
1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:3935  | https://doi.org/10.1038/s41598-023-31009-9

www.nature.com/scientificreports

Carleman linearization approach 
for chemical kinetics integration 
toward quantum computation
Takaki Akiba 1,2*, Youhi Morii 1 & Kaoru Maruta 1

The Harrow, Hassidim, Lloyd (HHL) algorithm, known as the pioneering algorithm for solving linear 
equations in quantum computers, is expected to accelerate solving large-scale linear ordinary 
differential equations (ODEs). To efficiently combine classical and quantum computers for high-cost 
chemical problems, non-linear ODEs (e.g., chemical reactions) must be linearized to the highest 
possible accuracy. However, the linearization approach has not been fully established yet. In this 
study, Carleman linearization was examined to transform nonlinear first-order ODEs of chemical 
reactions into linear ODEs. Although this linearization theoretically requires the generation of an 
infinite matrix, the original nonlinear equations can be reconstructed. For the practical use, the 
linearized system should be truncated with finite size and the extent of the truncation determines 
analysis precision. Matrix should be sufficiently large so that the precision is satisfied because 
quantum computers can treat such huge matrix. Our method was applied to a one-variable 
nonlinear ẏ = −y

2 system to investigate the effect of truncation orders and time step sizes on the 
computational error. Subsequently, two zero-dimensional homogeneous ignition problems for H2–air 
and CH4–air gas mixtures were solved. The results revealed that the proposed method could accurately 
reproduce reference data. Furthermore, an increase in the truncation order improved accuracy with 
large time-step sizes. Thus, our approach can provide accurate numerical simulations rapidly for 
complex combustion systems.

Because of the rapidly increasing awareness of global environmental problems, combustion technology require-
ments have increased considerably. Combustion should be controlled under extreme conditions, such as high 
pressure, high temperature, and lean-fuel conditions. However, analyzing combustion phenomena under such 
extreme conditions by using an experimental approach is difficult because of the short characteristic time and 
nonlinear nature of the phenomena. Therefore, numerical approaches have been proposed for detailed analyses. 
Numerical analyses of combustion systems under extreme conditions require highly accurate methods with 
detailed information related to chemical reactions. However, detailed analyses of reactive flow result in high 
computational costs because of additional numerous variables derived from the chemical reactions and stiff-
ness of different characteristic time of each chemical reaction. The detailed chemical reaction model generally 
involves 10–1000 chemical species. The characteristic times of fluid dynamics, molecular transport, and chemical 
reactions differ by approximately 100–10−2, 10−2–10−5, and 10−6–10−12 s for the fluid dynamics time, molecular-
transport time, and chemical reaction time scale, respectively1. Furthermore, the dimensional parameters increase 
the scale of the problems because the thickness of the reaction zones is approximately 10−5–10−4 m, whereas the 
scale of practical combustion systems is 10−1–101 m. Because of the thin reaction zone, the required mesh size 
for reactive flow problems is approximately 303 times finer than that for nonreactive flow problems2.

A possible approach for overcoming these problems is to develop an efficient method or algorithm to evaluate 
chemical reaction problems in the framework of classical computers without accuracy loss. On the other hand, 
powerful machine resources of future quantum computers are expected to be used to solve high-cost chemical 
problems. Rapid developments have been achieved in both quantum computing hardware and software. IBM 
has shared its roadmap of the scale of quantum computers and will launch a quantum computer with a capacity 
of more than 1000 qubits in 20233. Although utilization of hardware development is limited, quantum machine 
resources have been used for high-cost problems4. The Harrow, Hassidim, Lloyd (HHL) algorithm is the quantum 
algorithm to solve linear equations Ax = b with K variables within the computational time of O(poly(log(K))) 
compared with O(K) required for the best classical algorithm5 (The mathematical background and the concept 
of the quantum circuit of the HHL algorithm is described in the ESM Appendix).
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If any general ordinary equations including combustion problem could be converted into linear equations, 
we could adopt quantum algorithm to numerical analysis on combustion by using the HHL algorithm. There-
fore, the conversion of combustion problem, i.e., general ordinary equations into linear equations is essential 
for future usage of quantum algorithm to solve combustion problem. The present study focused on adopting the 
Carleman linearization in combustion problem, in which ordinary equations converted into linear equations. 
Overall picture of such approach shown in Fig. 1 is a key idea of this study.

The Jacobian matrix is a widely utilized linearization approach in a framework of classical computing. In the 
Jacobian approach, only the first derivative of the original system is considered. Therefore, the order considered in 
the linearization process is limited. On the other hand, Carleman linearization is based on the Taylor expansion6. 
Thus, Carleman linearization theoretically provides a linearized system with infinite orders, which has the same 
information as the original nonlinear system and allows the determination of the degree of orders to which the 
analysis is considered. Accordingly, the degree of accuracy considered in the Carleman linearization process can 
be adjusted based on the nonlinearity of the individual problems and other restrictions. The Carleman lineariza-
tion method has been widely used in system control7–9. There have been some trial studies which have tried to 
adopt numerical analysis to quantum algorithm on reactive flow problems, such as the application to Burgers 
equations and primarily pure fluid problems10,11, and Carleman linearization was used to linearize the governing 
equations for fluid problems. Studies have reported the advantage of stability and precision for explicit discretiza-
tion for time under large time step size conditions under which conventional control methods easily diverge8. 
This advantage of Carleman linearization is suitable for quantum computers as the following reason. Classical 
computers would need to work on pre/post processes to make the best use of quantum computers when quantum 
computers are in practical use. Under such situations, the communication between quantum and classical would 
be a bottleneck. The communication issue as well as the way of preparation and measurement of state vector is still 
open question and they are out of the scope of this study. The Carleman linearization could reduce the frequency 
of this communication due to large time step sizes. This is why the Carleman linearization will fit the quantum 
computation. Carleman linearization may exhibit a special advantage for a system that has an infinite order or 
whose variables are correlated with each other. The major problem with the Carleman approach is the large size 
of the linearized system ( O(Nk)) , where N is the number of variables and k is the truncation order considered 
in the linearization procedure, as introduced in the next section with equations. When the number of chemical 
species is 1000, 103k number of variables are required for Carleman linearization. This problem was also referred 
to in a previous study in which the system control methods are compared for nonlinear systems. However, the 
development and growth of quantum technologies can solve cost-related problems. In summary, our final target 
is to apply quantum computers using HHL algorithm to numerical analysis on combustion, which requires huge 
computational costs since it involves nonlinear governing equations of chemical reactions and fluid dynamics. 
The future vision of quantum computing for combustion are summarized in Fig. 1, and this study focuses on 
the realization of Carleman linearization for future use of quantum computers. As a trial, a nondimensional 
reactive system with practical chemical reaction mechanisms, which included multiple elementary reactions 
and chemical species, was selected in this study. 

Formulation
Chemical kinetics are typically first-order ODEs. Therefore, the governing equations for ODEs are summarized 
as follows:

where u is the system variable vector and F(u) is a nonlinear function.
In this section, the widely used Jacobian matrix linearization is explained. Next, we explain Carleman lineari-

zation. Finally, the differences between the Jacobian and Carleman linearization were explained.

(1)
du

dt
= F(u),

Figure 1.   The overall picture of the future effective usage of classical and quantum computers for combustion 
analysis with the HHL algorithm and the Carleman linearization.
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Linearization using the Jacobian matrix
The governing equations (Eq. 1) can be rewritten with linearization using the Jacobian matrix as follows:

where J = ∂F
∂u

 is the Jacobian matrix, and n is the time indicator for the solution vector. By discretizing (Eq. 2) 
over time, the differential equation can be transformed as follows:

where N  and �t represent the time step and the time step size, respectively. We compare Eq. (3) with one by 
Carleman methods.

Linearization using the Carleman matrix
Next, we briefly explain the formulation of Carleman linearization. Here, F(x) of Eq. (1) can be transformed as 
follows:

where superscripts of “ ⊗ ” represent the Kronecker power, which is expressed as follows:

Equation (1) can be written down with the expression of Eq. (5) in linear expression by using Carleman 
linearization as follows:

and

where

for j ≥ 1 . From definition Ac , the matrix has infinite rows and columns, and such an infinite matrix cannot be 
considered in the simulations. Thus, the matrix should be truncated in the order of nt , and we can summarize 
the matrix as follows:
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where nt is termed as the truncation order hereafter. The number of elements in each row and column of the 
matrix is Nx + N2

x + N3
x + · · · + Nnt

x = N
nt+1
x −Nx
Nx−1

 . The final target of this study is the chemical reaction problem. 
Most elementary reactions involve three chemical species at most. The problem is reduced to an upper triangle 
matrix as follows:

When linearization is completed, the system is discretized for time using an explicit approach as follows:

Discretization can also be performed using the implicit approach. An Ac can be assumed as a constant through 
the time between N and N + 1 with a small time step size as follows:

By comparing the matrices whose inverse matrix is required for Eqs. (3) and (12), both the Jacobian method 
and Carleman linearization produce similar expressions: (I −�tJ) and (I −�tAN

c ) . The differences in the expres-
sion is the solution vectors ( u and X) and matrices used ( J and Ac ). The definitions of Ac and X clearly reveal that 
Carleman linearization involves higher-order elements in terms of the original solution vector x to be obtained. 
An implicit approach was used in this study because of the heavy stiffness caused by the chemical reactions 
mentioned in the following sections. As mentioned, the system size can be estimated O(Nnt) , and becomes 
large with a slight increase in the number of variables Nx or the order of truncation nt . In order to verify our 
method without other disturbances, the solution vector was obtained on a classical computer; no experiments 
on quantum devices were carried out. The direct method with LU decomposition was used to obtain the solu-
tion vector to avoid iterative operations, which could potentially increase the communication between classical 
and quantum computers. The sparse matrix solver in the SciPy library in Python was implemented to solve the 
problem. SageMath12 and its library13 were used for the Carleman linearization procedure using Python inter-
faces. Python was used to solve the discretized problem.

Results and discussion
Nonlinear sample system.  A simple description of the problem is presented first. The target problem is 
expressed as follows:

This problem was selected because of the simplicity of the formulation with the smallest nonlinearity and 
the consideration of applying the approach to chemically reactive problems. Only single alpha value was applied 
in this paper because the change of alpha just affects the duration of decay. The initial condition was chosen to 
simulate the unreacted state of reactants. The solution to this problem is displayed in Fig. 2. In the first step, 
Carleman linearization was applied to the problem. The Kronecker power of solution y is prepared as follows:

The problem is expressed as follows:
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Because of limited computational resources, the dimensions of the system are truncated in the order of n 
during computation. The results are compared with reference data in Fig. 3. The reference data were prepared 
by Euler methods with a time step size of 1.0× 10−10 . Figure 3 displays the absolute errors between the results 
obtained by Carleman linearization and reference data. The figure clearly displays that the error reaches its maxi-
mum at the initial stage of calculation; when y changes considerably. To understand the basic characteristics of 
the system and the linearization approach, the absolute maximum value of the error was investigated by changing 
the time step size and truncation order of Carleman linearization.

The results are displayed in Fig. 4. The horizontal axes reveal the truncation order of Carleman linearization. 
The time step sizes were varied among the three figures. The error decreased with a decrease in the time step 
size. The error becomes negative for truncation order two, which is the same order as the problem, whereas the 
error is positive with a truncation order larger than two. With a truncation order of more than two, the absolute 
maximum errors remained almost constant. Furthermore, the absolute maximum errors were almost the same 
regardless of the truncation order. These results implied that the truncation order is sufficient with the same 
order as that of the problem.

First application to chemical reactive systems—H2–air combustion.  This study is the first to 
attempt the H2–air combustion problem. The reaction mechanism was based on the USC-II syngas mechanism14. 
To minimize the number of chemical species, only hydrogen, oxygen, and related species were extracted from 
the base mechanisms. Nitrogen was also added as an inert species in air. The extracted species are displayed in 
the figure. In actual chemical reactive systems, the reaction rate of the chemical reaction is expressed as follows:

where Xi(i = A− D) is the chemical species involved and can be evaluated as follows:

where ω̇i , [Xi], kf , and kr are the reaction rate of chemical species i , concentration of chemical species i , reaction 
rate of the forward reaction, and the reaction rate of the reverse reaction, respectively. In actual combustion reac-
tion mechanisms, the number of chemical species involved is in the range of one to three, which indicates that 
the third order is the maximum order in the evaluation of the chemical reaction. Multiple elementary reactions, 
such as (Eq. 14), were considered to investigate the total combustion behavior. As mentioned in the formulation 
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Figure 2.   Simple nonlinear problem example and solution.
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section, we used the implicit method because of its stiffness. Stable solutions were obtained with small time steps. 
By considering the application to quantum computers in the future, solving a large linear system is preferred to 
extremely small time steps because quantum machines are powerful for large linear problems, whereas frequent 
communications are critical. Figure 5 displays the time history of the chemical species in a zero-dimensional 
reactor with a time step size of 1.0× 10−8 . As displayed in the figure, nine species, including N2 as an inert gas, 
were selected for the H2–O2 reactions. The equivalence ratio, initial temperature, and pressure were 0.8, 2000 K, 
and 1 atm, respectively. These conditions are consistent throughout the following discussions, unless otherwise 
mentioned. Figure 5 displays the successful evaluation of the chemically reactive system because the overall 
transition of chemical species and the reaction timing agree.

Similar to the analysis in the previous problem, the effect of the size of the time steps on the simulation error 
was investigated.

Figure 6 displays the convergence of the time step sizes for two truncation orders. As references for the slopes, 
lines 102 and 103 are plotted as dashed and dotted lines, respectively. As expected, the decrease in the time step 
size improved accuracy. With an increase in the truncation order, the convergence of time step sizes improved 
considerably, particularly for large time steps. The calculation diverged when the time step increased to more 
than 2.0 × 10–8.

Although obvious evidence was not obtained, the stiffness of the system influenced the limitation of the 
timesteps.

Figure 7 displays the effect of the truncation order on the computational precision and cost. The matrix size 
is calculated as (Nnt+1

v − 1)/(Nv − 1) , where Nv and nt are the number of variables and the truncation order, 
respectively, the increase in truncation order by 1 resulted in an increase in the matrix size by a factor of 9. The 
computational costs increased by a factor of approximately 100, that is, O(N2

v  ). An increase in the truncation 
order had a limited effect on the computational costs for matrix preparation.

Second application—CH4–air combustion.  The zero-dimensional reactor problem with the CH4–air 
case was evaluated to confirm the validity of the general hydrocarbon problem and the effect of the number 
of variables. The chemical reaction model was based on San Diego mech15. Only up to a single carbon species 
was extracted because of the lean-fuel conditions and to minimize computational costs. Thus, 21 species were 
extracted. The equivalence ratio, initial temperature, and pressure were 0.8, 2000 K, and 1 atm, respectively. 
The time step size was fixed at 2.0× 10−8 , and a further increase in the time step size (e.g. 4.0× 10−8 ) caused 
numerical divergence. Figure 8 displays the time history of the chemical species considered. As displayed in 
the figure, the result of the Carleman approach was delayed. A possible cause of this delay is the approxima-
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tion AN+1
c ≈ AN

c  in the formulation section around Eq. (12), which will be investigated in the future. Another 
possible cause of this delay is the insufficient truncation order of Carleman linearization. However, the order 
cannot be increased because of machine limitations. This discrepancy will be investigated in the future with the 
temperature-dependent reaction systems.

Conclusion
In order to utilize the quantum computation resources for large-cost chemical reaction analysis, the nonlinear 
nature of chemical reactions needs to be linearized for the application of the HHL algorithm, the powerful quan-
tum algorithm for large-scale equations. In this study, the Carleman linearization was applied as a linearization 
method. The linearization method was evaluated using three simple problems. The results showed the validity 
and reliability of the proposed approach and implied the potential of using the proposed method in quantum 
computation of chemical kinetics. In the future, we will focus on evaluating more practical combustion problems.
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Data availability
The program data will be available at https://​github.​com/​takak​iba/​carlin-​chem.​git.
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Figure 7.   Estimation of the effect of truncation order on computational costs. The figure displays the increase 
of the truncation order by 1 caused significant increase of computational costs.
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Figure 8.   Comparison of the results by Carleman linearization (symbols) and reference by Cantera (lines) 
for nondimensional iso-thermic transient reactor system of CH4–air combustion. The time histories of each 
chemical species were shown under the constant temperature (2000 K) and pressure (1 atm) condition.
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