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The integration of human-centric approaches has gained more attention recently due to more 
automated systems being introduced into our built environments (buildings, roads, vehicles, etc.), 
which requires a correct understanding of how humans perceive such systems and respond to them. 
This paper introduces an Immersive Virtual Environment-based method to evaluate the infrastructure 
design with psycho-physiological and behavioral responses from the vulnerable road users, especially 
for pedestrians. A case study of pedestrian mid-block crossings with three crossing infrastructure 
designs (painted crosswalk, crosswalk with flashing beacons, and a smartphone app for connected 
vehicles) are tested. Results from 51 participants indicate there are differences between the subjective 
and objective measurement. A higher subjective safety rating is reported for the flashing beacon 
design, while the psychophysiological and behavioral data indicate that the flashing beacon and 
smartphone app are similar in terms of crossing behaviors, eye tracking measurements, and heart 
rate. In addition, the smartphone app scenario appears to have a lower stress level as indicated by 
eye tracking data, although many participants do not have prior experience with it. Suggestions 
are made for the implementation of new technologies, which can increase public acceptance of new 
technologies and pedestrian safety in the future.

At its core, infrastructures are in fact an engineering product that have significant impact on people’s day to 
day lives. However, unlike many other products (e.g., smartphones, computers, etc.), we often overlook the 
importance of changing the design based on user feedback within the design phase. This is partly due to the fact 
that such a process can become costly and often not practical in the context of designing infrastructures at the 
community and city  scales1. For instance, it is not possible to build different replicas of the same road for testing 
driver distraction in each alternative design of the road. As a result, many times, design features are chosen by 
the designer and engineers with minimal feedback (if any) from all end-users (e.g., drivers, bicyclists, pedestri-
ans, scooterstis that will use the road in the future). Over the recent years, due to advancements in technology, 
designers and decision makers have started to take into account the end user and human factors considerations, 
especially in the areas of human–building  interaction2, and human–vehicle  interaction3. This approach, which 
is often referred to as a human-centric approach in design, tends to put the user’s needs, comfort levels, and 
preferences at the center of the design  process4,5. The integration of human-centric approaches in the infrastruc-
ture design has gained more attention recently due to their benefit in different infrastructure systems such as 
construction  safety6, accident prevention in traffic  safety7, energy saving for lighting  luminaries8, and outdoor 
comfort in urban  spaces9.

For the design to become human-centric, it is crucial to measure the factors affecting the human–infrastruc-
ture interaction which can be divided into internal and external factors. Internal factors which are mostly related 
to the user are concerned with users’ preferences, needs, states, and behaviors, while the external factors are 
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related to the outside context that is shaping the users’ environment such as the road environment in a driving 
condition, and the indoor built environment in a building  case10. This requires a platform to holistically monitor, 
model, and analyze the the relationship between the external and internal factors within a human–infrastructure 
interaction problem. Additionally, it requires methods that can quantitatively provide insights on the perception 
of the infrastructure from different end-user perspectives (e.g., demographic backgrounds, personality), and 
simulate different alternative designs within the simulated platform prior to the construction phase. As a new 
emerging technology, Immersive virtual environments (IVEs) simulators are a promising tool for behavioral stud-
ies and to identify how end-users perceive and react to different design alternatives, while holistically monitoring 
both internal and external factors. Additionally, within IVEs, users have the ability to realistically visualize and 
interact with the infrastructure before construction and to change the design accordingly. IVE has been applied 
in many indoor human-building interactions, such as  buildings11–15 as well as human–transportation interaction 
problems such as  vehicles16–18, and  cyclists19 and other road users. To monitor internal factors, human psycho-
physiological metrics such as heart rate, skin temperature, skin conductance, and eye gaze patterns were used 
in the literature for assessing human state such as stress level, emotion, and cognitive  load10,20–23. Further, these 
physiological measures have also shown to be more sensitive than task performance measures to identify task 
difficulty when using a new technology or exploring a new  environment24–26. It is easier to implement physiologi-
cal sensors within IVEs compared to traditional methods such as observational studies or naturalistic  studies27. 
Coupling IVEs with psycho-physiological sensing of users allows researchers to measure the internal factors (the 
end-user perception and response) of alternative infrastructure designs, as well as simulating various external 
factors, which can objectively prevent faulty design features prior to  construction28.

This paper aims at describing a system framework to evaluate infrastructure design for the different types 
of road users (e.g., drivers, pedestrians, cyclists, and construction workers) by leveraging a multimodal IVE 
system. We conduct a case study within the proposed IVE system to test and assess the users feedback to spe-
cific design alternatives for a mid-block crossing infrastructure. For the case study we focus on a transportation 
infrastructure evaluation for vulnerable road users due to the limited existing research in this area. Designing 
proper roadway and transportation systems is of high importance as it is highly associated with users well-being, 
injuries, fatalities, and overall quality of  life29. However, there is limited attention to how roadway systems need 
to be designed to be inclusive for all  users30. The majority of research on roadway design has heavily focused on 
studies evaluating driver’s behavior, safety, and responses to different design conditions and contextual  settings31. 
As a result limited studies have focused on other road users such as pedestrians, bicyclist’s responses to different 
roadway design and  conditions32. Among all road users, Vulnerable Road Users (VRUs) such as pedestrians 
and bicyclists require more attention due to the increasing fatalities in recent years and increasing number 
of these  users33,34. Within VRUs, pedestrians are facing more safety challenges on the road, especially during 
the midwalk crossing as they have less protective equipment and slower speed than the vehicles, scooters, and 
 bicycles35. Ensuring the safety of pedestrians is a challenge for researchers, as pedestrian’s decision to cross and 
the crossing behavior may be affected by many internal factors such as visual/cognitive  distraction36 and external 
factors, such as pedestrian infrastructure, roadway design, traffic volumes, vehicle speed, and visibility of the 
road  environment37,38. Accidents involving pedestrians are especially common at un-signalized and mid-block 
crosswalks, where vehicles are less likely to yield to  pedestrians39.

To increase pedestrian safety at mid-block crossings, different safety treatments have been introduced, such 
as rapid flashing beacon (RFB)40, a vibrotactile  wristband41, countdown  timer42, and pedestrian  footbridge43,44. 
However, each method mentioned above has its own shortcomings. For example, pedestrians’ response rate to 
the vibrotactile wristband is  low41 and the countdown timer could make the pedestrian overestimate their speed, 
which will result in a higher chance of red light  running42. The development of connected vehicles and autono-
mous vehicles has changed the communication environment between pedestrians and vehicles. Recent studies 
have focused on how to communicate awareness and intent of autonomous vehicles to  pedestrians45. However, 
very few studies have pedestrian-centered design, which is how to communicate the pedestrian’s crossing inten-
tions to the vehicles, especially in  IVEs46. With the limited number of pedestrian study, some researchers have 
reported the potential of integrating the aformentioned physiological signals in the data collection and analysis. 
Kitabayashi et al. used heart rate as the biosignal and found out that pedestrians stress in walking are affected by 
the road  congestion47. Additionally, pedestrians’ physiological measures were shown significantly correlated with 
certain urban features such as uneven sidewalks as well as subjective ratings of  walkability48,49. The physiologi-
cal data can also be used to quantify the ‘perception-decision-execution’ ability in avoiding danger to a certain 
 level50. These studies have been conducted either within naturalistic settings or simulated environments. Within 
naturalistic settings, researchers are not able to manipulate existing roadway designs or features; meanwhile, 
within simulated environments, sense of immersion of participants are not realistic, especially on studies con-
ducted on 2D screens. Thus, combining physiological metrics within the IVE, where many design alternatives 
can be evaluated with high sense of immersion, help us better understand the effect of each pedestrian-centered 
design on road users.

The provided case study will utilize the framework described to: (1) identify the benefits and limitations of 
using IVEs for collecting and modeling VRUs’ behaviors and psycho-physiological responses while highlight-
ing how such information could improve the design decision making; (2) evaluate the objective and subjective 
measures of perceived safety rating across different alternative designs; and (3) evaluate pedestrians’ crossing 
behavior and psychophysiological responses across different conditions. We will introduce the system framework 
to collect VRUs’ behavior and physiological response. The system has integrated data collection methods (pedal-
ing/walking performance, eye tracking, heart rate, and video) in virtual reality, and the modularized components 
makes it applicable to evaluate infrastructure design for all roadway users whether they are pedestrians, bicyclists, 
scooterists, construction workers, or drivers. Through a case study of pedestrian crossing, 51 pedestrians’ stated 
preferences, crossing behaviors and physiological responses are collected and analysed with three different 
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mid-block crossing safety treatments—painted crosswalk (as-built), rapid flashing beacons (flashing beacon, 
Fig. 5), and a connected vehicle phone application (smartphone app, Fig. 6). The goal of this study is not only to 
identify which design is the best but also to explore the potential benefit of future technology in infrastructure 
design by implementing virtual reality (VR) method.

This study hypothesises that:

• H1: Null—There are no significant differences in pedestrians’ subjective rating of the perceived safety in the 
three scenarios scenario. Alternative—at least one scenario’s subjective safety rating will differ from the other 
two alternatives.

• H2: Null—The pedestrians’ crossing behaviors (wait time, number of stops during the crossing) are similar 
in all three scenarios. Alternative–The pedestrians’ crossing behaviors will be different in at least one of the 
two alternative designs.

• H3: Null—Pedestrians in all conditions will have a similar level of cognitive workload, as indicated by mean 
fixation length, fixation rate, gaze entropy, and mean heart rate. Alternative—Pedestrians would experience 
significant differences in psychophysiological responses in the flashing beacon and/or smartphone app con-
ditions.

Results
Stated preference survey response. In the post-experiment survey, all participants are asked to rate 
the realism of the IVE with a 5-point Likert scale in several aspects: if the virtual environment feels appropriate 
to scale (scale), how immersed they felt in the virtual environment experience (immersive), and the extent of 
consistency of the experiences in the virtual environment with the real-world experiences of crossing a street 
(consistency). With respect to the scale ratings, an overwhelming majority of participants felt that the virtual 
environment was to scale (4.1% response ‘3’, 20.4% response ‘4’, 75.5% response ‘5’, mean score = 4.71). Most 
of them felt immersed in the VR IVE (6.1% response ‘3’, 34.7% response ‘4’, 61.2% response ‘5’, mean score = 
4.53). Their experience in the VR IVE was consistent with their real-world experiences when crossing the street 
(2.0% response ‘1’, 12.2% response ‘3’, 36.7% response ‘4’, 49.0% response ‘5’, mean score = 4.31). Except for one 
participant responsed with ‘1’ in consistency rating, most participants reported a high realism of the simulator.

On average, participants have a higher safety rating in flashing beacon scenario (4.56 out of 5 scale), followed 
by the smartphone app (3.6), and the as-built environment (3.0). The differences between the safety rating are 
all significant at a 95% confidence level ( α = 0.05).

Additionally, once asked to rank the three environments based on their perceived safety measures from safest 
to least safe, participants’ responses supported the previous metric, with flashing beacon ranked as the safest 
and the as built environment as the least safe condition (Fig. 1). 69% of the participants rate the flashing beacon 
scenarios as the safest scenario of the three options, none of them rate it as the least safe scenario. For smartphone 
app scenario, 12% rate it as the safest, 27% participants rate it as the least safe one. For the as-built scenario, only 
8% rate it as the safest and 61% of the participants rate it as the least safe scenario.

Figure 1.  Safety preference for different scenarios from survey response.
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Crossing behavior. Crossing time. For the crossing time, as shown on Fig. 2a, participants had a signifi-
cantly lower crossing time in the flashing beacon ( β = −3.604, SE = 0.717, p = 0.0026 ) and smartphone app 
cases ( β = −3.417, SE = 0.720, p = 0.00013 ) as compared to the as-built environment. No significant differ-
ences are found between the flashing beacon and smartphone scenarios.

Wait time before crossing. The wait time before crossing for as-built, flashing beacon and smartphone app 
scenarios are 20.34 s, 22.20 s, and 21.47 s respectively. A marginal significant difference between as-built and 
smartphone app scenarios is found ( β = 2.284, SE = 1.177, p = 0.0548).

Wait time after crossing decision. The wait time after crossing decision for smartphone app scenario (mean = 
4.23 s, sd = 2.92 s) is lower than flashing beacon scenario (mean = 5.20 s, sd = 3.35 s), but the difference is not 
significant.

Head movement. The result shows a significant difference between the as-built and the two other scenarios with both 
p values less than 0.001. Specifically, for the flashing beacon scenario,β = −0.118, SE = 0.0284, p = 0.0000657 , 
and for the smartphone app scenario, β = −0.144, SE = 0.0241, p = 4.50e − 08 . However, we did not find a 
difference between the flashing beacon and smartphone app scenario. As shown on Fig. 2b, participants had 
a higher variation of head movement direction in the as-built environment as compared to the other two sce-
narios. It is also shown from the results that low prior VR experience contributes to higher head movement 
variation ( β = 0.069, SE = 0.027, p = 0.0141).

Stop during crossing. We manually annotated the experiment videos to determine if the pedestrians have 
stopped in the middle of their crossing. Two participants’ (participants 42 and 46) data are excluded due to 
failure in video recording. Therefore, 49 participants’ stop behaviors are recorded. As shown in Table 1, Pedes-
trians in the as-built scenario stop significantly more in the middle of the corss walk compared to the other two 
scenarios. Interestingly, the flashing beacon and smartphone app scenarios has exact the same number of stops 
across the participants. In both scenarios, there are 10 participants who stop in the middle of crossing to wait 
for the vehicle’s response although they are told that the vehicles will stop for them after they send their request 
by pushing the buttons.

Eye tracking. For the eye tracking data, five participants’ data are excluded due to hardware failure during 
data collection. The eye tracking results in this section are based on 46 participants’ data.

Figure 2.  (a) Average crossing time of different scenarios; (b) head movement variation of different scenarios.

Table 1.  Number of pedestrians’ stops during crossing.

Scenarios No stop cases Stop cases

As-built 19 30

Flashing beacon 39 10

Smartphone app 39 10
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Fixation. Participants in the smartphone app scenario had a significantly higher fixation rate as compared 
to the as-built environment ( β = 0.235, SE = 0.111, p = 0.0369 ). We did not find any significant differences 
between the other scenarios, as shown in Fig. 3a. Furthermore, male participants’ fixation rate are significantly 
lower than females ( β = −0.296, SE = 0.145, p = 0.0475 ). Participants with a low level of familiarization to VR 
devices have a lower fixation rate ( β = −0.531, SE = 0.050, p = 0.000894).

For mean fixation duration, there is a significant difference between the as-built and the smartphone app 
scenarios ( β = −0.0179, SE = 0.00787, p = 0.0259 ). As shown on Fig. 3b, participants had a lower mean fixation 
duration in the smartphone app scenario with an average of 0.184 sas compared to the as-built environment with 
an average of 0.201 s, in between is the mean fixation duration of flashing beacon scenario (0.193 s).

Gaze entropy. There are two types of gaze entropy measures: stationary gaze entropy (SGE) and 
gaze transition entropy (GTE). The results for the SGE shows that participants had a significantly 
lower SGE in the smartphone app as compared to the as-built environment, as shown in Fig.  4a. 
( β = −0.343166, SE = 0.092471, p = 0.00036 ). Older pedestrians have a overall lower SGE than younger 
pedestrians ( β = −0.011, SE = 0.005, p = 0.0439 ). The results of GTE shows that the GTE is significantly 
lower in the both flashing beacon ( β = −0.0764, SE = 0.0403, p = 0.0444 ) and smartphone app scenarios 
( β = −0.0830, SE = 0.0411, p = 0.0435 ) as compared to the as-built environment. No significant results are 
found between the flashing beacon and smartphone app scenario, as shown in Fig. 4b.

Heart rate. The heart rate result indicates that there is no significant differences between the three scenarios 
a 95% confidence level. Marginal difference for the mean heart rate during crossing is found between the smart-

Figure 3.  Fixation measurement during crossing of three scenarios, (a) fixation rate, (b) mean fixation 
duration.

Figure 4.  Gaze entropy during crossing of three scenarios, (a) stationary gaze entropy, (b) gaze transition 
entropy.
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phone app scenario and the as-built scenario ( β = −1.909, SE = 1.109, p = 0.0886 ). The mean HR (beat per 
minute) of the as-built, flashing beacon and smartphone app are 86.40, 86.29 and 84.63, respectively.

Discussion
Overall, from stated preference results, both the flashing beacon and smartphone app scenarios are perceived to 
be safer than the as-built scenario, and the participants show a higher preference on the flashing beacon scenario 
based on both the subjective and objective ratings. The majority of the participants (69%) choose the flashing 
beacon as the safest scenario, which could imply their trust in this technology (as well as their familiarity with 
this technology as it exists on some roads).

Interestingly, the results from crossing behavior and physiological responses are slightly different from stated 
preference. For average crossing time, both the flashing beacon and smartphone app scenarios have a lower aver-
age crossing time compared to the as built scenario; additionally, there is no significant differences between the 
flashing beacon and smartphone app crossing time. The pedestrians have a lower wait time before crossing, but 
spend more time during the crossing, this is aligned with an observational study conducted  by35 at mid-block 
crosswalks in which pedestrians who waited for little or no at the curbside generally lost time during the crossing.

It is important to also note that some participants indicated that they were not sure about the smartphone 
app performance, so they chose to wait until the vehicle came to a complete stop for them. Our records showed 
that seven participants stated that they were not sure about what will happen after they pressed the button on 
the smartphone, more feedback in the smartphone app scenario is desired, as indicated by some comments, “It 
will great to know if the nearby vehicles received my request when using the App, maybe a feedback on your phone, 
like message saying received by coming vehicles.” (P6) and “I’m little concerned about using the phone app to inform 
the drivers, because I have no experience on that.” (P21).

However, when checking the waiting time after crossing decision, the smartphone app scenario actually has a 
lower average waiting time after crossing decision (4.23 s) than flashing beacon scenario (5.20 s), although the dif-
ference is not significant. This may be explained by different reactions required by the two interactions (press the 
button on the phone vs. physically reach out to the button), or the gap acceptance difference in the two scenarios.

With respect to head movement, the larger head movement variation in the as-built scenario indicates that 
participants are more hesitant during crossing, while no significant differences are found between the two 
alternative designs. Furthermore, visual inspection of the videos also qualitatively verifies the fact that the pro-
portion of stop behaviors during crossing are the same for the two alternative designs, and both are lower than 
the as-built scenario.

For eye tracking data, the difference in fixation rate and mean fixation duration between the as-built and 
smartphone app scenario shows pedestrians’ different visual scanning strategies. The longer fixation duration 
in the as-built scenario means that pedestrians spent a long time on searching the environment and potential 
hazards. As reported by previous studies, longer fixation duration and lower fixation rate is related to higher 
cognitive  load15. An earlier pedestrian eye tracking study also found that ‘safe’ pedestrians have a lower mean 
fixation duration than ‘rogue’ pedestrians after they get used to the  environment51. Lower SGE and GTE are 
observed in the smartphone app, as far as we know, there is no existing studies about the pedestrian gaze entropy. 
In flight situations, low gaze entropy is usually accompanied by high situation awareness, for different tasks, 
the gaze entropy of the group that succeeded in the task was  low52. Therefore, our results may indicate that the 
smartphone app scenario may have a lower cognitive workload for the pedestrian to cross.

Due to the relatively low HR data frequency, only a limited number of HR data points are utilized for the 
mean HR comparison. Marginal significantly lower mean HR is found for smartphone app scenario in this study, 
which may reveal a lower stress level in the smartphone app scenario as compared to the other two scenarios. As 
mentioned before, previous studies show that lower HR values are generally associated to calmer, less-stressful 
 states21. However, we note that this finding needs to be validated in the future study with more professional HR 
data collection devices. In addition, the fidelity of the IVE system can be another reason that contributes to the 
significance of HR results, although our framework features with a simulation from a real-world environment, 
a head-mounted display for visualization, the real-time agency of movement, and environmental sound, more 
steps can be taken to further improve the fidelity such as the simulation of other pedestrians, weather condi-
tions, and haptic feedback.

The qualitative feedback collected from participants may also help to find the reasons behind the differences 
in subjective ratings and objective responses. A couple of participants stated that they were not sure about what 
would happen in the smartphone app scenario after pressing the button on the screen although instructions are 
given before the experiment. This may be the reason why more participants prefer the flashing beacon scenario. 
However, the crossing behavior data shows that the waiting time after crossing decision for the smartphone app 
is not significantly different from flashing beacon. For other crossing behavior variables, we also do not find 
significant differences between the flashing beacon and smartphone app scenario. In addition, for physiologi-
cal responses, the smartphone app scenario seems to have a slightly better overall performance with a shorter 
fixation duration, higher fixation rate and lower HR, which is related to lower cognitive load. Given the fact that 
there is still much room for improvement in the smartphone app scenario, a better physiological performance 
can be expected if such limitations are addressed.

Our results further emphasize the importance of objective measurement for the evaluation of infrastructure 
designs as the users’ subjective answers may not reflect their actual behaviors. The difference in subjective ratings 
and objective responses also highlights that public education is an important step of new technology implemen-
tation. In our study, although the smartphone app scenario shows a good overall performance, participants do 
not have a high safety ratings on it because they do not have any related experience with the new technology. 
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IVE-based simulation offers a risk-free and low-cost platform for the public to get familiar with new technologies, 
which will help to increase the acceptance of these new technologies which are currently not familiar to them.

Limitations and future work
The eye tracking section of our study only focuses on the overall information of fixations (fixations rate and mean 
fixation duration) and the general distribution of the fixations (gaze entropy), it makes more sense to extract 
contextual information about fixations. By defining Area of Interests (AOIs) such as the button on the flashing 
beacon, smartphone, crosswalk path or other vehicles, it would help to gain a better understanding of what the 
pedestrians are looking at. The visual attention allocation of pedestrians will provide more information about 
distraction  state53. In our future study, in-depth analysis of eye tracking data by integrating the AOIs information 
will be performed to explore pedestrians’ visual attention allocation on key AOIs, such as the flashing beacon 
button, the smartphone and the vehicles.

Another limitation of our study was the low frequency of HR data. Due to collecting HR using off-the-shelf 
smartwatches we did not have access to higher frequency physiological sensing. Future work should consider 
adding other physiological sensing modalities such as skin temperature and skin conductance to enhance the 
physiological sensing module and inference. However, it should also be considered that more devices might 
degrade the feeling of realism of the study. More advanced devices that can collect multiple physiological sen-
sors simultaneously can be integrated into studies as such to keep the realism while recording a higher number 
of modalities of data.

Other limitations, as also mentioned by the participants were to include (1) realistic vehicle actions, (2) feed-
back from the smartphone app, and (3) traffic simulation. Currently, we are improving the logic of the vehicle 
by refactoring the vehicle speed controller so the response will be more realistic. More ways of interactions and 
the feedback are being developed such as audio warning, tactile feedback from the controller, vehicle’s flashing 
light, projections on the crosswalk, and so on. The various ways of interactions will be evaluated by users’ stated 
preferences and objective responses as well. Moreover, based on our  framework27, it is possible to include multiple 
agents in the IVE, so other road users such as bicyclists and drivers can be studied together with pedestrians 
within the IVE. We are developing a multi-agent simulator for different road users (more pedestrians, cyclists, 
work zone workers, and drivers) based on the current system framework, aiming to study the pedestrian platoons 
simultaneously in the same VR environment. More results are expected in our follow-up papers.

Conclusion
This paper presents the evaluation of three pedestrian crossing infrastructure designs (the as-built painted cross-
walks, the flashing beacon and a connected vehicle phone application) in an IVE-based experiment. With the 
system framework, the stated preferences, crossing behavior and physiological responses are collected from 51 
participants. Several advantages can be identified from this study over an observational study: First, it is possible 
to collect physiological responses, such as eye tracking and heart rate. Second, this type of study can guarantee 
experimental control over other factors that may affect the response, such as weather conditions, traffic volumes, 
and other infrastructure conditions. Third, the designs that are currently unavailable in the real world can be 
evaluated in the IVE, such as the connected vehicle technology. Lastly, the IVE-based study offers a risk-free and 
low-cost platform, especially for the underrepresented road users, such as females, disabled and elderly people. 
The results indicate that the two alternative designs have a higher safety ratings than the as-built scenario, and 
the flashing beacon scenario is rated as the safest. Pedestrians in the as-built scenario have a lower waiting time 
but spend/lost more time during crossing by stopping in the middle of the crosswalk to wait for the vehicle, in 
addition, a larger head movement variation is observed in the as-built scenario. The crossing behavior in the 
flashing beacon and smartphone app scenario is similar. For the eye tracking data, pedestrians had a shorter 
fixation duration, larger fixation rate, smaller stationary gaze entropy and smaller gaze transition entropy in the 
smartphone app than the as-built scenario, which may be resulted from a lower cognitive workload. The differ-
ence between the flashing beacon and as-built scenario is not as significant as the smartphone app. A marginal 
significant lower mean heart rate is found in the smartphone app scenario. Overall, both the flashing beacon 
and smartphone app have a better physiological performance than the as-built scenario, but the smartphone 
app scenario appears to have a slightly better physiological outcome. Qualitative feedback is collected from the 
participants to explore the reasons for the differences between stated preferences and objective measurements, 
discussions, and suggestions are made. In conclusion, public education is required before the implementation of 
new technologies such as connected vehicles, which can help to increase users’ acceptance and safety.

Methods
The study is reviewed and approved by the Institutional Review Board for the Social and Behavioral Sciences 
from University of Virginia (IRB-2148). All experiments were performed in accordance with relevant named 
guidelines and regulations. Informed consent was obtained from all participants and/or their legal guardians.

Study design. This research designs a within-subject experiment to study pedestrians’ stated preferences, 
crossing behavior, and physiological responses to three different mid-walk crossing designs in an immersive 
virtual environment with a random order: painted crosswalk (as-built), rapid flashing beacons (flashing bea-
con), and a connected vehicle smartphone application (smartphone app). The selected location for this study is 
the intersection of Water St and 1st Street South in Charlottesville, Virginia. This place has been identified as a 
hotspot for pedestrian-vehicle accidents in the Virginia Department of Transportation’s Pedestrian Safety Action 
 Plan54. The intersection of Water Street and 1st Street South is chosen as the study site. The north side of the 
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intersection is a dead-end road (utilized only for deliveries). The south side of the road is a one-way street, which 
vehicles cannot turn onto from Water Street.

At the beginning of the experiment, each participant is asked to sign the consent form approved by the IRB 
office and put on two smartwatches on both wrists, before completing the pre-experiment survey. After finish-
ing the pre-experiment survey, instructions are given on how to use the VR headset, controllers, and pedestrian 
simulator, as well as how the three scenarios are designed and how to interact with the infrastructures in the VR. 
After the IVE system setup, the participant is placed into a familiarization scenario without any vehicle traffic 
to become familiar with interacting with the IVE. In this environment, the participant is free to walk around in 
the given area until the participant feels comfortable. Then the participant will experience the three scenarios 
in random order. In each scenario, pedestrians will be placed into the beginning location, facing the crosswalk 
heading southbound along 1st Street, crossing Water Street from the north side of the road. The independent 
variables are the crossing infrastructure designs and demographic information (i.e., age, gender). The depend-
ent variables are stated preferences of the three scenarios, crossing behavior (crossing time, waiting time before 
crossing, waiting time after crossing decision, stop or not during crossing, and head movement variation) and 
physiological responses (i.e., eye tracking and HR features) during crossing.

Virtual reality system setup. A one-to-one road environment is built in the Unity software with SteamVR 
platform. HTC Vive Pro Eye headsets with the controllers are utilized for any interactions in the IVE. More 
detailed information of the IVE setup is available in our previous  studies19,27,55. Vehicle traffic within the IVEs 
is generated from empirical gap acceptance data observed at the real-world location. The gaps between vehicles 
are generated to fit the empirical distribution of accepted gap  sizes55. These gaps are randomized before each 
scenario so each participant’s exposure to any gap is randomized. All the vehicles has a speed of 25 mph, followed 
the speed limit. Vehicle type is also randomized from the four vehicle models used in the IVE.

As‑built scenario. The as-built environment is built to model the existing painted crosswalk along the Water 
Street corridor to serve as the base case against the other two alternative designs. In the IVE, the pedestrian’s task 
is to crossing the street when they feel safe to do so after the first vehicle passes the crosswalk. The vehicle will 
stop right before the crosswalk to wait for the pedestrian to cross if a conflict is expected to happen.

Flashing beacon scenario. In the flashing beacon scenario, the pedestrian is allowed to cross the road whenever 
they feel appropriate. Pedestrians are able to interact with the flashing beacon by pressing the button located on 
the sign pole to initiate the flashers on the beacon. Figure 5 shows how a pedestrian interacts with the RFB while 
in VR prior to crossing, as well as an image of the RFB in VR when used.

Smartphone application. In the smartphone app scenario, pedestrians will have a cellphone (a controller in 
their right hand in real life) in their right hand once they are placed in the IVE. As shown in Fig. 6, there are 
two interfaces that will show up on the phone during testing. The first interface of the mobile phone application 
(initial state) asks the pedestrian if they wish to cross the crosswalk. Should the pedestrian answer “Yes” and 
press the button on the controller’s central pad, a new interface will pop up indicating “Your request is being 
broadcast”. Once the system detects the pressed button, the program will send the request to the next approach-
ing vehicle, and then it will brake and stop in front of the crosswalk to yield to the pedestrian, all the follow-up 
vehicles will stop as well. The pedestrian is then free to cross the crosswalk and vehicles will yield before the 
crosswalk for the pedestrian.

Data collection. The data collection method of this study follows the framework of our previous  study27, 
different types of behavioral and physiological data are collected: stated preferences from pre and post experi-
ment survey, crossing behavior data from Unity, eye tracking data from Tobii Pro Eye headset, heart rate data 
from smartwatches.

Figure 5.  A pedestrian is using a flashing beacon for crossing (left), the pedestrian point of view in IVE 
(middle), the flashing beacon in IVE (right). A sample video is available in the following link https:// youtu. be/ 
hz64m FP83LA.

https://youtu.be/hz64mFP83LA
https://youtu.be/hz64mFP83LA
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Survey response. In addition to demographic information, in the pre-experiment survey, the participants are 
also asked to provide their familiarity with VR devices. After the experiment, the participants are asked for their 
safety ratings and preferences over the three scenarios. For each scenario, they will be asked to provide their 
answer with a Likert Scale 1–5 to the question “How safe do you feel in the scenario”, where 1 indicates “not safe 
at all” and 5 indicates “very safe”. Furthermore, they are asked to rank the safest to the least safe scenario from 
the three environments.

Crossing behavior. Five response variables are recorded to represent the pedestrians’ crossing behavior: cross-
ing time, waiting time before crossing, waiting time after crossing decision, stop or not during crossing, and head 
movement variation. The crossing time is defined as the time interval from the moment when the pedestrian 
start crossing to the moment when the pedestrian reaches the other side of the crosswalk. Waiting time before 
crossing is defined as the time between the start of the experiment and the moment when the pedestrian start 
crossing. Waiting time after crossing decision are defined as the waiting time after pedestrian’s decision to cross 
the street (after pressing the button either on flashing beacon or smartphone to start crossing), which is only 
accessible in the flashing beacon and smartphone app scenarios. Stop or not during crossing is a binary response 
about whether the pedestrian has a obvious stop to wait for the vehicle’s behavior during crossing. The head 
movement is defined as the variations in the 3-D head movement direction in the unit vector.

Fixation. Fixation is defined as the moments when eyes stop scanning about the scene and hold the central 
foveal vision in certain places to look for detailed information of the target object. Similar to previous  studies28,56, 
We define a fixation with 25 ms minimum duration and 100 pixel maximum dispersion thresholds to extract 
the fixation information from the original eye tracking data and videos. Two measurements of fixation are cal-
culated: (1) the mean fixation duration is defined as the average length of all fixation events during the crossing; 
and (2) the fixation rate is defined as the number of fixations per second during the crossing.

Gaze entropy. there are two types of gaze entropy measures: stationary gaze entropy (SGE) and gaze transition 
entropy (GTE). SGE provides a measure of overall predictability for fixation locations, which indicates the level 
of gaze dispersion during a given viewing period. The SGE is calculated using Eq. (1):

H(x) is the value of SGE for a sequence of data x with length n, i is the index for each individual state, pi is the 
proportion of each state within x. To calculate the SGE, the visual field is divided into spatial bins of discrete 
state spaces to generate probability distributions. Specifically, the coordinates are divided into spatial bins of 
100× 100 pixel. i to n is defined as all the gaze data during crossing.

GTE is retrieved by applying the conditional entropy equation to first order Markov transitions of fixations 
with Eq. (2):

Here Hc(x) is the value of GTE, and p(i, j) is the probability of transitioning from state i to state j. The other 
variables have the same definitions as in the SGE equation (1). More details of calculating SGE and GTE can be 
found  in27,28.

(1)H(x) = −

n∑

i=1

(pi)log2(pi)

(2)Hc(x) = −

n∑

i=1

(pi)

n∑

i=1

p(i, j)log2p(i, j)

Figure 6.  A pedestrian is using smartphone app (left), pedestrian’s point of view in IVE (middle), smartphone 
app user interface before and after pressing (right), a sample video is available in the following link https:// youtu. 
be/Q_ LUoIZ uPKs.

https://youtu.be/Q_LUoIZuPKs
https://youtu.be/Q_LUoIZuPKs
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Heart rate. An Android smartwatch with the “SWEAR”  app57 records the HR data with a frequency of 1 Hz. 
The watch is connected to a smartphone via Bluetooth, and the time is synchronized with the experiment com-
puter before each experiment. All data from the smartwatch is temporally stored on the local device and then 
uploaded to Amazon S3 cloud storage to download for further analysis.

Participants. 51 participants were recruited for the experiment. Most of the participants are local residents, 
university students, and faculty members who are familiar with the study corridor. All participants are 18 or 
older and without color blindness. Two participants’ data are removed due to the malfunction in the data collec-
tion. For the remaining 49 participants (22 female and 27 male), the mean age is 33.92 with a standard deviation 
of 12.95 (1 participant did not reveal his/her age information).

Statistical modeling. A Linear Mixed Effects Model (LMM) was chosen to model the different response 
variables between independent variables across  participants58. The LMM framework is chosen specifically for 
their ability in addressing random and main effects simultaneously within the same modeling  scheme58. This 
type of modeling allows us to investigate the effect of each independent variable by considering that each par-
ticipant might have different baselines for their psychophysiological responses.

An LMM is defined as the following:

In Eq. (3), y is the dependent variable in our problem, X is the matrix of predictors, β is the vector of fixed-
effect regression coefficients, b is the matrix of random effects, z is the coefficients associated to each random 
effect, and ǫ is the unexplained error terms. The b and ǫ matrices are defined as:

In our modeling, we applied LMM using the lme4 package in R programming  language59.
The independent variables are the demographic information (age, gender), prior experience with VR devices 

(categorized as high/low by if they have used any VR devices before), and the three different pedestrian cross-
ing designs. The dependent variables are all the behavioral responses, including crossing behaviors (crossing 
time, wait time before crossing, wait time after crossing, head movement and stop during crossing), eye tracking 
(fixation and gaze entropy), and heart rate. This analysis was performed in R programming  language60 using the 
LME4  package59. All statistical analyses were performed at a 95% confidence level ( α = 0.05).

Data availability
The datasets analysed during the current study are available in the Open Science Framework repository—
“Supplemental materials for paper: rethinking infrastructure design: evaluating vulnerable road users psycho-
physiological and behavioral responses to different design alternatives” repository with the link of https:// osf. 
io/ 8w29f/.

Received: 5 October 2022; Accepted: 6 March 2023

References
 1. Naumann, S., Davis, M., Kaphengst, T., Pieterse, M. & Rayment, M. Design, implementation and cost elements of green infra-

structure projects. Final Report, European Commission, Brussels 138 (2011).
 2. Becerik-Gerber, B. et al. Ten questions concerning human-building interaction research for improving the quality of life. Build. 

Environ. 226, 109681 (2022).
 3. Murali, P. K., Kaboli, M. & Dahiya, R. Intelligent in-vehicle interaction technologies. Adv. Intell. Syst. 4, 2100122 (2022).
 4. Amundadottir, M. L., Rockcastle, S., Khanie, M. S. & Andersen, M. A human-centric approach to assess daylight in buildings for 

non-visual health potential, visual interest and gaze behavior. Build. Environ. 113, 5–21 (2017).
 5. Li, C. et al. A human-centric approach to building a smarter and better parking application. In 2021 IEEE 45th Annual Computers, 

Software, and Applications Conference (COMPSAC), 514–519 (IEEE, 2021).
 6. Su, X., Pan, J. & Grinter, M. Improving construction equipment operation safety from a human-centered perspective. Proced. Eng. 

118, 290–295 (2015).
 7. Horberry, T. et al. Human-centered design for an in-vehicle truck driver fatigue and distraction warning system. IEEE Trans. Intell. 

Transport. Syst. 20, 20 (2021).
 8. Jou, J.-H. et al. Approach for designing human-centered and energy saving lighting luminaires. Photonics 9, 726 (2022).
 9. Chokhachian, A., Santucci, D. & Auer, T. A human-centered approach to enhance urban resilience, implications and application 

to improve outdoor comfort in dense urban spaces. Buildings 7, 113 (2017).
 10. Tavakoli, A. et al. Harmony: A human-centered multimodal driving study in the wild. IEEE Access 9, 23956–23978 (2021).
 11. Heydarian, A. et al. Immersive virtual environments versus physical built environments: A benchmarking study for building design 

and user-built environment explorations. Autom. Constr. 54, 116–126 (2015).
 12. Francisco, A., Truong, H., Khosrowpour, A., Taylor, J. E. & Mohammadi, N. Occupant perceptions of building information model-

based energy visualizations in eco-feedback systems. Appl. Energy 221, 220–228 (2018).
 13. Zhu, R., Lucas, G. M., Becerik-Gerber, B., Southers, E. G. & Landicho, E. The impact of security countermeasures on human 

behavior during active shooter incidents. Sci. Rep. 12, 1–15 (2022).
 14. Bianchi, E. et al. Human wellbeing responses to real and simulated workplaces: A comparison of in-person, online, and virtual 

environments. In Proceedings of the 9th ACM International Conference on Systems for Energy‑Efficient Buildings, Cities, and Trans‑
portation, 299–300 (2022).

(3)y = Xβ + bz + ε

(4)bij ∼N(0,ψ2
k ),Cov(bk , bk′)

(5)εij ∼N(0, σ 2
�ijj),Cov(εij , εij′)

https://osf.io/8w29f/
https://osf.io/8w29f/


11

Vol.:(0123456789)

Scientific Reports |         (2023) 13:4278  | https://doi.org/10.1038/s41598-023-31041-9

www.nature.com/scientificreports/

 15. Liu, J.-C., Li, K.-A., Yeh, S.-L. & Chien, S.-Y. Assessing perceptual load and cognitive load by fixation-related information of eye 
movements. Sensors 22, 1187 (2022).

 16. Lee, W.-S., Kim, J.-H. & Cho, J.-H. A driving simulator as a virtual reality tool. In Proceedings of 1998 IEEE International Conference 
on Robotics and Automation (Cat. No. 98CH36146), vol. 1, 71–76 (IEEE, 1998).

 17. Sportillo, D., Paljic, A. & Ojeda, L. Get ready for automated driving using virtual reality. Accid. Anal. Prevent. 118, 102–113 (2018).
 18. Chung, J., Lee, H., Moon, H. & Lee, E. The static and dynamic analyses of drivers’ gaze movement using vr driving simulator. Appl. 

Sci. 12, 2362 (2022).
 19. Guo, X., Robartes, E., Angulo, A., Chen, T. D. & Heydarian, A. Benchmarking the use of immersive virtual bike simulators for 

understanding cyclist behaviors. In Computing in Civil Engineering 2021, 1319–1326 (American Society of Civil Engineers, 2021).
 20. Lohani, M., Payne, B. R. & Strayer, D. L. A review of psychophysiological measures to assess cognitive states in real-world driving. 

Front. Hum. Neurosci. 13, 57 (2019).
 21. Kim, H.-G., Cheon, E.-J., Bai, D.-S., Lee, Y. H. & Koo, B.-H. Stress and heart rate variability: A meta-analysis and review of the 

literature. Psychiatry Investig. 15, 235 (2018).
 22. Chesnut, M. et al. Stress markers for mental states and biotypes of depression and anxiety: A scoping review and preliminary 

illustrative analysis. Chronic Stress 5, 24705470211000336 (2021).
 23. Tavakoli, A. & Heydarian, A. Multimodal driver state modeling through unsupervised learning. Accid. Anal. Prevent. 170, 106640 

(2022).
 24. Ikehara, C. S. & Crosby, M. E. Assessing cognitive load with physiological sensors. In Proceedings of the 38th Annual Hawaii 

International Conference on System Sciences, 295a–295a (IEEE, 2005).
 25. Bethge, D. et al. Technical design space analysis for unobtrusive driver emotion assessment using multi-domain context. Proc. 

ACM Interact. Mobile Wearable Ubiquit. Technol. 6, 1–30 (2023).
 26. Tavakoli, A., Boker, S. & Heydarian, A. Driver state modeling through latent variable state space framework in the wild. arXiv: 

2203. 00834 (arXiv preprint) (2022).
 27. Guo, X., Angulo, A., Robartes, E., Chen, T. D. & Heydarian, A. Orclsim: A system architecture for studying bicyclist and pedestrian 

physiological behavior through immersive virtual environments. J. Adv. Transp. 2022, 2750369. https:// doi. org/ 10. 1155/ 2022/ 
27503 69 (2022).

 28. Guo, X. et al. Psycho-physiological measures on a bicycle simulator in immersive virtual environments: How protected/curbside 
bike lanes may improve perceived safety. Transport. Res. F Traffic Psychol. Behav. 92, 317–336 (2023).

 29. Keith, K. et al. Roadway human factors and behavioral safety in Europe. Tech. Rep., United States. Federal Highway Administration 
(2005).

 30. Gregoriades, A., Sutcliffe, A., Papageorgiou, G. & Louvieris, P. Human-centered safety analysis of prospective road designs. IEEE 
Trans. Syst. Man Cybern. Part A Syst. Humans 40, 236–250 (2010).

 31. Zafian, T., Ryan, A., Agrawal, R., Samuel, S. & Knodler, M. Using shrp2 nds data to examine infrastructure and other factors 
contributing to older driver crashes during left turns at signalized intersections. Accid. Anal. Prev. 156, 106141 (2021).

 32. Rifaat, S. M., Tay, R. & De Barros, A. Effect of street pattern on the severity of crashes involving vulnerable road users. Accid. Anal. 
Prev. 43, 276–283 (2011).

 33. N. H. T. S. Administration, et al. Overview of Motor Vehicle Crashes in 2019 (US Department of Transportation, 2020).
 34. W. H. Organization et al. Global Status Report on Road Safety 2018: Summary. Tech. Rep. (World Health Organization, 2018).
 35. Tezcan, H. O., Elmorssy, M. & Aksoy, G. Pedestrian crossing behavior at midblock crosswalks. J. Saf. Res. 71, 49–57 (2019).
 36. Tian, K. et al. Impacts of visual and cognitive distractions and time pressure on pedestrian crossing behaviour: A simulator study. 

Accid. Anal. Prevent. 174, 106770 (2022).
 37. Stoker, P. et al. Pedestrian safety and the built environment: A review of the risk factors. J. Plan. Lit. 30, 377–392 (2015).
 38. Cloutier, M.-S. et al. “outta my way!’’ individual and environmental correlates of interactions between pedestrians and vehicles 

during street crossings. Accid. Anal. Prevent. 104, 36–45 (2017).
 39. Markkula, G. et al. Explaining unsafe pedestrian road crossing behaviours using a psychophysics-based gap acceptance model. 

PsyArXiv (2022).
 40. Fitzpatrick, K. et al. Investigating improvements to pedestrian crossings with an emphasis on the rectangular rapid-flashing beacon. 

Tech. Rep., United States. Federal Highway Administration. Office of Safety Research and ... (2015).
 41. Cœugnet, S. et al. A vibrotactile wristband to help older pedestrians make safer street-crossing decisions. Accid. Anal. Prevent. 

109, 1–9 (2017).
 42. Zhuang, X. & Wu, C. Display of required crossing speed improves pedestrian judgment of crossing possibility at clearance phase. 

Accid. Anal. Prevent. 112, 15–20 (2018).
 43. Cantillo, V., Arellana, J. & Rolong, M. Modelling pedestrian crossing behaviour in urban roads: A latent variable approach. Trans‑

port. Res. F Traffic Psychol. Behav. 32, 56–67 (2015).
 44. Anciaes, P. R. & Jones, P. Estimating preferences for different types of pedestrian crossing facilities. Transport. Res. F Traffic Psychol. 

Behav. 52, 222–237 (2018).
 45. Mahadevan, K., Somanath, S. & Sharlin, E. Communicating awareness and intent in autonomous vehicle-pedestrian interaction. 

In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 1–12 (2018).
 46. Velasco, J. P. N., Farah, H., van Arem, B. & Hagenzieker, M. P. Studying pedestrians’ crossing behavior when interacting with 

automated vehicles using virtual reality. Transport. Res. F Traffic Psychol. Behav. 66, 1–14 (2019).
 47. Kitabayashi, H., Zhang, X., Asano, Y. & Yoshikawa, M. An analysis of the walking environmental factors affecting the stress of 

pedestrians for route recommendation. In 2015 16th IEEE International Conference on Mobile Data Management, vol. 2, 44–49 
(IEEE, 2015).

 48. Kim, J., Ahn, C. R. & Nam, Y. The influence of built environment features on crowdsourced physiological responses of pedestrians 
in neighborhoods. Comput. Environ. Urban Syst. 75, 161–169 (2019).

 49. Kim, J. et al. Capturing environmental distress of pedestrians using multimodal data: The interplay of biosignals and image-based 
data. J. Comput. Civ. Eng. 36, 04021039 (2022).

 50. Nie, B. et al. Safety envelope of pedestrians upon motor vehicle conflicts identified via active avoidance behaviour. Sci. Rep. 11, 
1–10 (2021).

 51. Jovancevic-Misic, J. & Hayhoe, M. Adaptive gaze control in natural environments. J. Neurosci. 29, 6234–6238 (2009).
 52. Bhavsar, P., Srinivasan, B. & Srinivasan, R. Quantifying situation awareness of control room operators using eye-gaze behavior. 

Comput. Chem. Eng. 106, 191–201 (2017).
 53. Gruden, C., Otković, I. I. & Šraml, M. Pedestrian safety at roundabouts: Their crossing and glance behavior in the interaction with 

vehicular traffic. Accid. Anal. Prevent. 159, 106290 (2021).
 54. Cole, M. & Read, S. Pedestrian safety action plan. United States Department of Transportation (2018).
 55. Angulo, A. et al. Validation of a virtual reality simulator with real-world observations for pedestrian safety at midblock crossings. 

Available at SSRN 4055270 (2022).
 56. Shiferaw, B., Downey, L. & Crewther, D. A review of gaze entropy as a measure of visual scanning efficiency. Neurosci. Biobehav. 

Rev. 96, 353–366 (2019).
 57. Boukhechba, M. & Barnes, L. E. Swear: Sensing using wearables. generalized human crowdsensing on smartwatches. In 2019 IEEE 

11th International Conference on Applied Human Factors and Ergonomics. IEEE (2020).

http://arxiv.org/abs/2203.00834
http://arxiv.org/abs/2203.00834
https://doi.org/10.1155/2022/2750369
https://doi.org/10.1155/2022/2750369


12

Vol:.(1234567890)

Scientific Reports |         (2023) 13:4278  | https://doi.org/10.1038/s41598-023-31041-9

www.nature.com/scientificreports/

 58. Brown, V. A. An introduction to linear mixed-effects modeling in r. Adv. Methods Pract. Psychol. Sci. 4, 2515245920960351 (2021).
 59. Bates, D., Sarkar, D., Bates, M. D. & Matrix, L. The lme4 package. R package version 2, 74 (2007).
 60. Ihaka, R. & Gentleman, R. R: A language for data analysis and graphics. J. Comput. Graph. Stat. 5, 299–314 (1996).

Author contributions
T.D.C., A.H., and A.A. designed the research. X.G., A.A. and E.R. designed the software and conducted the exper-
iment. X.G, A.T. and A.A. analysed the data. X.G, and A.T. wrote the draft. All authors reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Rethinking infrastructure design: evaluating pedestrians and VRUs’ psychophysiological and behavioral responses to different roadway designs
	Results
	Stated preference survey response. 
	Crossing behavior. 
	Crossing time. 
	Wait time before crossing. 
	Wait time after crossing decision. 
	Head movement. 
	Stop during crossing. 

	Eye tracking. 
	Fixation. 
	Gaze entropy. 

	Heart rate. 

	Discussion
	Limitations and future work
	Conclusion
	Methods
	Study design. 
	Virtual reality system setup. 
	As-built scenario. 
	Flashing beacon scenario. 
	Smartphone application. 

	Data collection. 
	Survey response. 
	Crossing behavior. 
	Fixation. 
	Gaze entropy. 
	Heart rate. 

	Participants. 
	Statistical modeling. 

	References


