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A hybrid classical‑quantum 
approach to speed‑up Q‑learning
A. Sannia 1,2, A. Giordano 3, N. Lo Gullo 1,4,5, C. Mastroianni 3 & F. Plastina 1,4*

We introduce a classical‑quantum hybrid approach to computation, allowing for a quadratic 
performance improvement in the decision process of a learning agent. Using the paradigm of quantum 
accelerators, we introduce a routine that runs on a quantum computer, which allows for the encoding 
of probability distributions. This quantum routine is then employed, in a reinforcement learning 
set‑up, to encode the distributions that drive action choices. Our routine is well‑suited in the case of 
a large, although finite, number of actions and can be employed in any scenario where a probability 
distribution with a large support is needed. We describe the routine and assess its performance in 
terms of computational complexity, needed quantum resource, and accuracy. Finally, we design an 
algorithm showing how to exploit it in the context of Q‑learning.

Quantum algorithms can produce statistical patterns which are hard to manipulate on a classical computer; in 
turns, they may, perhaps, help recognize patterns that are difficult to identify classically. To pursue this basic idea, 
a huge research effort is being put forward to speed up machine learning routines by exploiting unique quantum 
properties, such as superposition, coherence and  entanglement1, 2.

Within the realm of machine learning, the Reinforcement Learning (RL) paradigm has gained attention in 
the last two  decades3, 4, as, in a wide range of application scenarios, it allows modeling an agent that is able to 
learn and improve its behavior through rewards and penalties received from a not fully known environment. The 
agent, typically, chooses the action to perform by sampling a probability distribution that mirrors the expected 
returns associated to each of the actions performed, conditioned to the state of the environment. The aim of 
the RL procedure is to maximize the total reward that corresponds to the achievement of a given task. This is 
obtained by devising a stochastic strategy to train the agent in performing a series of actions, each picked from a 
given set, which maximizes the total reward. The final output of the RL is a conditional probability distribution 
that correlates the state of the environment with the action to be taken by the agent to modify its state.

It turns out that the RL performances can be improved by the use of quantum routines, as recently reviewed 
 in5. To date, various promising proposals have been put forward that exploit quantum accelerators to speed-up 
RL, including, e.g., the speed-ups of projective  simulations6–8, quantum models for RL policies with quantum 
 circuits9 and Boltzman  machines10, 11, applications in measurement-based adaptation  protocols12, 13, and their 
implementations in photonic  platforms14, 15. Moreover, in the same context, it is worth mentioning that some 
strategies based on the Grover’s  algorithm16 have been proposed to generate the action probability distribution 
of a learning  agent17, 18, which are suitable when the number of actions is finite.

Along this line, we introduce a novel algorithm that differentiates from the other Grover’s algorithm-based 
approaches mainly for our exploitation and coordination of the actions of multiple oracles that are associated 
with action subsets. As we will show below, this allows us to tune the probability distributions of the subsets 
in the exploration and exploitation phases. Moreover, our method generalizes those mentioned before as it is 
able to approximate, in principle, any desired probability distribution, thus overcoming the existing limitations 
in applying the standard Grover’s algorithm. Furthermore, our procedure does not require a prior knowledge 
of the probabilities to assign, as assumed in previous  works19, 20. Following the classification proposed  in21, our 
algorithm falls into the CQ framework, with a classical generating system and a quantum data processing device.

Specifically, in this work, we first introduce a routine to encode and update a probability distribution onto 
a quantum register and then we show how to embody it into a Q-learning based RL algorithm. The actions 
are clustered in a predetermined number of subsets (classes), each associated to a range with a minimum and 
a maximum value of the expected reward. The cardinality of each class is evaluated in due course, through a 
procedure built upon well-known quantum routines, i.e., quantum oracle and quantum  counting22, 23. Once this 
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information is obtained, a classical procedure is run to assign a probability to each subset, in accordance to any 
desired distribution, while the elements within the same class are taken to be equally likely. This allows one to 
tune probabilities, in order to, e. g., assign a larger chance to the actions included in the range with maximum 
value of the expected reward. The probability distribution can also be changed dynamically, in order to enforce 
exploration at a first stage (allowing some actions associated to a low probability to be chosen) and exploitation 
at a second stage (to restrict the search to actions having a higher likelihood of occurrence). The quantum routine 
presented here allows re-evaluating the values after examining all the actions that are admissible in a given state 
in a single parallel step, which is possible due to quantum superposition.

Besides the RL scenario, for which our approach is explicitly tailored, the main advantageous features of the 
routine could be also exploited in other contexts where one needs to sample from a probability distribution, rang-
ing from swarm intelligence algorithms (such as Particle Swarm Optimization and Ant Colony  Optimization24), 
to Cloud architectures (where the objective is to find an efficient assignment of virtual machines to physical 
servers, a problem that is known to be NP-hard25). After presenting the quantum routine in detail in section 
“Preparing a quantum probability distribution”, we focus on its use in the RL setting in section “Improving rein-
forcement learning”, to show that it is, in fact, tailored for the needs of RL with a large number of state-action 
pairs. In section “Additional features of the algorithm” we give an assessment of the advantages of our quantum 
accelerated RL over a pure classical algorithm and of the needed quantum resources. Then, a more technical 
section follows, discussing details of the probability encoding routine, and evaluating its complexity and preci-
sion (section “Details on the probability distribution encoding algorithm”). Finally, we draw some concluding 
remarks in section “Conclusions”.

Preparing a quantum probability distribution
Here, we introduce the quantum routine which encodes a classical probability distribution into a Quantum 
Register (QR). Let us assume that we have a random variable whose discrete domain includes J different values, 
{xj : j = 1, . . . , J} , which we map into the basis states of a J-dimensional Hilbert-space. Our goal is to prepare a 
quantum state for which the measurement probabilities in this basis reproduce the random variable probability 
distribution: {px1 , px2 , · · · , pxJ }.

The quantum routine starts by initializing the QR as:

where |φ� is the homogeneous superposition of the basis states {|xk�} , while an ancillary qubit is set to the state 
|1�a . In our approach, the final state is prepared by encoding the probabilities related to each state sequentially, 
which will require J − 1 steps.

At the i-th step of the algorithm ( 1 ≤ i < J ), Grover’s  iterations16 are used to set the amplitude of the |xi� 
basis state to ai = √

pxi  . In particular, we apply a conditional Grover’s operator: I⊗ �̂
(0)

a + Ĝi ⊗ �̂
(1)

a  , where 
Ĝi = R̂Ôi and �̂

(y)

a  is the projector onto the state 
∣

∣y
〉

a
 of the ancilla ( y = 0, 1 ). It forces the Grover unitary, 

Ĝi , to act only on the component of the QR state tied to the (’unticked’) state |1�a of the ancillary qubit. The 
operator R̂ = 2|φ��φ| − I is the reflection with respect to the uniform superposition state, whereas the operator 
Ôi = I− 2|xi��xi| is built so as to flip the sign of the state |xi� and leave all the other states unaltered. The Grover’s 
operator is applied until the amplitude of |xi� approximates ai to the desired precision (see section “Details on 
the probability distribution encoding algorithm”). The state of the ancilla is not modified during the execution 
of the Grover’s algorithm.

The i-th step ends by ensuring that the amplitude of |xi� is not modified anymore during the next steps. 
To this end, we ’tick’ this component by tying it to the state |0�a . This is obtained by applying the operator 
F̂ i = |xi��xi| ⊗ X̂ +

(

I− |xi��xi|
)

⊗ 1 , whose net effect is:

Where X̂ is the NOT-gate, with 1 ≤ i ≤ J , y ∈ {0, 1}.
After the step i, the state of the system is:

The state |βi� has in general non-zero overlap with all of the basis states, including those states, |x1�,· · ·,|xi−1� , 
whose amplitudes have been updated previously. This is due to the action of the reflection operator R̂ , which 
outputs a superposition of all the J basis states. However, this does not preclude us from extracting the value of 
the probability of the random variable correctly, thanks to the ancillary qubit. Indeed, at the end of the last step, 
the ancilla is first measured in the logical basis. If the outcome of the measurement is 0, then we can proceed 
measuring the rest of the QR to get one of the first J − 1 values of the random variable with the assigned prob-
ability distribution. Otherwise, the output is set to xJ , since the probability of getting 1 from the measurement 
of the ancilla is pxJ due to the normalization condition ( pxJ = a2J = 1−∑J−1

k=1
a2k).

The procedure can be generalized to encode a random distribution for which N elements, with N > J , are 
divided into J sub-intervals. In this case, a probability is not assigned separately to every single element; but, 
rather, collectively to each of the J sub-intervals, while the elements belonging to the same sub-interval are 

(1)|ψ� = 1√
J

J
∑

k=1

|xk�|1�a ≡ |φ�|1�a

F̂ i|xk�
∣

∣y
〉

a
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∣

∣y
〉

a
, if k = i
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〉

a
, otherwise
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aj
∣
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〉

⊗ |0�a + bi|βi�|1�a.



3

Vol.:(0123456789)

Scientific Reports |         (2023) 13:3913  | https://doi.org/10.1038/s41598-023-30990-5

www.nature.com/scientificreports/

assigned equal probabilities. This is useful to approximate a random distribution where the number of elements, 
N, is very large. In this case, the QR operates on an N-dimensional Hilbert space, and Grover’s operators are used 
to amplify more than one state at each of the J − 1 steps. For example, in the simplest case, we can think of hav-
ing a set of J Grover operators, each of which acts on N/J basis states. In the general case, though, each Grover’s 
operator could amplify a different, and a priori unknown, number of basis states. This case will be discussed in 
the following, where this quantum routine is exploited in the context of RL.

Improving reinforcement learning
We will now show how the algorithm introduced above can be exploited in the context of RL, and, specifically, 
in the Q-learning cycle. Figure 1 provides a sketch emphasising the part of the cycle that is involved in our 
algorithm. Our objective, in this context, is to update the action probabilities, as will be clarified in the rest of 
this section. An RL algorithm can be described in terms of an abstract agent interacting with an environment. 
The environment can be in one of the states s that belong to a given set S whereas the agent is allowed to perform 
actions picked from a set As , which, in general, depends on s. For each state s ∈ S , the agent chooses one of the 
allowed actions, according to a given policy. After the action is taken, the agent receives a reward r from the 
environment and its state changes to s′ ∈ S . The reward is used by the agent to understand whether the action 
has been useful to approach the goal, and then to learn how to adapt and improve its behavior. Shortly, the higher 
the value of the reward, the better the choice of the action a for that particular state s. In principle, this behavior, 
or policy, should consist in a rule that determines the best action for any possible state. An RL algorithm aims 
at finding the optimal policy, which maximizes the overall reward, i.e., the sum of the rewards obtained after 
each action. However, if the rewards are not fully known in advance, the agent needs to act on the basis of an 
estimate of their values.

Among the various approaches designed to this end, the so called Q-Learning  algorithm4 adopts the Tem-
poral Difference (TD) method to update the Q(s, a) value, i.e., an estimation of how profitable is the choice of 
the action a when the agent is in the state s.

When choosing an action, at a given step of the algorithm, two key factors need to be taken into account: 
explore all the possible actions, and exploit the actions with the greatest values of Q(s, a). As it is common, we 
resort to a compromise between exploration and exploitation by choosing the new action through a random 
distribution, defined so that the probability of choosing the action a in the state s mirrors Q(s, a). For example, 
one could adopt a Boltzmann-like distribution P(a|s) = eQ(s,a)/T/Z , where Z is a normalising factor, while the 
T parameter can vary during the learning process (with a large T in the beginning, in order to favor exploration, 
and lower T once some experience about the environment has been acquired, in order to exploit this knowledge 
and give more chances to actions with a higher reward).

A severe bottleneck in the performance of a TD training algorithm arises when the number of actions and/or 
states is large. For example, in the chess game, the number of states is ∼ 10120 and it is, in fact, impossible to deal 
with the consequent huge number of Q(s, a) values. A workaround is to use a function Q∗

�θ (s, a) that approximates 
the values of Q(s, a) obtained by the TD rule and whose properties depend upon a (small) set of free parameters 
�θ  that are updated during the training. This approach showed its effectiveness in different classical approaches as, 
for example, in Deep Q-Learning26–30, where the Q∗

�θ (s, a) function is implemented by means of a neural network 
whose parameters are updated in accordance with the experience of the agent.

In the quantum scenario, this approach turns out to be even more effective. Indeed, it is possible to build a 
parameter-dependent quantum circuit that implements Q∗

�θ (s, a) ; an approach that has been adopted by recent 
studies on near-term quantum  devices31–35. This circuit allows us to evaluate the function Q∗

�θ (s, a) in a complete 
quantum parallel fashion; i.e., in one shot for all the admissible actions in a given state. With this approach, it is 
possible to obtain a quantum advantage in the process of building the probability distribution for the actions, 
using the algorithm presented in section  “Preparing a quantum probability distribution”. To achieve a signifi-
cant quantum speed-up, and reduce the number of required quantum resources, thus making our algorithm 
suitable for near term NISQ processing units, we do not assign a probability to every action; but, rather, we 
aggregate actions into classes (i.e., subsets) according to their probabilities, as explained in the following. Let us 
consider the minimum (m) and maximum (M) of the Q∗

�θ (s, a) values, and let us divide the interval [m, M] into 

Figure 1.  Sketch of the Q-learning cycle. An agent is schematically represented, performing a Q-learning cycle; 
namely, taking an action to solve a problem, getting back a reward and possibly changing its state and, finally, 
building a new probability distribution (by using the algorithm we are proposing), from which the next action is 
extracted.
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J (non-overlapping, but not necessarily equal) sub-intervals Ij with 1 ≤ j ≤ J . For a given state s, we include the 
action a ∈ As in the class Cj if Q∗

�θ (s, a) ∈ Ij (so that, As =
⋃

j Cj).
The probability of each sub-interval, then, will be determined by the sum of the Q∗-values of the correspond-

ing actions, 
∑

a∈Cj
Q∗

�θ (s, a) . All of the actions in Cj , will be then considered equally probable.
In this way, our algorithm requires only J − 1 steps, each of which is devoted to amplify the actions belong-

ing to one of the J − 1 classes (while the J-th probability is obtained by normalization). Furthermore, we can 
also take advantage of the aggregation while encoding the probability distributions onto the QR: in this case, 
indeed, we can use predetermined Grover’s oracles, each devoted to amplify the logical states corresponding to 
the actions belonging to a given Cj.

For the offloading of the distribution-update routine onto a quantum processor as a part of the Q-learning 
procedure, we need two QRs: A and I  , which encode the actions and the sub-intervals, respectively. These regis-
ters need ⌈log2(maxs |As|)⌉ and ⌈log2(J)⌉ qubits, respectively. Let us consider the class Cj = {a ∈ As : Q∗(s, a) ∈ Ij} . 
Our goal is to assign to each action a ∈ Cj a probability pj , based on the sub-interval j, using the routine presented 
in section “Preparing a quantum probability distribution”. The distribution building process starts by preparing 
the following uniform superposition:

where |0�I is the initial state of the register I  . In order to apply our algorithm, we need J − 1 oracles Ôj , one for 
each given Ij . To obtain these oracles, it is first necessary to define an operator Ĵ that records the sub-interval 
ja to which the value Q∗

�θ (s, a) belongs. Its action creates correlations between the two registers by changing the 
initial state of the I  - register as follows:

To complete the construction of the oracles, we need to execute two unitaries: (i) the operator 
Ô
′
ja
= IA ⊗ (II − 2

∣

∣ja
〉〈

ja
∣

∣) , which flips the phase of the state 
∣

∣ja
〉

 of the I-register; and, (ii) the operator Ĵ† , 
which disentangles the two registers. The effective oracle operator entering the algorithm described in the previ-
ous section is then defined as Ôj = Ĵ

†
Ô
′
j Ĵ , its net effect being

Eventually, we apply the reflection about average R̂ on the register A , thus completing an iteration of the Grover 
operator. Let us notice that whereas the operator R̂ acts on the register of the actions, Ô′

j acts on the register of 
the classes and on the Grover ancilla. This is shown schematically in Fig. 2.

|ψs� =
1√|As|

∑

a∈As

|a�A|0�I ,

Ĵ |a�A|0�I = |a�A
∣

∣ja
〉

I
.

Ôj|a�A|0�I =
{

−|a�A|0�I , if a ∈ Cj

|a�A|0�I , otherwise

Figure 2.  Quantum routine. Schematic representation of the quantum routine for the update of a classical 
probability distribution on the quantum register. After the initialization of the register the J − 1 updates are 
performed to store the values of the probability distribution for each of the J classes for each state s. It shows also 
the single iteration of the modified Grover algorithm.
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If the cardinality of each Cj is not decided from the beginning, in order to evaluate the right number of 
Grover iterations to be executed, we need to compute it (see section “Optimal number of iterations of the Grover 
algorithm” for details). This number of actions can be obtained, for each Cj , by running the quantum counting 
algorithm associated with Ôj (and before its action). It is then possible to apply the routine of section “Preparing 
a quantum probability distribution” in order to build the desired probability distribution. After the quantum 
state of the A-register is obtained, the agent will choose the action measuring its state. Then, according to the 
outcome of the environment, it will update the �θ  values classically, thus changing the behaviour of the operator Ĵ.

We summarize the key steps of our quantum enhanced RL algorithm in the box below, where classical and 
quantum operations are denoted as (C) and (Q), respectively. A schematic picture of the amplitude distribu-
tion upload circuit is depicted in Fig. 2 where we show the needed resources as well as the main gates required. 

Scheme of the hybrid algorithm

Initialize �θ  and start from state s (C)
Execute the cycle:
   • Build the sub-intervals, classes and the quantum circuits for the oracles Ôi = Ĵ

†
Ô
′
i Ĵ (C)

   • Use quantum counting on Ôi to compute the number of actions belonging to each sub-interval (Q)
   • Compute the number of Grover iterations for each class (C)
   • Build the probability distribution for the admissible actions in s (Q)
   • Measure, obtain an action and execute it (C)
   • Get the new state s′ and the reward r (C)
   • Update �θ  (C)

Additional features of the algorithm
The quantum enhanced RL algorithm presented above resorts to quantum acceleration to remove bottlenecks 
of classical approaches. We provide, here, an assessment of the advantages obtained.

In the case of a finite and yet large number of actions |As| ≫ 1 ∀s , one has that, classically, for a given state s, 
the number of calls to the function Q∗

�θ (s, a) increases asymptotically as O(|As|) . Conversely, with our quantum 
protocol the number of calls of Ĵ , and therefore of Q∗

�θ (s, a) , is asymptotically O(
√|As|) . Nonetheless, the larger 

the number of actions, the lower the bound on the error, which is of O(1/
√|As|) (see section “Optimal number 

of iterations of the Grover algorithm” for details). Thus, as it is the case for all of the quantum algorithms based 
on Grover’s, we obtained a quadratic speed-up over the classical algorithm of updating a probability distribution.

Our strategy of discretizing the Q∗
�θ (s, a) values into bins affects also the reinforcement learning procedure, 

both from the point of view of the accuracy with which we are reproducing the desired probability distribution, 
and for the exploitation-exploration interplay. Let ǫ be the error introduced by the discretization with respect 
to the target probability distribution. In general, it may depend on features of the target distribution which are 
independent of the total number of actions and of bins. However, for a rough quantitative estimate, we can take 
it to scale proportionally to the size of the bins, obtaining the upper bound ǫ ∼ M−m

J  , as a direct consequence 
of the rectangle method accuracy to approximate the integral. In fact, it is important that in the process of the 
definition of sub-intervals, the maximum (M) and the minimum (m) values of Q∗

�θ (s, a) are computable in advance 
by means of well-established quantum routines that do not increase the complexity of our  procedure36, 37.

The discretization has also a direct impact on the number of calls needed to update the values of the prob-
ability distribution. Indeed, the larger the number of bins the more the calls to Grover oracle, which scale linearly 
with the number of bins (again, see section “Optimal number of iterations of the Grover algorithm” for details). 
The total computational time for the training is, in general, strictly problem dependent. It depends on the chosen 
cost function as well as other details of the RL. As such, the size of the bins, although not estimable a priori, is 
yet another parameter that can be used to lower the convergence time of the learning.

Finally, let us quantify the quantum resources needed in order to implement our algorithm. In the ideal noise-
less case, as reported above, the qubits needed to implement our strategy can be organized into two registers: A 
and I  . The first one has to encode, in each case, all the actions of the reinforcement learning protocol and, as a 
consequence, it will require log2(maxs |As|)⌉ qubits. The second one is, instead, devoted to encoding the J classes 
used to discretize the Q∗-values, needing ⌈log2(J)⌉ qubits. Moreover, ancillary qubits can be necessary to imple-
ment the oracle Ôj , but their number is strictly dependent on the specific problem. As a function of the number 
of actions, we can conclude that we have a logarithmic scaling of the number of required qubits.

In a more realistic scenario, in which decoherence affects the operations, one possibility to preserve the 
advantage is to resort to error correction algorithms. This unavoidably results in an increase in the amount of 
quantum resources. In our algorithm, the most sensitive part to noise is the amplification of the amplitudes 
via Grover’s algorithm on each interval. In Ref.38, an extensive analysis of the effect of noise on Grover search 
has been reported. The authors show that a [[7, 1]] Steane  code39 is an effective strategy to correct errors in the 
Grover’s search algorithm. Allowing for a lower gain, the [[15, 7]] QBCH  code40 can reduce the total amount of 
resource needed. As suggested in Ref.38, a hybrid approach can be considered, as a possible compromise between 
the two methods.

Details on the probability distribution encoding algorithm
In this more technical section, we provide some details on the routine presented in section “Preparing a quantum 
probability distribution”, which are important for its actual implementation. Specifically, we address the prob-
lems of (i) how to compute the optimal number of iterations of the Grover algorithm in order to store a single 
instance of the probability distribution, (ii) how to compute quantities which are needed to link the update of 
the values of the probability distribution on different sub-intervals from one step to another, and, finally, (iii) 
evaluate its complexity.
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Optimal Number of iterations of the Grover algorithm. In order to compute the optimal number of 
iterations in a single step we exploit the results reported in Ref.41, where the Grover algorithm has been general-
ized to the case of an initial non-uniform distribution and define the following quantities :

where t is the number of Grover iteration already performed, N is the dimension of the Hilbert space (in our 
context it is the total number of actions : N = |As| ) , {k(i)j (t)} are the coefficients of the ri basis states that will be 
amplified by the Grover iterations at the step i of the algorithm (in our application ri = |Ci| ), and {l(i)j (t)} are the 
coefficients of all the other basis states, while K̄ (i)(t) and L̄(i)(t) are their averages and we have labeled them with 
the step-counting variable i. Let’s assume now that only one basis state at a time is amplified by Grover iterations, 
namely ri = 1 . Applying the results in Ref.41 to our case we obtain:

where w = 2 arcsin(
√
1/N) . With the first of these equations we can compute the number of steps t(i)f  needed to 

set the coefficient k(t) to the desired value with the wanted precision so as to bring the value of the probability 
distribution to P(xi) = |bi k(i)(t(i)f )|2 . Notice that we need the values of k(i)(0) and L̄(i)(0) to perform this calcu-
lation, which values can be extracted from the form of the global state at the previous step and specifically from 
the last iteration of the Grover algorithm.

Variation of quantum state within the Grover iterations. Let us consider the quantum state of the 
action-register plus the ancilla system at a given iteration t of the Grover algorithm at a given step i:

where bi = (1−∑j−1

k=1
a2k)

1/2 and t = 0 at the beginning of the Grover algorithm. Let us write the state |βi(t)� in 
a form which highlights its decomposition into three sets of basis states:

where we have made explicit the dependence of the coefficients of the decomposition on the step i, for this will 
be useful in the following. The |xi� is the one we want to use to encode the value of the probability distribution 
at the current step i of our algorithm, the {xj} with j ∈ [1, i − 1] basis states that are generated by the reflection 
operation around the mean and whose amplitudes have been updated in the previous i − 1 steps, and the {xj} 
with j ∈ [i + 1,N] basis state, all having the same amplitude α(i)(t) for all the operations performed up to this 
point did not change them.

Using this expression, it is possible to derive a recursive relation to compute α(i)(t) iteratively as a function of 
L̄(i)(t) and k(i)(t) . As we shall see below this will be useful in order to compute the initial k(i+1)(0),L̄(i+1)(0) and 
α(i+1)(0) for the next step. To find this recursive relation let us first apply the Grover operator onto |βi(t)�|1�a 
and then project onto any of the states {xi+1, xi+2, · · · , xN } . Without loss of generality we choose xi+1:

K̄ (i)(t) = 1

ri

ri
∑

j=1

k
(i)
j (t)

L̄(i)(t) = 1

N − ri

N
∑

j=ri+1

l
(i)
j (t)

(2)
K̄
(i)(t) = k

(i)(0) cos(wt)+ L̄
(i)(0)

√
N − 1 sin(wt)

L̄
(i)(t) = L̄

(i)(0) cos(wt)− k
(i)(0)

√
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Using Eqs. (2) and (4), as well as the initial values of α(0) , k(0) and L̄(0) , at the beginning of the Grover iterations, 
together with the number of iterations t(i)f  , with a simple classical iterative procedure, we can compute the final 
values of α(i)(t

(i)
f ) , k(i)(t(i)f ) and L̄(i)(tf ) . This concludes one step of the embedding algorithm.

Linking two consecutive steps of the distribution‑encoding algorithm. Let us see how to use the 
αi(t

(i)
f ) , ki(t(i)f ) and L̄i)(t(i)f ) computed at the end of step i to obtain the values α(i+1)(0) , k(i+1)(0) and L̄(i+1)(0) , 

which are needed in the following step i + 1.
We first consider the global state at the end of the step i before applying the F̂ i operator to mark the state |xi� 

whose amplitude has just been updated:

where

After applying F̂ i we obtain the initial global state which will be the seed of the Grover iterations at the step i + 1:

where

In this new state, the coefficient bi+1 ensures that |βi+1(0)� is unit. By looking at the coefficient of |xi� in both (5) 
and (6), it is easy to see that ai = bik

(i)(t
(i)
f ) . In the same way, we can compare the coefficients that in (6) appear 

with the state |1�a of the ancilla with the corresponding components in (5):

It follows that:

Finally we obtain that:

It is also possible to generalize these results in the case in which the states to be updated are superposition of 
more than one basis states. Let us assume that we have ri > 1 . In this case the general relations for ¯K (i)(t) and ¯L(i)(t) read :

with w = 2 arcsin(
√
ri/N) . Since all the marked states have the same probability, we conclude that the probability 
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The other updating rules will be the same. It is important to underline that in this general case it is necessary 
to know in advance the number of states related to each oracle. As mentioned above, this can be set from the 
beginning or achieved by means of a quantum counting procedure.

Complexity and precision. In order to compute the complexity of the algorithm, we start from the obser-
vation, derived in Ref.41, that the optimal number of Grover’s iterations for a given step i is upper bounded by :

Expanding N (i)
I  to the leading-order in our working assumptions ( N >> 1 ), we obtain:

From this expression, we can conclude that the initial conditions of the state can only reduce the optimal number 
of calls of Grover’s operators because we are dealing only with positive amplitudes, and we have K̄(0), L̄(0) ≥ 0 . 
It is worth to note that in our case we want to set the amplitude of each action not to the maximum value but to 
the value that is determined by a probability distribution, therefore the number of Grover’s iterations is typically 
much lower than the upper bound given above.

As explained in section “Improving reinforcement learning”, the number of times that the Grover procedure 
has to be executed is equal to the number of sub-intervals (J) chosen, and so the total complexity is:

where we took into account that for a given state s, N = |As| , the complexity is equal to O
(√|As|

)

.
A useful quantity to compute in a practical implementation of the algorithm is the precision �P . It is the vari-

ation of the probability associated to an action between two consecutive iterations of the amplitude amplification 
(from t to t + 1 ). This can be used as a criterion to stop the iterations. It can be quantified as follows:

Recalling that we assumed |As| >> 1 and considering the upper bound case in which t ∼ √|As| and r1 << N , 
we can expand �P to the leading-order in 1/|As| , we have:

Interestingly, the precision is bounded from below and the bound is obtained for bi = 1 , K(0) ∼ |As|−1/2 and 
L̄(0) ∼ |As|−1/2:

The quantity �P can also be seen as the minimum error on the probability update, no matter how many itera-
tions we perform.

Conclusions
In our work, we presented a routine, based on the Grover’s algorithm, to encode a probability distribution 
onto a quantum register with a quadratic speed-up improvement. This quantum routine can find several useful 
applications in the context of hybrid classical-quantum workflows. In this spirit, we have shown how to exploit 
it for the training of the Q-learning strategy. We have shown that this gives rise to a quadratic quantum speed 
up of the RL algorithm, obtained by the inclusion of our quantum subroutine in the stage of action selection of 
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the RL workflow for a large but finite number of actions. This effectively enables achieving a trade off between 
exploration and exploitation, thanks to the intrinsic randomness embodied by the extraction from a QR of the 
action to be performed and, also, to the possibility of dynamically changing the relationship between the action 
and their values (and, thus, their relative probabilities). In the classical case, the trade off between exploitation 
and exploration needs to be implemented as an extra control parameter, typically via a random variable and a 
user-defined threshold that manages the rate of acceptance of non-optimal stat-action pairs.

Finally, we stress once again that, with our procedure, we can use Grover’s oracles, which are given once and 
for all if i) the minimum and maximum range of action values, and ii) the number of intervals in which this 
range is divided are specified in advance.
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