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New pattern in regular nuclei based 
on their experimental quadrupole 
transition rates and some new 
candidates
Asgar Hosseinnezhad 1, Masoud Seidi 2 & Hadi Sabri 1*

In this paper, we tried to get a new signature of regular nuclei based on their quadrupole transition 
rates. We have analyzed the experimental electric quadrupole transition probabilities of well-known 
"regular nuclei". The results indicate finding specific repetition patterns for E2 transition rates, similar 
to what has been reported for the energy levels of these nuclei. We also tested the existence of this 
observed repetition scheme for all known isotopes whose experimental transition rates are available 
and introduced several new candidates as regular nuclei. Then, the energy spectra (Experimental) 
of these new suggested "regular nuclei" are investigated in the framework of the Interacting Boson 
Model, in which the parameters of Hamiltonian confirm the placement of these nuclei in the "Alhassid-
Whelan arc of regularity" region. In order to further study the statistical distribution of experimental 
energy levels related to the electromagnetic transitions we are considering, we studied using the 
random matrix theory. The results confirmed their regularity.

The statistical investigations on the energy spectra, and transition rates of physical systems that compare their 
spectral situation with three limits of random matrix theory (RMT) and Poisson distribution, give this oppor-
tunity to predict possible correlation of considered data1–13. This correlation may regard as the signatures of 
hidden symmetries or related to the nature of involved forces in considered systems. This correlation yields due 
to meaningful relationships between the considered samples. Therefore, one would expect that there would be 
a specific pattern(s) that the systems should follow to show a correlation. Such specific repetition patterns are 
reported for the energy spectra of nuclear systems corresponding to the three dynamic limits of the interacting 
boson model (in which the existence of correlation and regularity is doubtless).

In 1991, Alhassid and Whelan studied the chaotic properties of the interacting boson model (IBM) by using 
the concepts of RMT and introduced an area called the Alhassid-Whelan arc of regularity2. They showed that 
the nuclei in this region (similar to isotopes located in the three limits of IBM) follow a Gaussian orthogonal 
ensemble (GOE)-like behavior in their spectral statistics. According to the concepts of RMT in nuclear systems, 
if the statistical distribution of data is consistent with the GOE distribution, the system is regular, and there is a 
correlation between the data3,4. The regularity in this region and the study of observed phenomena related to 
nuclear structure in this area was the subject of many studies in recent years and received much attention5,12,14–19. 
The works of Amon and Casten are of such studies in which they showed that there is a specific repetition pattern 
for the energy levels of the nuclei located in the Alhassid-Whelan arc of regularity regular region5,6. These authors 
have introduced several regular nuclei (by examining energy levels). In the Z = 40–100 region, they chose isotopes 
with 2.2 ≤ R4/2 ≤ 3.30 (to select collective nuclei that are not adjacent to the dynamic symmetry U(5) or SU(3)). 

As a result, several isotopes were introduced as regular nuclei according to the 
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condition. Rβγ ratio is also studied in Ref.20.
The nuclei known as regular nuclei include 104,106Pd, 110,118Cd, 120Xe, 124,136Ba, 136,138Ce, 140Nd, 144,156, 158Gd, 

156Dy, 156,158Er, 170Yb, 170,172, 178Hf, 176,178W, and 178,180Os. These regular nuclei have been the subject of numerous 
studies5,12,14–19.

IBM is the most common and best choice for describing symmetries in nuclear structures and can describe 
the collective properties of even-even nuclei. Among the studies that have been done in recent years using IBM 
to study the nuclear structure, we can mention the Refs.10,21–30. In IBM31, the dynamic symmetries U(5), O(6), 
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and SU(3) represent spherical, γ-unstable, and deformed nuclei, respectively. This classification is according to 
the shape and structure of the nuclei, as shown in Fig. 1 32. These three dynamical limits correspond with the 
vertices of the triangle. Most known isotopes coincide with the intermediate regions of these vertices. In the 
extended symmetry triangle, SU(3) symmetry limit is added to the transition regions33.

The statistical investigations on the IBM Hamiltonian (which describes three dynamical limits and transi-
tional regions between these limits) classify systems as regular and chaotic. The regularity originated from pure 
Hamiltonian includes the Casimir operators of a single dynamical limit without mixing other symmetry chains. 
Therefore, it corresponds to the correlation of spectral distributions. On the other hand, for such systems that are 
described by mixed Hamiltonians and located in the transitional regions of three limits, deviation from regularity 
and a Poisson-like behavior are expected. The work of Alhassid and Whelan2 (which has been done based on the 
results of both classical and quantum chaos) suggests a new regular region called the "Alhassid-Whelan arc of 
regularity". This arc is connected inside the triangle from the U(5) to the SU(3) limits. This paradox, regularity, 
and intermediate position between dynamical limits are subjects that L. Amon and R. F. Casten described via a 
pattern of energy levels.

In this paper, we aim to study the regularity in this region by using the quadrupole transition probability 
ratios. That means we want to introduce a new observable that repeats similar to the repetition pattern of energy 
levels but based on the transition probabilities. Therefore, we study using the experimental values of electric 
quadrupole transition without any effect due to the theoretical models. After confirming the same pattern for the 
new observable, the next step is to check for these same patterns in other nuclei. Therefore, we aim to introduce 
new candidates with the same pattern. In the last step, we analyzed the energy spectra of these newly suggested 
regular nuclei via the IBM Hamiltonian to confirm the location of the new candidates and their placement within 
the arc of regularity.

Methods and results
The electromagnetic transition probabilities are sensitive to nuclear structure and measured by improved experi-
mental techniques. Also, electromagnetic transition probabilities are considered commonly used parameters in 
theoretical predictions. Symmetry mixing and partial dynamical symmetries are new phenomena, as well as are 
identified by studying these transition rates. Hence, the pattern of these transitions can be used as identification 
for different nuclei. And one may expect an iteration of them in systems with similar symmetries. On the other 
hand, the correlation of spectral statistics in "regular nuclei" yields due to the presence of a definite pattern in 
their energy spectra. In5,6, the authors introduced a repetition pattern by using the ratio of energy levels for the 
well-known regular nuclei located in the region known as the Alhassid-Whelan arc of regularity. The existence 
of such patterns in the energy spectra of the "regular nuclei"; encourages us to search for possible repetition 
schemes based on their quadrupole transitions. Also, to eliminate the effects due to the theoretical assumptions 
of any model in the determination of such observables, we used all the available empirical data34 to suggest new 
patterns in regular nuclei. Similar to Ref.5, which introduced different ratios of quadrupole transition rates, we 
used the following relations for 12 different quadrupole transitions between the levels of ground, gamma and 
beta bands to examine possible repetitious values. We used the Ri,j

a,b symbol for these ratios which the super-
scripts variables define the spin of states which the quadrupole transition are happened between them and the 
subscript parameters are referred to different energy bands which the considered states belong them. Also, for 
4+β → 2+g  and 2+γ → 2+g  quadrupole transitions which are used in two different ratios and compared with two 
different transitions,2+g → 0+g  and 4+g → 2+g  , we used R4,2/ 2,0

βg  and R4,2/ 4,2
βg  symbols for ratios are correspond with 

4+β → 2+g  transitions. Similarly, the R2,2/ 2,0
γ g  and R2,2/ 4,2

γ g  symbols are used for ratios which related to 2+γ → 2+g  
transitions. These ratios are:

Figure 1.   Standard symmetry triangle which is similar with the predictions of Ref.17. Different values of Rβγ 
and also the location of regular nuclei are identified obviously.
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The results of the calculations by using experimental values are shown in Table 1. We used the explicit 
values of these transitions, which are listed in different data sheets which are available in Ref34 independent of 
the experimental method and the measurement errors. The results are not reported for the 118Cd, 120Xe, 124Ba, 
136,138Ce, 140Nd, 144Gd, 156,158Er, 170,172Hf, 176,178W, and 178,180Os nuclei in Table 1. The reason is that there is no 
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Table 1.   The ratio of quadrupole transition rates in regular nuclei.

Regular nuclei R0,2

βg
R2,0
γ g R

4,2/2,0

βg
R2,0

βg
R
4,2/4,2

βg
R4,4

βg
R
2,2/4,2
γ g R2,4

γ g R
2,2/2,0
γ g R4,2

γ g R4,4
γ g R4,6

βg

104
46 Pd 0.64 0.99 0.97 – 0.98 – – – – – – –
106
46 Pd 0.21 0.99 – 0.97 – – – 0.93 – – – –
110
48 Cd – 0.98 – 0.95 – – 0.28 – 0.97 0.87 0.71 –
136
56 Ba – 0.99 – 0.96 – – – – – – – –
156
64 Gd 0.95 0.97 0.99 0.99 0.99 – 0.97 0.99 0.96 0.99 0.96 0.99
158
64 Gd . 0.99 0.99 0.99 0.98 – 0.99 0.97 0.99 0.96 0.99 0.97 –
156
66 Dy – 0.95 0.99 – 0.99 0.94 0.96 0.94 0.93 – – 0.95
170
70 Yb – 0.98 – 0.99 – – – – 0.97 – – –
178
72 Hf – 0.97 0.99 0.99 0.99 – 0.97 0.99 0.97 – – 0.99
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experimental value corresponding to any of the ratios R1 to R12 for these nuclei. Also, in Tables 1 and 2, there are 
no experimental data related to some ratios, which we indicate with a "-" symbol.

The results show that defined ratios are in a determined range ( Ri,j
a,b ≤ 0.99 ). Therefore, other data can be easily 

calculated by having given data (in Eq. 1). These results confirm our idea of the existence of a repetition scheme 
in transitional probabilities. Also, we considered the possibility to extend the proposed pattern for the electric 
quadrupole transitions which originated from high-spin levels. The lack of enough experimental data for such 
transitions in the considered nuclei, make it impossible and therefore, we do not include them.

In Table 1, for 106Pd in column 2 and 110Cd in column 7, the defined ratio is lower compared to other values. 
In other words, for these nuclei, we do not see the same pattern as the other nuclei (in the two mentioned ratios). 
So, they do not have regular behavior for the R0,2

βg  ratio of 106Pd and for the R2,2/4,2
γ g  ratio of 110Cd.

In the next step, we check this scheme for all nuclei whose experimental transition rates are available34. We 
try to control the possibility of this pattern for other nuclear systems and suggest new candidates for regular 
nuclei. If this pattern is confirmed for other systems, we must consider the placement of these new candidates in 
the Casten triangle and "Alhassid-Whelan arc of regularity" region. The results of this test are listed in Table 2.

The results show that the suggested ratios of transition probabilities have values within a certain range 
( Ri,j

a,b ≤ 0.99 ) for the listed nuclei in Table 2. This allows us to propose these nuclei as new candidates for regular 
nuclei. Now, we consider their location in the Casten triangle. To do this, we must first solve the IBM Hamiltonian 
and obtain its control parameters. Then, by obtaining the control parameters of IBM Hamiltonian, e.g. η & χ, we 
can identify the possible placement of new candidates in the range of the Alhassid-Whelan arc of regularity. As 
expressed in Refs18–20, η = 0 to 1 and χ = 0 to −√

7/2 define this arc.
The general Hamiltonian of IBM, which is parameterized in the self-consistent Q formalism, is as follows35:

n̂d = d†.d represents the number of d bosons, L represents the angular momentum, and Qχ represents the 
quadrupole operator as follows:

(2)H = E0 + c0n̂d + c1Q
χ .Qχ + c2L

2

(3)Qχ =
[

d† × s̃ + s† × d̃
](2)

+ χ
(

d† × d
)(2)

Table 2.   E2 transition rate ratios for new candidates for regular nuclei.

Nuclei R4,6

βg
R4,4
γ g R4,2

γ g R
2,2/2,0
γ g R2,4

γ g R
2,2/4,2
γ g R4,4

βg
R
4,2/4,2

βg
R2,0

βg
R
4,2/2,0

βg
R2,0
γ g R0,2

βg

62
152Sm – 0.97 – – – – 0.95 0.99 0.93 0.99 0.97 0.99

62
154Sm 0.93 0.98 – 0.99 – – 0.99 – – – –

64
154Gd 0.66 0.96 – 0.99 – – 0.94 0.98 0.92 – – –

66
158Dy – 0.96 – 0.98 – – 0.92 0.98 0.89 – – –

66
160Dy – 0.97 – 0.99 – – – 0.99 0.95 – – –

64
160Gd – 0.98 – – – – – 0.99 0.96 – – –

68
162Er – 0.96 – 0.99 – – – 0.99 0.92 – – –

68
164Er – 0.97 – – – – 0.95 0.99 0.94 – – –

68
166Er 0.98 0.97 – 0.99 – – 0.96 0.99 0.95 0.99 0.96 –

70
168Yb – 0.97 – 0.99 – – – 0.99 0.95 – – –

68
168Er 0.99 0.97 0.99 0.99 0.99 0.99 0.97 0.99 0.96 0.99 0.96 0.98

68
170Er – 0.98 – 0.99 – – – 0.99 0.97 – – –

70
172Yb 0.98 0.99 – 0.99 – – – 0.99 – 0.97 0.95 –

72
174Hf – 0.96 – 0.98 – – – – 0.95 – – –

72
176Hf – 0.97 – 0.99 – – – – – – – –

72
180Hf – 0.97 – – – – 0.97 – 0.96 – – –

74
182W – 0.97 – – – – 0.96 0.99 0.95 0.98 0.94 –

74
184W – 0.97 – 0.99 – – 0.95 0.99 0.93 0.99 0.95 –

74
186W – 0.95 – – – – 0.92 – 0.9 – – –

76
186Os – 0.89 – – – – 0.82 0.98 0.74 0.97 0.81 –

90
230Th – 0.98 – 0.98 – – 0.97 0.99 0.97 – – –

90
232Th – 0.98 – 0.98 – – 0.99 0.99 0.99 – – –

92
234U 0.99 0.98 – 0.99 – – – 0.99 0.99 – – –

92
238U – 0.98 – 0.98 – – – 0.99 0.98 – – –

94
238Pu – 0.98 – – – – – 0.98 – – – –
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χ is a control parameter. The c0 = 1 value represents the vibrational nuclei (that correspond with U(5) dynamical 
limit). The c0 = 0 and χ = −√

7/2   requirements are used to describe the rotational nuclei (SU(3) dynamical 
limit). Also, c0 = 0 and χ = 0 correspond with the O(6) dynamical limit and describe the γ-unstable nuclei.

We have followed the original method introduced by Alhassid and Whelan (in the identification of the arc of 
regularity). They used the classical Hamiltonian of IBM and by fitting the theoretical predictions for the energy 
spectra and the experimental counterparts, determined the control parameters of Hamiltonian. The classical 
Hamiltonian is defined as h(α, α*)≡ α|H|α/N . That α and iα* are in the role of canonical conjugate variables2,36,37. 
Equation h(α, α*) is as follows:

The values of c-functions nd, qχ, and l are obtained by dividing the expected values of operators n̂d , Qχ, and L 
by the boson number N. Also, the relationship between the parameters of Eqs. (3) and (5) are:

We used the least-square fit in MATLAB software to extract the control parameters of Eq. (4), η, and χ in 
comparison with the available experimental data34 for the 0+, 2+, 4+, 6+, and 8+ energy levels of ground, beta, 
and gamma bands of the new suggested candidates of the regular nuclei. These control parameters are shown 
in Table 3. Also, we presented the root mean square (RMS) values as the last column in Table 3 to describe the 
quality of extraction process for these control parameters. RMS is a good criterion for the applicability of any 
model which is defined as20:

The σ values show the accuracy of fitting process and consequently, we can conclude about the location of 
these new suggested candidates with high precision. Our idea for the location of these new candidates (in the arc 
of regularity) is confirmed by Table 3 results. There is an exception only for 152Sm. This confirmation allows us 

(4)h
(

α,α∗) =∈0 +c
[

ηnd − (1− η)
(

qχ .qχ
)]

+ c1l
2

(5)∈0=
E0

N
, c1 = Nc1, c =

c0

η
,

η

1− η
= − c0

Nc2

(6)σ =

√

√

√

√

∑n
i=1

(

Ei
(

exp
)

− Ei(th)
)2

(n− 1)E
(

2+1
)

Table 3.   Control parameter values for the regular nuclei candidates. σ describes the quality of extraction 
procedure.

Nuclei N η χ σ
152
62 Sm 10 0.64762 − 9.3806 1.23
154
62 Sm 11 0.23478 − 0.37131 1.10
154
64 Gd 11 0.60198 − 0.37131 1.09
158
66 Dy 13 0.85303 − 0.34046 0.96
160
66 Dy 14 0.9390 − 0.32766 0.71
160
64 Gd 14 0.97975 − 0.32765 0.95
162
68 Er 13 0.41727 − 0.34045 0.92
164
68 Er 14 0.96309 − 0.32765 0.94
166
68 Er 15 0.90631 − 0.3162 0.47
168
70 Yb 14 0.90372 − 0.32765 0.56
168
68 Er 16 0.78052 − 0.30588 0.92
170
68 Er 17 0.77016 − 0.54277 0.97
172
70 Yb 16 0.91599 − 0.30588 1.12
174
72 Hf 15 0.69989 − 0.82885 1.36
176
72 Hf 16 0.64475 − 0.30588 1.14
180
72 Hf 14 0.98266 − 0.32766 0.77
182
74 W 13 0.54701 − 0.34045 1.20
184
74 W 12 0.43141 − 0.3555 0.94
186
74 W 11 0.45054 − 0.37131 1.18
186
76 Os 11 0.78025 − 0.37131 0.92
230
90 Th 11 0.86869 − 0.37131 0.79
232
90 Th 12 0.48925 − 0.35503 0.98
234
92 U 13 0.92939 − 0.34046 0.54
238
92 U 15 0.96865 − 0.3162 0.88
238
94 Pu 15 0.67612 − 0.31621 0.86
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to introduce these candidates as the new regular nuclei. Also, in this table and for some nuclei, 152-154Sm, 154Gd, 
172Yb, 174-176Hf and 176&182W, the RMS values have values more than 1. Such kind of variation may relate to the 
inadequacy of theoretical treatment. The majority of these nuclei are deformed one and other techniques such 
as quasi dynamical symmetry (QDS) and partial dynamical symmetry (PDS) may reduce such variations. To 
this aim, the two-body SU(3)-PDS Hamiltonian in IBM-model are used as:

P†0 = d†.d† − 2
(

s†
)2 and P†2µ = 2d†µs

† −
√
7
(

d†d†
)(2)

µ
 describe the boson pair operator with L = 0 and 2 angu-

lar momentum, respectively. Also, the h0& h2 coefficients describe their effects. For the h0 = h2 requirement, the 
Hamiltonian involves the Casimir operators of U(6) ⊃ SU(3) ⊃ SO(3) chain, hence exhibits an SU(3) dynamical 
symmetry (DS). Also, for h0 ≠ h2, the SU(3) symmetry is broken. In the h0 = h2 case, 

⌢

H(h0, h2) is equal with an 
SU(3) scalar and for h0 = -5h2 case, 

⌢

H(h0, h2) transforms as (�,µ) = (2,2), SU(3) tensor component. The solvable 
states of ground and gamma bands and consequently, the energy spectra of the different levels in these bands 
introduced by Leviatan as following24:

the final form of energy spectra in this approach for the beta band are defined as:

The two parameters, D and h2, are determined compared to experimental data, also, the h0 parameter was 
varied so as to reproduce the band-head energy of the β band. The values of the Hamiltonian parameters derived 
microscopically from various EDFs, are given in24. Bu using this method, the RMS values are obtained as 0.88, 
0.91, 0.90, 0.86, 0.81, 0.88, 0.92 and 0.94 for respectively, 152-154Sm, 154Gd, 172Yb, 174-176Hf and 176&182W which 
show notable reduction to the reported RMS values in the Table 3 for these nuclei. These results confirm our 
idea about the advantages of PDS in comparison with DS in description of energy levels in such nuclei. Another 
subject that we will address in further studies is the structure of wavefunctions for different states of rotational 
bands (especially the beta band that has specific effects on the transition rates).

The presence of these new candidates in the "arc of regularity" region and therefore, classify as the regular 
nuclei, may relate to their deformation. Most of well-known regular nuclei which introduced by Amoan and 
Casten in Refs5,6 and the new ones which suggested in this study, are deformed nuclei and their experimental 
quadrupole deformation satisfy βExp.

2 ≥ 0.200 . As have reported in different studies such as Refs.24,42,46, the 
spectral statistics of such deformed nuclei must obey the prediction of GOE limit of RMT. Therefore, to further 
ensure the regularity of these new candidates, we study the statistical behavior of the corresponding levels using 
RMT. In the mentioned nuclei, the 2+g  , 4+g  , 0+β  , 2+β  , 4+β  , 2+γ  , and 4+γ  energy levels are involved in the studied elec-
tromagnetic transitions (as initial and final states) in this paper. So we extract the energy values related to these 
levels from Ref34. Then, using RMT, we examine their regularity in our desired nuclei. For the statistical study, we 
first unfold the data. To this aim, we tidy the energy level values from the smallest to the largest order. By using 
the concept of nearest neighbor spacing distribution (NNSD), we must first calculate the following quantity38–41:

Then we calculate the average spacing between the energy levels from equation

Finally, the unfolded data is obtained from relation

and we can use them for statistical study.
The regularity and chaos of a system are determined through the similarity of the corresponding data distri-

bution to the Gaussian distribution ( P(s) = πs
2 exp

(

πs2

4

)

 ) and Poisson distribution ( P(s) = e−s ). We fit a prob-
ability distribution function to the data to determine the degree of regularity in data distribution. The parameter 
value (obtained from the fitting process) allows us to give statistical labeling to our desired system. The probability 
distribution function we use in this article is the Berry-Robnik distribution (BRD) function42–44. The equation 
of the BRD function is in the form of

(7)
ĤPDS =

⌢

H(h0, h2)+ Ĉ(O(3)) = ĤDS + (h0 − h2)P
†
0P0

= h0P
†
0P0 + h2P

†
2 .P̃2 + Ĉ(O(3))

(8a)
[

g ,K = 0
]

, |N , (2N , 0),K = 0, L�, EPDS = CL(L+ 1) , L = 0, 2, ..., 2N

(8b)
[

γ K ,K = 2k
]

, |N , (2N − 4k, 2k),K = 2k, L� ,
EPDS = 6h2k(2N − 2k + 1)+ DL(L+ 1) , L = K ,K + 1, ..., (2N − 2k)

(8c)Eβ = 4N(2h0 + h2)+ DL(L+ 1), For large N

(9)Si = Ei+1 − Ei

(10)D =
∑

Si

N

(11)s = Si

D

(12)P(s) =
[

q+ π

2

(

1− q
)

s
]

exp
(

−qs − π

4

(

1− q
)

s2
)
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where the parameter q = 0 represents the Gaussian distribution and q = 1 represents the Poisson distribution. We 
have shown the statistical distributions of our studied energy levels in Figs. 2, 3, 4, 5, 6, 7, 8.

Also, we presented q values (which we obtained from the curve fitting method in MATLAB software) in 
Table 4 for different levels of the regular nuclei.

The results of the statistical study of energy levels (extracted from experimental sources) related to electro-
magnetic transitions indicate that the behavior of these levels in our considered nuclei is regular (their statistical 
distribution is similar to the Gaussian distribution). In other words, the reason for the presence of regularity in 
the "arc of regularity" region is due to the existence of structures similar to the nuclei in that area. Electromag-
netic transition probabilities depend on the initial and final states. If the placement pattern of initial and final 
levels in the nuclear systems and their structure is similar, the probability ratio we defined also shows a similar 
pattern. Nuclei whose distance from the magic numbers for the number of neutrons is in the same range have 
almost the same energy spectrum structure. Hence, the obtained numbers for the ratios that we have defined 
for the electromagnetic transition rates exist for nuclei with a similar energy spectrum pattern empirically. For 
example, for 104Pd and 108Pd, 6 of the experimentally defined ratios do not exist. But most of the experimentally 
defined ratios have values for 156Gd and 158Gd (which are further away from the magic numbers). In Refs45,46, 
we also studied the role of the structure of nuclear systems and their distance from magic numbers in energy 

Figure 2.   The statistical distribution of 2+g  energy level. The histogram presents the unfolded energy levels and 
the curve describes the Berry-Robnik distribution, Eq. (12).

Figure 3.   Similar to Fig. 1, the statistical distribution of 4+g  energy level.
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levels. On the other hand, the Electromagnetic transition probabilities depend completely to the wavefunctions 
of the initial and final levels which these quadrupole transitions are happened between them. This means, one 
can conclude that, the existence of such patterns in the energy spectra of the regular nuclei cause possible rep-
etition schemes based on their quadrupole transitions. Also, this similarity between the energy spectra and the 
transition intensities in the framework of the IBM has reported in Ref17 by Karampagia, et al. for other nuclei.

Conclusions
The regular nuclei were analyzed using a new measure based on their quadrupole transition rates. The results 
yielded by using all the available experimental data showed that these nuclei show a specific repetition pattern. 
Also, new candidates (for regular nuclei) were proposed by examining the existence of this behavior for all known 
isotopes. We also tested the location of these nuclei in the Casten triangle using the general IBM Hamiltonian, and 
the results of control parameters approved the situation of these 24 new suggested nuclei in the arc of regularity. 
The regularity concept in the definition of RMT is equivalent to the correlation of samples. We reported such 
analyses on the experimental energy spectra (related to electromagnetic transitions (of these nuclei. The regularity 
of the new nuclei was also confirmed by using the statistical study.

Figure 4.   Similar to Fig. 1, the statistical distribution of 0+β  energy level.

Figure 5.   Similar to Fig. 1, the statistical distribution of 2+β  energy level.
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Figure 6.   Similar to Fig. 1, the statistical distribution of 4+β  energy level.

Figure 7.   Similar to Fig. 1, the statistical distribution of 2+γ  energy level.
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Data availability
The datasets used and analyzed during the current study available from the corresponding author on reasonable 
request.
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