authors have proposed several test 
 suites69–71. However, the test suite intended for antenna parameter optimization is rarely researched. The features 
of many antennas types using various types of formulas can be represented by a suitable test suite for antenna 
design. The objective functions that Zhang et al.72 successfully researched and proposed a test suite which covers 
a diverse characteristic of various types of antenna  problems72,73 as displayed in Table 13.

The dimensions of the test functions F21–F24 and F26–F28 with the exception of F25 which is a non-scalable 
test function are set to 8 as suggested by Zhang et al.72. Parameters of each algorithm as seen Table 2 are main-
tained with population size of 20 and iteration size of 500.

The average (Avg) and standard deviation (Std) for each test function across 30 runs are shown in Table 14 
and Fig. 6 displays their averaged convergence curves. In comparison to CS, PSO, DE, and JAYA, AEFA-CSR 
converges faster for F21 and F23 which represent single-antenna design problem. Also, obtaining the global 
optimal value for this functions suggests that AEFA-CSR is effective in addressing the single-antenna design 
problem. When compared to the other algorithms, AEFA-CSR has high efficiency for F22, F23 and F24 which 
depict multi-antenna properties and it is also able to escape the sub-optimality in F5. Because, multi-antenna 
problem typically exhibits the features of F22, F23, F24 and F25 concurrently. We may assume that AEFA-CSR 
is well equipped to solve them. The performance of AEFA-CSR for solving F26, F27 and F28 with the isolation 
characteristic of multi-antenna is comparable to that for F5. Refraction learning’s ability to simulate complicated 

Table 6.  F1–F13 comparison with dimension = 50 and population = 90.  Significant values are in bold.

AEFA-CSR AEFA CS DE FA PSO JAYA HFBOA SSALEO TSO HPSOBOA SCSCO

F1
Avg 1.34E−41 6.44E−25 9.59 2.25E−1 1.39E−2 9.05E−7 6.81E−10 1.13E−24 2.15E−8 3.26E−22 6.12E−9 2.07E−12

Std 8.16E−42 2.74E−26 1.86 9.44E−2 8.58E−4 3.52E−7 9.81E−11 1.56E−30 4.48E−9 9.83E−31 8.70E−10 4.68E−13

F2
Avg 1.09E−20 3.87E+1 1.98E+1 6.22E−1 2.31E+1 1.60E+1 8.96E−8 3.14E+20 1.58E−4 7.65E−11 4.07E+21 2.48E−16

Std 4.22E−21 3.45E+1 4.63 9.90E−2 1.10E+1 5.30E−4 9.03E−9 2.30E+17 3.91E−5 2.42E−13 5.49E+20 4.55E+21

F3
Avg 2.19E−24 1.33E+3 9.27E+3 9.69E+4 2.80E+3 2.16E+2 6.20E+4 2.22E−20 2.79E−6 3.26E−20 5.02E−7 1.10E−28

Std 7.31E−25 6.68E+1 1.05E+3 6.61E+3 1.45E+2 4.75 1.54E+4 3.79E−23 1.89E−6 5.56E−24 2.51E−7 4.27E−33

F4
Avg 5.64E−19 2.28E−1 1.42E+1 8.59E+1 5.97E−1 1.49 3.68E+1 4.90E−17 2.63E−4 6.95E−13 6.16E−6 1.03E−11

Std 7.55E−20 1.99E−2 9.53E−1 2.33 1.62E−1 3.00E−1 1.32E+1 4.43E−20 1.26E−4 2.12E−18 5.70E−7 1.93E−19

F5
Avg 1.32E−40 2.07E+1 8.50E+1 1.44 8.28E+1 4.25E−5 3.75E−9 5.94E−23 5.46E−7 8.35E−18 7.41E−7 1.47E−29

Std 3.61E−42 7.62E−2 1.99E+1 4.66E−1 3.76E+1 1.24E−5 7.38E−10 3.69E−30 5.59E−8 3.65E−29 1.41E−8 7.32E−31

F6
Avg 0 3.00E−1 8.80 1.94E−1 1.36E−2 6.43E−7 7.82 9.42 2.34E−8 3.24E−4 1.08E+1 1.02E+1

Std 0 0 1.79 3.73E−2 2.50E−3 4.16E−7 4.49E−1 1.16E−1 1.94E−9 3.72E−6 5.40E−1 3.88E−1

F7
Avg 1.30E−3 6.87 9.22E−2 9.46E−2 3.81E−1 2.75E+1 3.40E−2 2.29E−5 2.41E−4 1.51E−4 5.26E−4 4.60E−5

Std 4.00E−4 2.11E−1 1.84E−2 1.46E−2 4.87E−4 9.38 7.00E−3 6.98E−6 5.15E−5 3.36E−4 5.85E−5 4.35E−5

F8
Avg 1.14E−13 9.22E−1 3.53 1.73 7.46E−1 5.66E−1 6.40E−1 1.66E−17 1.00E−2 5.17E−8 5.29E−6 3.73E−16

Std 2.94E−16 4.89E−2 2.50E−1 9.34E−2 5.00E−2 0 2.00E−1 1.26E−17 3.09E−7 5.98E−17 4.67E−6 7.37E−21

F9
Avg 0 3.37E+1 1.82E+2 3.80E+2 1.51E+2 2.19E+2 9.29E+1 0 1.16E−8 3.79E−15 1.25E−5 0

Std 0 1.99E+1 1.68E+1 1.33E+1 1.89E+1 4.10E+1 4.57E+1 0 5.03E−10 0 5.37E−9 0

F10
Avg 4.44E−16 1.86E−4 5.33 9.70E−1 6.70E−1 2.53E−3 6.12E−6 4.44E−16 2.62E−5 8.63E−8 4.39E−5 1.71E−11

Std 0 7.10E−15 4.87E−1 1.39E−1 3.73E−3 4.34E−4 5.69E−6 0 3.73E−6 0 2.20E−5 0

F11
Avg 0 9.87E−1 1.08 2.47E−1 2.01E−2 4.59E−3 7.97E−3 0 5.28E−8 1.48E−8 8.25E−11 0

Std 0 2.66E−2 1.68E−2 1.69E−2 6.98E−3 1.00E−8 1.03E−4 0 2.71E−9 0 2.93E−12 0

F12
Avg 6.22E−3 4.07E−1 2.68 1.94 1.20E−2 5.78E−8 8.31E−1 6.42E−1 5.25E−11 4.83E−6 9.23E−1 9.86E−1

Std 0 1.67E−1 3.87E−1 3.99E−1 8.04E−6 1.32E−8 3.22E−1 6.17E−2 1.51E−12 3.79E−10 4.55E−2 5.27E−2

F13
Avg 3.66E−4 3.82 1.22E+1 5.26 5.74E−3 3.66E−3 7.13 4.57 1.00 9.73E−6 4.93 4.84

Std 2.26E−5 2.00 2.43 9.10E−1 6.09E−5 2.50E−6 2.54 3.19E−2 5.49E−3 2.38E−7 1.90E−4 3.25E−2

W/L/T 5/5/3 0/13/0 0/13/0 0/13/0 0/13/0 0/13/0 0/13/0 2/8/3 1/12/0 1/12/0 0/13/0 1/10/2

OE 61.53% 0% 0% 0% 0% 0% 0% 38.46% 7.69% 7.69% 0% 23.07%
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landscapes with several local extremums and steep, long, narrow valleys. CS improving variety in the population 
are the primary factors in AEFA-CSR’s success.

Welded beam design problem. As a further validation of the performance of AEFA-CSR in real world optimiza-
tion problem a well-known problem is chosen which is the welded beam design problem who was formulated by 
 Rao74 and used in CEC 2020 test function  suite75. The welded beam design problem has several design param-
eters as outlined  in55. There are four design variables that need to be determined x1, x2, x3 and x4. Under specific 
restrictions, the objective of WBD optimization is to reduce the overall cost. The restrictions are the buckling 
critical load PC , the bending stress σ , the shear stress τ , beam deflection δ and the tail of the beam. The following 
are the objective function and constraints. The objective function which needs to be minimized is given below 
in Eq. (22).

The objective function is subject to the constraint equations given below (23) to (29).

(22)f (x) = 1.10471x21x2 + 0.04811x3x4(14+ x2)

(23)g1(x) =
√

(

τ
′)2 + 2τ

′
τ
′ ′ x2

2R
+

(

τ
′ ′)2 − τmax ≤ 0

(24)g2(x) =
6PL

x23x4
− σmax ≤ 0

(25)g3(x) = x1 − x4 ≤ 0

(26)g4(x) = 0.10471x21 + 0.04811x3x4(14+ x2)− 5 ≤ 0

(27)g5(x) = 0.125− x1 ≤ 0

Table 7.  F1–F13 comparison with dimension = 100 and population = 30. Significant values are in bold.

AEFA-CSR AEFA CS DE FA PSO JAYA HFBOA SSALEO TSO HPSOBOA SCSCO

F1
Avg 4.25E−52 1.07E+3 3.58E+2 6.85 2.03E−1 2.69 4.15E−3 1.98E−17 5.50E−7 2.65E−12 1.27E−8 8.90E−23

Std 1.14E−53 2.81E+2 8.21E+1 2.45E−1 4.35E−2 1.51 4.08E−4 2.46E−26 2.55E−8 3.00E−18 7.91E−10 1.71E−24

F2
Avg 1.05E−27 4.23E+2 1.65E+1 1.24 3.64E+2 1.10E+2 1.83E−3 1.42E+50 1.86E−3 2.82E−9 2.30E+50 2.30E−11

Std 1.32E−28 4.81E+1 2.78 2.62E−2 3.49E+2 2.77E+1 2.84E−4 2.26E+46 1.76E−4 3.00E−18 7.79E+48 2.14E−11

F3
Avg 1.49E−43 1.78E+4 3.08E+4 3.26E+5 1.78E+5 1.12E+4 3.05E+5 8.46E−18 4.83E−4 3.32E−17 2.34E−6 1.07E−21

Std 9.06E−45 3.14E+3 4.63E+3 3.63E+2 4.82E+4 2.60E+3 9.12E+4 7.01E−20 2.83E−3 3.00E−18 1.82E−7 9.27E−23

F4
Avg 1.17E−25 1.66E+1 2.15E+1 9.59E+1 4.63E+1 8.66 9.14E+1 2.19E−13 1.47E−3 8.44E−11 8.32E−6 5.51E−11

Std 6.53E−26 1.60 1.42 8.56E−1 6.27 1.03 5.82E−1 5.02E−17 3.04E−3 9.63E−14 4.13E−6 1.61E−15

F5
Avg 8.17E−53 3.27E+4 6.39E+3 5.69E+1 4.98E+3 1.87E+2 9.12E−2 7.70E−15 4.48E−5 1.22E−16 4.18E−6 4.13E−16

Std 2.25E−53 8.14E+3 1.59E+3 1.41 3.61E+3 1.14E+2 2.63E−2 1.77E−16 1.27E−5 1.00E−16 1.82E−6 1.12E−15

F6
Avg 0 1.54E+3 3.54E+2 6.83 2.04E−1 3.54 2.29E+1 2.24E+1 7.07E−7 1.71E−2 2.38E+1 2.35E+1

Std 0 6.19E+2 9.03E+1 4.65E−1 4.43E−2 1.80 1.10 1.04 2.10E−7 9.61E−3 3.82E−1 1.18

F7
Avg 2.02E−3 1.89E+3 1.30 5.99E−1 2.51 2.99E+2 3.85E−1 1.74E−4 6.32E−4 5.88E−4 7.60E−4 2.19E−4

Std 1.98E−3 1.74E+2 3.53E−1 1.39E−1 6.25E−1 1.41E+2 1.19E−1 8.74E−5 8.80E−4 2.43E−4 2.97E−4 1.34E−4

F8
Avg 1.22E−18 7.40 8.70 3.37 4.74 1.42 2.62 2.99E−15 4.21E−2 3.61E−12 1.08E−5 4.35E−14

Std 1.51E−19 7.81E−1 7.76E−1 5.25E−3 5.45E−1 1.19E−1 3.35E−1 5.13E−18 5.95E−3 5.64E−15 1.29E−5 6.55E−16

F9
Avg 0 8.42E+2 4.27E+2 8.79E+2 4.91E+2 7.13E+2 4.08E+2 0 2.52E−7 0 1.22E−5 0

Std 0 1.26E+2 3.52E+1 3.04E+1 5.75E+1 6.52E+1 4.74E+1 0 1.43E−8 0 4.77E−7 0

F10
Avg 4.44E−16 7.81 6.83 1.72 1.54 2.63 6.78E−1 1.09E−13 8.54E−5 8.56E−13 2.54E−5 2.33E−15

Std 0 7.82E−1 6.13E−1 1.71 2.10E−1 2.52E−1 2.52E−3 3.55E−15 1.28E−6 0 1.28E−5 0

F11
Avg 0 4.99E+1 4.49 7.76E−1 9.33E−2 4.30E−2 5.75E−2 0 3.28E−6 0 2.62E−10 0

Std 0 9.76 9.60E−1 5.14E−3 1.88E−2 1.73E−2 2.10E−2 0 7.16E−6 0 4.49E−11 0

F12
Avg 2.95E−2 1.55E+2 2.54E+1 2.94E+4 6.32 1.87 1.97E+4 9.35E−1 1.12E−3 5.71E−5 1.12 1.14

Std 5.61E−3 4.00E+2 9.18E−1 1.64E+3 1.64 9.16E−1 2.95 1.56E−3 1.07E−3 1.63E−4 2.95E−2 1.29E−2

F13
Avg 2.65 2.37E+5 6.60E+3 3.67E+4 1.79E+1 1.52E+1 1.82E+5 9.98 6.52 1.60E−4 9.93 9.90

Std 2.93E−1 1.95E+4 2.61E+2 2.24E+4 1.64E+1 9.21 1.06E+5 3.11E−4 1.86 5.65E−6 1.88E−4 8.45E−3

W/L/T 8/3/2 0/13/0 0/13/0 0/13/0 0/13/0 0/13/0 0/13/0 1/10/2 0/13/0 2/9/2 0/13/0 0/11/2

OE 76.9% 0% 0% 0% 0% 0% 0% 23.07% 0% 30.7% 0% 15.38%
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Figure 3.  Convergence trajectory with dimension = 30.
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(28)g6(x) =
4PL3

Ex33x4
− δmax ≤ 0

(29)g7(x) = P −
4.013Ex3x

3
4

6L2

(

1−
x3

2L

√

E

4G

)

≤ 0

Figure 3.  (continued)

Table 8.  Friedman’s test for dimension 30, 50 and 100 dimensions for 20 functions.

Test Dim AEFA-CSR AEFA CS DE FA PSO JAYA HFBOA SSALEO TSO HPSOBOA SCSCO

Friedman Value
30

2.48 8.48 7.55 5.45 7.55 6.53 8.50 5.88 6.18 5.75 8.15 5.53

Friedman Rank 1 10 8 2 8 7 11 5 6 4 9 3

Friedman Value
50

1.96 10.85 9.62 8.85 8.38 7.46 8.23 4.42 5.08 3.19 6.31 3.65

Friedman Rank 1 12 11 10 9 7 8 4 5 2 6 3

Friedman Value
100

1.92 11.00 10.00 9.83 8.67 8.00 8.58 3.33 4.83 2.92 5.50 3.42

Friedman Rank 1 12 11 10 9 7 8 3 5 2 6 4
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where

with the constants; P = 6000lb , L = 14in,E = 30× 10
6
psi,G = 12× 10

6
psi , τmax = 13, 600psi, σmax = 30, 000psi, δmax = 0.25in.

The boundaries of the variables are given as;

(30)τ
′
=

P

2x1x2

(31)τ
′ ′
= MRJ

(32)M = P
(

L+
x2

2

)

(33)R =

√

x22
4

+
(

x1 + x3

2

)2

(34)J = 2

{

√
2x1x2

[

x22
12

+
(

x1 + x3

2

)2
]}

0.1 ≤ x1, x4 ≤ 2.0 and 0.1 ≤ x2, x3 ≤ 10.0

Table 9.  Wilcoxon Rank sum test 30, 50 and 100 dimensions for 20 functions.

Dim AEFA-CSR vs − + = R− R+ p-value

30

AEFA 0 17 3 0 153 2.93E−04

CS 0 13 7 0 91 1.47E−03

DE 1 12 7 8 83 8.78E−03

FA 1 15 4 5 131 1.12E−03

PSO 1 13 6 6 99 3.51E−03

JAYA 0 20 0 0 210 8.90E−05

HFBOA 1 15 4 9 127 2.28E−03

SSALEO 1 17 2 15 157 1.85E−03

TSO 2 15 3 24 129 1.29E−02

HPSOBOA 1 18 1 10 180 6.25E−04

SCSO 1 15 4 8 128 1.92E−03

50

AEFA 0 13 0 0 91 1.47E−03

CS 0 13 0 0 91 1.47E−03

DE 0 13 0 0 91 1.47E−03

FA 1 12 0 4 87 3.73E−03

PSO 1 12 0 6 85 5.77E−03

JAYA 0 13 0 0 91 1.47E−03

HFBOA 1 10 2 7 59 2.08E−02

SSALEO 2 11 0 20 71 7.47E−02

TSO 3 9 1 32 46 5.83E−01

HPSOBOA 1 12 0 9 82 1.07E−02

SCSO 1 10 2 8 58 2.62E−02

100

AEFA 0 13 0 0 91 1.47E−03

CS 0 13 0 0 91 1.47E−03

DE 0 13 0 0 91 1.47E−03

FA 0 13 0 0 91 1.47E−03

PSO 0 13 0 0 91 1.47E−03

JAYA 0 13 0 0 91 1.47E−03

HFBOA 1 9 2 7 48 3.67E−02

SSALEO 2 11 0 19 72 6.40E−02

TSO 3 8 2 29 37 7.22E−01

HPSOBOA 1 12 0 9 69 1.86E−02

SCSO 1 10 2 8 58 2.62E−02
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Table 10.  Statistical Test for parameter combination with dimension = 30. Significant values are in bold.

k=η=1
pa = 0.25

k=η=10
pa = 0.25

k=η=100
pa = 0.25

k=η=1000
pa = 0.25

k=η=1000
pa = 0.1

k=η=1000
pa = 0.15

k=η=1000
pa = 0.2

k=η=1000
pa = 0.3

F1
Avg 3.67E−34 3.22E−55 2.51E−54 9.99E−53 8.70E−55 1.22E−54 7.62E−54 8.61E−54

Std 2.30E−35 1.75E−56 4.34E−56 1.97E−55 2.00E−56 8.01E−56 9.89E−56 8.24E−54

F2
Avg 7.06E−17 7.01E−28 6.48E−28 2.69E−28 1.29E−28 2.95E−28 2.42E−28 4.42E−28

Std 5.51E−18 5.32E−29 8.97E−29 6.91E−30 2.17E−30 4.34E−29 1.19E−28 1.58E−28

F3
Avg 9.40E−5 1.30E−44 1.06E−46 4.77E−46 9.52E−48 8.39E−47 1.66E−46 2.35E−44

Std 2.39E−8 1.93E−49 3.08E−48 9.49E−50 6.59E−49 2.20E−48 2.10E−48 2.35E−47

F4
Avg 1.06E−15 1.27E−26 1.80E−26 4.40E−26 9.55E−27 1.63E−26 2.33E−26 2.40E−25

Std 6.55E−16 1.77E−27 1.45E−26 1.90E−26 2.30E−27 5.69E−27 2.76E−27 1.40E−26

F5
Avg 2.99E−33 1.10E−53 2.46E−54 1.06E−51 1.44E−54 1.85E−54 6.30E−54 6.43E−53

Std 2.99E−34 2.15E−54 2.33E−54 3.80E−53 3.32E−55 7.54E−56 1.19E−54 2.97E−55

F6
Avg 3.33E−2 0 0 0 0 0 0 0

Std 0 0 0 0 0 0 0 0

F7
Avg 9.59E−3 1.80E−3 1.34E−3 2.05E−3 1.31E−3 1.86E−3 1.93E−3 1.61E−3

Std 2.00E−3 8.75E−4 1.64E−4 1.51E−3 1.00E−4 1.03E−4 6.84E−5 1.41E−3

F8
Avg 1.19E−1 5.14E−1 7.01E−19 1.33E−18 8.59E−19 1.73E−18 6.50E−19 6.06E−19

Std 6.29E−6 4.22E−2 5.10E−19 2.89E−19 4.39E−19 1.43E−19 4.03E−19 2.62E−19

F9
Avg 3.35E+00 7.51E−1 0 0 0 0 0 0

Std 2.42E+00 4.97E−1 0 0 0 0 0 0

F10
Avg 6.22E−14 4.44E−16 4.44E−16 4.44E−16 4.44E−16 4.44E−16 4.44E−16 4.44E−16

Std 2.84E−14 0 0 0 0 0 0 0

F11
Avg 6.09E−7 0 0 0 0 0 0 0

Std 0 0 0 0 0 0 0 0

F12
Avg 2.80E−2 1.03E−2 6.91E−3 1.43E−23 4.26E−24 6.91E−3 3.45E−3 3.48E−3

Std 4.26E−3 3.03E−4 6.84E−4 2.50E−24 1.99E−25 1.03E−4 5.18E−4 8.34E−4

F13
Avg 1.83E−3 2.19E−3 7.32E−4 3.66E−3 5.44E−3 3.29E−3 4.71E−3 4.71E−3

Std 3.29E−4 4.29E−4 8.49E−5 5.49E−4 5.69E−4 2.19E−4 5.17E−4 2.74E−4

F14
Avg 1 1 1 1 1 1 1 1

Std 0 0 0 0 0 0 0 0

F15
Avg 1.35E−31 1.35E−31 1.35E−31 1.35E−31 1.35E−31 1.35E−31 1.35E−31 1.35E−31

Std 0 0 0 0 0 0 0 0

F16
Avg -1.03 -1.03 -1.03 -1.03 -1.03 -1.03 -1.03 -1.03

Std 0 0 0 0 0 0 0 0

F17
Avg 3.97E−1 3.97E−1 3.97E−1 3.97E−1 3.97E−1 3.97E−1 3.97E−1 3.97E−1

Std 0 0 0 0 0 0 0 0

F18
Avg 3 3 3 3 3 3 3 3

Std 0 0 0 0 0 0 0 0

F19
Avg − 3.65 − 3.73 − 3.86 − 3.86 − 3.86 − 3.86 − 3.86 − 3.86

Std 0 0 0 0 0 2.06E−2 0 0

F20
Avg 0 0 0 0 0 0 0 0

Std 0 0 0 0 0 0 0 0

Friedman Value 6.60 4.80 3.88 4.63 3.28 4.13 4.15 4.55

Friedman Rank 8 7 2 6 1 3 4 5

Table 11.  Wilcoxon Rank Sum test for parameter combination.

k = η  = 1000; Pa = 0.1 vs − + = R− R+ P-value

k = η  = 1; Pa = 0.25 1 13 6 8 97 5.213E−3

k = η  = 10; Pa = 0.25 2 9 9 8 58 2.623E−2

k = η  = 100; Pa = 0.25 2 7 11 14 31 3.139E−1

k = η  = 1000; Pa = 0.25 1 8 11 9 36 1.097E−1

k = η  = 1000; Pa = 0.15 1 9 10 9 46 5.934E−2

k = η  = 1000; Pa = 0.2 2 7 11 14 31 3.139E−1

k = η  = 1000; Pa = 0.3 2 7 11 14 31 3.139E−1
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Figure 4.  Convergence trajectory values for different parameter combinations.



20

Vol:.(1234567890)

Scientific Reports |         (2023) 13:4098  | https://doi.org/10.1038/s41598-023-31081-1

www.nature.com/scientificreports/

The results are compared with all the algorithms used for the experiments; AEFA, CS, DE, FA, PSO, JAYA, 
HFBOA, SSALEO, TSO, HPSOBOA and SCSCO. The population size is 30 and the algorithms are individually 
performed 20 times with a maximum of 500 iterations.

The best value of each optimization result for the twelve methods used to solve the welded beam design 
problem is shown in Table 15. Table 15 indicates that AEFA-CSR performs better than other methods on the opti-
mization of welded beam design problem. It obtained the optimum value which is the least cost to be 1.695258.

Tension/compression spring optimization design problem. The tension/compression spring design problem’s 
optimization objective is to lower the spring  weight60. It is a continuous constrained problem and the variables 
are wire diameter d, average coil diameter D, and effective coil number P. Constraints include subject to minimal 
deviation (g1), shear stress (g2), shock frequency (g3), and outside diameter limit (g4). The objective function and 
constrained equations are given below.

x =
[

x1 x2 x3
]

=
[

d D P
]

(35)f (x) = x21x2(2+ x3)

(36)g1(x) = 1−
x32x3

71785x41
≤ 0

(37)g2(x) =
4x22 − x1x2

12, 566
(

x2x
3
1 − x41

) +
1

5108x21
≤ 0

Figure 4.  (continued)
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For decision variables, boundaries are given as,

The results are compared with all the algorithms used for the experiments; AEFA, CS, DE, FA, PSO, JAYA, 
HFBOA, SSALEO, TSO, HPSOBOA and SCSCO. The population size is 30 and the algorithms are individually 
performed 20 times with a maximum of 500 iterations.

The findings in Table 16 show that each algorithm’s weight is relatively low, which puts the algorithms’ engi-
neering problem-solving precision to the test. The AEFA-CSR produced the lowest weight as 0.012663 when the 
algorithms are taken into consideration.

In order to measure the effect of hybridization applied to AEFA, such tests are carried out; overall effectiveness 
in changing dimension and population, convergence analysis, Wilcoxon rank-sum and Friedman statistical tests, 
sensitivity, exploration and exploitation analyses and computational complexity. Additionally, it’s performance 

(38)g3(x) = 1−
140.45x1

x22x3
≤ 0

(39)g4(x) =
x1 + x2

1.5
− 1 ≤ 0

0.05 ≤ x1 ≤ 2.0, 0.25 ≤ x2 ≤ 1.3and 2.0 ≤ x3 ≤ 15.0

Figure 5.  Exploration and exploitation stages through the optimization process.
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is validated through a set of real engineering design problems. In all analyses, it is depicted that CS significantly 
increase the population diversity while RL updates the lead agent. Therefore, it gets closer to the global optimum 
at each time which is a result of successfully built balance between exploration and exploitation.

Conclusion and future work
This article proposes a solid optimizer AEFA-CSR that allows to solve engineering optimization problems with 
satisfactory performance. The comprehensive experimental analyses are conducted by including the commonly 
used, recently developed and hybrid algorithms on a benchmark test suite of 20 problems and three engineer-
ing design problems. It is well observed that the proposed algorithm AEFA-CSR is superior than the compared 
algorithms in terms of overall effectiveness. The algorithm’s performance for increasing population size is meas-
ured with the higher overall effectiveness in between 61.53 and 76.93%. When the dimension grows, the overall 
effectiveness is measured in between 76.93 and 90.0%. For the Wilcoxon Rank Sum statistical test for different 
control parameters combinations, AEFA-CSR attained the best performance than the other algorithms. However, 
in terms of computational time, since the algorithm is a combination of three separate methods, the results are 
not desirable as they are expected. Although the running time of AEFA-CSR is slightly more than the others, 

Table 12.  CPU time comparison for benchmarks at dimension = 30 and population = 30. 

Function AEFA-CSR AEFA CS DE FA PSO JAYA HFBOA SSALEO TSO HPSOBOA SCSO

F1 79.56 22.25 33.05 5.68 34.84 40.20 3.03 5.71 3.68 1.34 3.03 24.87

F2 41.69 26.83 34.26 6.25 35.34 41.35 3.19 6.64 3.84 1.40 3.19 18.21

F3 30.17 92.44 56.38 15.76 44.93 52.50 6.00 27.47 6.55 2.71 6.00 21.30

F4 24.14 64.92 34.37 5.45 23.66 39.89 2.99 5.53 3.70 1.32 2.99 17.73

F5 31.16 26.26 35.31 17.38 13.28 50.73 6.32 31.65 6.75 3.00 6.32 21.02

F6 24.22 23.44 35.11 5.97 10.02 22.59 3.13 6.24 3.77 1.36 3.13 17.94

F7 24.62 24.14 118.38 6.95 10.22 11.48 3.37 7.94 3.66 1.47 3.37 18.06

F8 24.34 24.25 124.78 6.74 10.28 12.04 3.32 7.32 3.92 1.43 3.32 17.92

F9 24.12 24.17 71.91 6.05 9.96 11.28 3.11 6.38 3.47 1.38 3.11 17.73

F10 24.54 24.44 44.46 7.22 10.56 12.27 3.54 7.95 4.03 1.47 3.54 18.01

F11 24.69 24.46 37.42 7.20 10.29 12.40 3.58 7.78 4.09 1.51 3.58 48.35

F12 26.13 25.59 43.12 9.89 11.15 13.19 4.30 13.86 4.83 1.87 4.30 34.13

F13 25.79 25.49 44.46 9.82 11.19 13.02 4.12 12.34 4.66 1.78 4.12 18.51

F14 5.21 4.73 113.29 3.06 10.18 1.08 0.40 5.77 1.16 0.32 0.40 1.72

F15 5.20 4.89 33.17 2.82 10.10 1.07 0.40 5.62 1.15 0.32 0.40 1.72

F16 5.00 4.73 15.22 2.51 10.03 0.95 0.30 5.01 1.06 0.28 0.30 1.60

F17 5.05 4.86 15.76 7.65 29.75 2.91 0.97 15.39 3.25 0.86 0.97 4.91

F18 5.21 4.79 17.25 8.21 30.11 3.11 1.22 16.77 3.42 0.95 1.22 5.13

F19 7.54 6.32 41.40 6.07 10.90 2.36 1.31 11.46 2.02 0.74 1.31 3.15

F20 5.13 4.70 53.21 2.61 10.13 1.01 0.34 5.34 1.12 0.29 0.34 1.69

Table 13.  Test functions for antenna S-parameter optimization.

Function types Formula Antenna type Fmin

Unimodal F21(x) = 20log
(

2
(

∑n
i=1

∣

∣

∣

(

sin
(

xi
8

))2
∣

∣

∣
+

∏n
i=1

∣

∣sin
(

xi
8

)
∣

∣

)

+ 1
)

Single 0

F22(x) = 20log
(

10
(
∑n

i=1 x
2
i

)2 + 1
)

Multiple 0

F23(x) = 20log
(

10
(
∑n

i=1 0.01i
5x2i

)2 + 1
)

Single and multiple 0

F24(x) = 20log
((

∑n−1
i=1

(

100
(

xi+1 − x2i
)2 − (xi − 1)2

))

+ 1
)

Multiple 0

Multimodal F25(x) = 100
√

∣

∣x2 + 1− 0.01(x1 − 10)2
∣

∣+ 0.01|x1| Multiple 0

F26(x) = 20log
(

0.01
(
∑n

i=1 |xi |
)2
(sin(0.8x1)+ 2)4 + 1

)

Multiple 0

Composite
F27(x) = 20log

((

∑n−1
i=1

(

100
(

xi+1 − x2i
)2 − (xi − 1)2

))

+ 1
)

+20log
(

0.01
(
∑n

i=1 |xi |
)2
(sin(0.8x1)+ 2)4 + 1

) Multiple 0

F28(x) = 100
√

∣

∣x2 + 1− 0.01(x1 − 10)2
∣

∣+ 0.01|x1|

+20log
(

0.01
(
∑n

i=1 |xi |
)2
(sin(0.8x1)+ 2)4 + 1

) Multiple 0
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Table 14.  Test function optimization results for F21-F28. Significant values are in bold.

AEFA-CSR AEFA CS DE FA PSO JAYA HFBOA SSALEO TSO HPSOBOA SCSCO

F21
Avg 0 9.00E−16 1.40E−5 2.34E−14 1.30E−6 1.74E−10 2.54E−5 5.78E−16 2.73E−8 6.42E−6 1.75E−8 5.97E−6

Std 0 0 1.32E−6 0 2.15E−7 1.70E−10 1.75E−7 0 6.69E−10 0 9.62E−10 0

F22
Avg 0 0 9.26E−7 9.30E−7 3.00E−9 5.78E−16 1.67E−15 0 1.08E−11 6.40E−11 6.41E−14 6.42E−17

Std 0 0 9.46E−8 0 2.05E−9 0 0 0 1.22E−13 7.61E−14 2.89E−15 0

F23
Avg 0 1.70E+2 1.03E−2 7.79 1.29E+2 8.48E+1 3.76E−1 2.64E−14 1.93 3.07E−7 6.24E−3 1.54E−14

Std 0 5.93 6.67E−3 0 1.52 1.07 0 1.54E−14 1.68 1.35E−14 2.88E−5 0

F24
Avg 9.64E−16 3.03E+1 1.24 3.54 9.61 1.63E+1 1.21E+1 4.25E−1 7.80E−6 2.81E−1 1.63E−1 2.90

Std 0 5.19 2.35E−4 5.35E−2 9.02E−5 6.97E−1 3.11E−3 1.18E−1 3.64E−6 1.48E−4 1.21E−1 5.58E−2

F25
Avg 4.96E−8 1.23E−1 9.01E−2 5.30E−2 1.42E−1 6.02E−2 1.05 4.77E−3 4.34E−2 2.88E−1 4.85E−1 2.25E−3

Std 1.49E−8 6.36E−2 3.33E−2 2.95E−2 5.54E−2 0 3.16E−1 2.24E−4 1.00E−2 6.14E−4 4.03E−2 7.94E−4

F26
Avg 0 3.08E+1 2.47E−1 3.64E−1 1.36 8.74E−1 2.85E−1 3.18E−11 1.22E−4 5.00E−4 2.76E−6 2.52E−14

Std 0 5.98 1.40E−1 1.22E−1 1.04 5.47E−6 1.48E−1 0 1.11E−5 7.51E−3 2.05E−7 0

F27
Avg 1.47 9.12E+1 1.51 3.26 1.84E+1 5.72 7.01 6.31 4.47 1.05E+1 6.84 3.75

Std 2.40E−1 3.29E+1 2.06E−1 6.03E−1 2.74E−2 2.55E−2 2.87E−1 2.80E−2 5.93E−1 9.43E−1 5.26E−1 1.45

F28
Avg 3.12E−22 5.41E+1 1.27E+1 3.95 3.77E+1 1.24E+1 2.62E+1 2.08E−3 4.44E−1 4.65E−1 6.27E−1 2.22E−2

Std 3.03E−25 3.13 4.22E−1 3.82E−2 2.86 3.25E−1 7.21 1.30E−4 1.46E−1 1.18E−2 4.50E−2 6.49E−6

Figure 6.  Convergence trajectory values for F21- F28.
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the running time is still acceptable and the algorithm produces more accurate and the efficient results than the 
others for all the functions analyzed. As a future work, the computational time results can be analyzed for further 
improvements. By considering the important contributions of AEFA-CSR, a balance might be built between the 
high accuracy and the computational time. Apart from this, it can be said with a confidence that the AEFA-CSR 
is a quite promising optimization algorithm and quite applicable in solving real-world engineering problems.

Data availability
The data obtained through the experiments are available upon a reasonable request from the first author O.R.A.
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