
1

Vol.:(0123456789)

Scientific Reports | (2023) 13:3913 | https://doi.org/10.1038/s41598-023-30990-5

www.nature.com/scientificreports

A hybrid classical‑quantum
approach to speed‑up Q‑learning
A. Sannia 1,2, A. Giordano 3, N. Lo Gullo 1,4,5, C. Mastroianni 3 & F. Plastina 1,4*

We introduce a classical‑quantum hybrid approach to computation, allowing for a quadratic
performance improvement in the decision process of a learning agent. Using the paradigm of quantum
accelerators, we introduce a routine that runs on a quantum computer, which allows for the encoding
of probability distributions. This quantum routine is then employed, in a reinforcement learning
set‑up, to encode the distributions that drive action choices. Our routine is well‑suited in the case of
a large, although finite, number of actions and can be employed in any scenario where a probability
distribution with a large support is needed. We describe the routine and assess its performance in
terms of computational complexity, needed quantum resource, and accuracy. Finally, we design an
algorithm showing how to exploit it in the context of Q‑learning.

Quantum algorithms can produce statistical patterns which are hard to manipulate on a classical computer; in
turns, they may, perhaps, help recognize patterns that are difficult to identify classically. To pursue this basic idea,
a huge research effort is being put forward to speed up machine learning routines by exploiting unique quantum
properties, such as superposition, coherence and entanglement1, 2.

Within the realm of machine learning, the Reinforcement Learning (RL) paradigm has gained attention in
the last two decades3, 4, as, in a wide range of application scenarios, it allows modeling an agent that is able to
learn and improve its behavior through rewards and penalties received from a not fully known environment. The
agent, typically, chooses the action to perform by sampling a probability distribution that mirrors the expected
returns associated to each of the actions performed, conditioned to the state of the environment. The aim of
the RL procedure is to maximize the total reward that corresponds to the achievement of a given task. This is
obtained by devising a stochastic strategy to train the agent in performing a series of actions, each picked from a
given set, which maximizes the total reward. The final output of the RL is a conditional probability distribution
that correlates the state of the environment with the action to be taken by the agent to modify its state.

It turns out that the RL performances can be improved by the use of quantum routines, as recently reviewed
 in5. To date, various promising proposals have been put forward that exploit quantum accelerators to speed-up
RL, including, e.g., the speed-ups of projective simulations6–8, quantum models for RL policies with quantum
 circuits9 and Boltzman machines10, 11, applications in measurement-based adaptation protocols12, 13, and their
implementations in photonic platforms14, 15. Moreover, in the same context, it is worth mentioning that some
strategies based on the Grover’s algorithm16 have been proposed to generate the action probability distribution
of a learning agent17, 18, which are suitable when the number of actions is finite.

Along this line, we introduce a novel algorithm that differentiates from the other Grover’s algorithm-based
approaches mainly for our exploitation and coordination of the actions of multiple oracles that are associated
with action subsets. As we will show below, this allows us to tune the probability distributions of the subsets
in the exploration and exploitation phases. Moreover, our method generalizes those mentioned before as it is
able to approximate, in principle, any desired probability distribution, thus overcoming the existing limitations
in applying the standard Grover’s algorithm. Furthermore, our procedure does not require a prior knowledge
of the probabilities to assign, as assumed in previous works19, 20. Following the classification proposed in21, our
algorithm falls into the CQ framework, with a classical generating system and a quantum data processing device.

Specifically, in this work, we first introduce a routine to encode and update a probability distribution onto
a quantum register and then we show how to embody it into a Q-learning based RL algorithm. The actions
are clustered in a predetermined number of subsets (classes), each associated to a range with a minimum and
a maximum value of the expected reward. The cardinality of each class is evaluated in due course, through a
procedure built upon well-known quantum routines, i.e., quantum oracle and quantum counting22, 23. Once this

OPEN

1Dipartimento di Fisica, Università della Calabria, 87036 Arcavacata di Rende, (CS), Italy. 2Institute for
Cross-Disciplinary Physics and Complex Systems (IFISC) UIB-CSIC, Campus Universitat Illes Balears, 07122 Palma
de Mallorca, Spain. 3ICAR-CNR, 87036 Rende, Italy. 4INFN, gruppo collegato di Cosenza, Cosenza,
Italy. 5Quantum Algorithms and Software, VTT Technical Research Centre of Finland Ltd, Espoo, Finland. *email:
francesco.plastina@fis.unical.it

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-30990-5&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2023) 13:3913 | https://doi.org/10.1038/s41598-023-30990-5

www.nature.com/scientificreports/

information is obtained, a classical procedure is run to assign a probability to each subset, in accordance to any
desired distribution, while the elements within the same class are taken to be equally likely. This allows one to
tune probabilities, in order to, e. g., assign a larger chance to the actions included in the range with maximum
value of the expected reward. The probability distribution can also be changed dynamically, in order to enforce
exploration at a first stage (allowing some actions associated to a low probability to be chosen) and exploitation
at a second stage (to restrict the search to actions having a higher likelihood of occurrence). The quantum routine
presented here allows re-evaluating the values after examining all the actions that are admissible in a given state
in a single parallel step, which is possible due to quantum superposition.

Besides the RL scenario, for which our approach is explicitly tailored, the main advantageous features of the
routine could be also exploited in other contexts where one needs to sample from a probability distribution, rang-
ing from swarm intelligence algorithms (such as Particle Swarm Optimization and Ant Colony Optimization24),
to Cloud architectures (where the objective is to find an efficient assignment of virtual machines to physical
servers, a problem that is known to be NP-hard25). After presenting the quantum routine in detail in section
“Preparing a quantum probability distribution”, we focus on its use in the RL setting in section “Improving rein-
forcement learning”, to show that it is, in fact, tailored for the needs of RL with a large number of state-action
pairs. In section “Additional features of the algorithm” we give an assessment of the advantages of our quantum
accelerated RL over a pure classical algorithm and of the needed quantum resources. Then, a more technical
section follows, discussing details of the probability encoding routine, and evaluating its complexity and preci-
sion (section “Details on the probability distribution encoding algorithm”). Finally, we draw some concluding
remarks in section “Conclusions”.

Preparing a quantum probability distribution
Here, we introduce the quantum routine which encodes a classical probability distribution into a Quantum
Register (QR). Let us assume that we have a random variable whose discrete domain includes J different values,
{xj : j = 1, . . . , J} , which we map into the basis states of a J-dimensional Hilbert-space. Our goal is to prepare a
quantum state for which the measurement probabilities in this basis reproduce the random variable probability
distribution: {px1 , px2 , · · · , pxJ }.

The quantum routine starts by initializing the QR as:

where |φ� is the homogeneous superposition of the basis states {|xk�} , while an ancillary qubit is set to the state
|1�a . In our approach, the final state is prepared by encoding the probabilities related to each state sequentially,
which will require J − 1 steps.

At the i-th step of the algorithm (1 ≤ i < J), Grover’s iterations16 are used to set the amplitude of the |xi�
basis state to ai = √

pxi . In particular, we apply a conditional Grover’s operator: I⊗ �̂
(0)

a + Ĝi ⊗ �̂
(1)

a , where
Ĝi = R̂Ôi and �̂

(y)

a is the projector onto the state
∣

∣y
〉

a
 of the ancilla (y = 0, 1). It forces the Grover unitary,

Ĝi , to act only on the component of the QR state tied to the (’unticked’) state |1�a of the ancillary qubit. The
operator R̂ = 2|φ��φ| − I is the reflection with respect to the uniform superposition state, whereas the operator
Ôi = I− 2|xi��xi| is built so as to flip the sign of the state |xi� and leave all the other states unaltered. The Grover’s
operator is applied until the amplitude of |xi� approximates ai to the desired precision (see section “Details on
the probability distribution encoding algorithm”). The state of the ancilla is not modified during the execution
of the Grover’s algorithm.

The i-th step ends by ensuring that the amplitude of |xi� is not modified anymore during the next steps.
To this end, we ’tick’ this component by tying it to the state |0�a . This is obtained by applying the operator
F̂ i = |xi��xi| ⊗ X̂ +

(

I− |xi��xi|
)

⊗ 1 , whose net effect is:

Where X̂ is the NOT-gate, with 1 ≤ i ≤ J , y ∈ {0, 1}.
After the step i, the state of the system is:

The state |βi� has in general non-zero overlap with all of the basis states, including those states, |x1�,· · ·,|xi−1� ,
whose amplitudes have been updated previously. This is due to the action of the reflection operator R̂ , which
outputs a superposition of all the J basis states. However, this does not preclude us from extracting the value of
the probability of the random variable correctly, thanks to the ancillary qubit. Indeed, at the end of the last step,
the ancilla is first measured in the logical basis. If the outcome of the measurement is 0, then we can proceed
measuring the rest of the QR to get one of the first J − 1 values of the random variable with the assigned prob-
ability distribution. Otherwise, the output is set to xJ , since the probability of getting 1 from the measurement
of the ancilla is pxJ due to the normalization condition (pxJ = a2J = 1−∑J−1

k=1
a2k).

The procedure can be generalized to encode a random distribution for which N elements, with N > J , are
divided into J sub-intervals. In this case, a probability is not assigned separately to every single element; but,
rather, collectively to each of the J sub-intervals, while the elements belonging to the same sub-interval are

(1)|ψ� = 1√
J

J
∑

k=1

|xk�|1�a ≡ |φ�|1�a

F̂ i|xk�
∣

∣y
〉

a
=

{

|xk� ⊗ X̂
∣

∣y
〉

a
, if k = i

|xk�
∣

∣y
〉

a
, otherwise

|ψ� =
i

∑

j=1

aj
∣

∣xj
〉

⊗ |0�a + bi|βi�|1�a.

3

Vol.:(0123456789)

Scientific Reports | (2023) 13:3913 | https://doi.org/10.1038/s41598-023-30990-5

www.nature.com/scientificreports/

assigned equal probabilities. This is useful to approximate a random distribution where the number of elements,
N, is very large. In this case, the QR operates on an N-dimensional Hilbert space, and Grover’s operators are used
to amplify more than one state at each of the J − 1 steps. For example, in the simplest case, we can think of hav-
ing a set of J Grover operators, each of which acts on N/J basis states. In the general case, though, each Grover’s
operator could amplify a different, and a priori unknown, number of basis states. This case will be discussed in
the following, where this quantum routine is exploited in the context of RL.

Improving reinforcement learning
We will now show how the algorithm introduced above can be exploited in the context of RL, and, specifically,
in the Q-learning cycle. Figure 1 provides a sketch emphasising the part of the cycle that is involved in our
algorithm. Our objective, in this context, is to update the action probabilities, as will be clarified in the rest of
this section. An RL algorithm can be described in terms of an abstract agent interacting with an environment.
The environment can be in one of the states s that belong to a given set S whereas the agent is allowed to perform
actions picked from a set As , which, in general, depends on s. For each state s ∈ S , the agent chooses one of the
allowed actions, according to a given policy. After the action is taken, the agent receives a reward r from the
environment and its state changes to s′ ∈ S . The reward is used by the agent to understand whether the action
has been useful to approach the goal, and then to learn how to adapt and improve its behavior. Shortly, the higher
the value of the reward, the better the choice of the action a for that particular state s. In principle, this behavior,
or policy, should consist in a rule that determines the best action for any possible state. An RL algorithm aims
at finding the optimal policy, which maximizes the overall reward, i.e., the sum of the rewards obtained after
each action. However, if the rewards are not fully known in advance, the agent needs to act on the basis of an
estimate of their values.

Among the various approaches designed to this end, the so called Q-Learning algorithm4 adopts the Tem-
poral Difference (TD) method to update the Q(s, a) value, i.e., an estimation of how profitable is the choice of
the action a when the agent is in the state s.

When choosing an action, at a given step of the algorithm, two key factors need to be taken into account:
explore all the possible actions, and exploit the actions with the greatest values of Q(s, a). As it is common, we
resort to a compromise between exploration and exploitation by choosing the new action through a random
distribution, defined so that the probability of choosing the action a in the state s mirrors Q(s, a). For example,
one could adopt a Boltzmann-like distribution P(a|s) = eQ(s,a)/T/Z , where Z is a normalising factor, while the
T parameter can vary during the learning process (with a large T in the beginning, in order to favor exploration,
and lower T once some experience about the environment has been acquired, in order to exploit this knowledge
and give more chances to actions with a higher reward).

A severe bottleneck in the performance of a TD training algorithm arises when the number of actions and/or
states is large. For example, in the chess game, the number of states is ∼ 10120 and it is, in fact, impossible to deal
with the consequent huge number of Q(s, a) values. A workaround is to use a function Q∗

�θ (s, a) that approximates
the values of Q(s, a) obtained by the TD rule and whose properties depend upon a (small) set of free parameters
�θ that are updated during the training. This approach showed its effectiveness in different classical approaches as,
for example, in Deep Q-Learning26–30, where the Q∗

�θ (s, a) function is implemented by means of a neural network
whose parameters are updated in accordance with the experience of the agent.

In the quantum scenario, this approach turns out to be even more effective. Indeed, it is possible to build a
parameter-dependent quantum circuit that implements Q∗

�θ (s, a) ; an approach that has been adopted by recent
studies on near-term quantum devices31–35. This circuit allows us to evaluate the function Q∗

�θ (s, a) in a complete
quantum parallel fashion; i.e., in one shot for all the admissible actions in a given state. With this approach, it is
possible to obtain a quantum advantage in the process of building the probability distribution for the actions,
using the algorithm presented in section “Preparing a quantum probability distribution”. To achieve a signifi-
cant quantum speed-up, and reduce the number of required quantum resources, thus making our algorithm
suitable for near term NISQ processing units, we do not assign a probability to every action; but, rather, we
aggregate actions into classes (i.e., subsets) according to their probabilities, as explained in the following. Let us
consider the minimum (m) and maximum (M) of the Q∗

�θ (s, a) values, and let us divide the interval [m, M] into

Figure 1. Sketch of the Q-learning cycle. An agent is schematically represented, performing a Q-learning cycle;
namely, taking an action to solve a problem, getting back a reward and possibly changing its state and, finally,
building a new probability distribution (by using the algorithm we are proposing), from which the next action is
extracted.

4

Vol:.(1234567890)

Scientific Reports | (2023) 13:3913 | https://doi.org/10.1038/s41598-023-30990-5

www.nature.com/scientificreports/

J (non-overlapping, but not necessarily equal) sub-intervals Ij with 1 ≤ j ≤ J . For a given state s, we include the
action a ∈ As in the class Cj if Q∗

�θ (s, a) ∈ Ij (so that, As =
⋃

j Cj).
The probability of each sub-interval, then, will be determined by the sum of the Q∗-values of the correspond-

ing actions,
∑

a∈Cj
Q∗

�θ (s, a) . All of the actions in Cj , will be then considered equally probable.
In this way, our algorithm requires only J − 1 steps, each of which is devoted to amplify the actions belong-

ing to one of the J − 1 classes (while the J-th probability is obtained by normalization). Furthermore, we can
also take advantage of the aggregation while encoding the probability distributions onto the QR: in this case,
indeed, we can use predetermined Grover’s oracles, each devoted to amplify the logical states corresponding to
the actions belonging to a given Cj.

For the offloading of the distribution-update routine onto a quantum processor as a part of the Q-learning
procedure, we need two QRs: A and I , which encode the actions and the sub-intervals, respectively. These regis-
ters need ⌈log2(maxs |As|)⌉ and ⌈log2(J)⌉ qubits, respectively. Let us consider the class Cj = {a ∈ As : Q∗(s, a) ∈ Ij} .
Our goal is to assign to each action a ∈ Cj a probability pj , based on the sub-interval j, using the routine presented
in section “Preparing a quantum probability distribution”. The distribution building process starts by preparing
the following uniform superposition:

where |0�I is the initial state of the register I . In order to apply our algorithm, we need J − 1 oracles Ôj , one for
each given Ij . To obtain these oracles, it is first necessary to define an operator Ĵ that records the sub-interval
ja to which the value Q∗

�θ (s, a) belongs. Its action creates correlations between the two registers by changing the
initial state of the I - register as follows:

To complete the construction of the oracles, we need to execute two unitaries: (i) the operator
Ô
′
ja
= IA ⊗ (II − 2

∣

∣ja
〉〈

ja
∣

∣) , which flips the phase of the state
∣

∣ja
〉

 of the I-register; and, (ii) the operator Ĵ† ,
which disentangles the two registers. The effective oracle operator entering the algorithm described in the previ-
ous section is then defined as Ôj = Ĵ

†
Ô
′
j Ĵ , its net effect being

Eventually, we apply the reflection about average R̂ on the register A , thus completing an iteration of the Grover
operator. Let us notice that whereas the operator R̂ acts on the register of the actions, Ô′

j acts on the register of
the classes and on the Grover ancilla. This is shown schematically in Fig. 2.

|ψs� =
1√|As|

∑

a∈As

|a�A|0�I ,

Ĵ |a�A|0�I = |a�A
∣

∣ja
〉

I
.

Ôj|a�A|0�I =
{

−|a�A|0�I , if a ∈ Cj

|a�A|0�I , otherwise

Figure 2. Quantum routine. Schematic representation of the quantum routine for the update of a classical
probability distribution on the quantum register. After the initialization of the register the J − 1 updates are
performed to store the values of the probability distribution for each of the J classes for each state s. It shows also
the single iteration of the modified Grover algorithm.

5

Vol.:(0123456789)

Scientific Reports | (2023) 13:3913 | https://doi.org/10.1038/s41598-023-30990-5

www.nature.com/scientificreports/

If the cardinality of each Cj is not decided from the beginning, in order to evaluate the right number of
Grover iterations to be executed, we need to compute it (see section “Optimal number of iterations of the Grover
algorithm” for details). This number of actions can be obtained, for each Cj , by running the quantum counting
algorithm associated with Ôj (and before its action). It is then possible to apply the routine of section “Preparing
a quantum probability distribution” in order to build the desired probability distribution. After the quantum
state of the A-register is obtained, the agent will choose the action measuring its state. Then, according to the
outcome of the environment, it will update the �θ values classically, thus changing the behaviour of the operator Ĵ.

We summarize the key steps of our quantum enhanced RL algorithm in the box below, where classical and
quantum operations are denoted as (C) and (Q), respectively. A schematic picture of the amplitude distribu-
tion upload circuit is depicted in Fig. 2 where we show the needed resources as well as the main gates required.

Scheme of the hybrid algorithm

Initialize �θ and start from state s (C)
Execute the cycle:
 • Build the sub-intervals, classes and the quantum circuits for the oracles Ôi = Ĵ

†
Ô
′
i Ĵ (C)

 • Use quantum counting on Ôi to compute the number of actions belonging to each sub-interval (Q)
 • Compute the number of Grover iterations for each class (C)
 • Build the probability distribution for the admissible actions in s (Q)
 • Measure, obtain an action and execute it (C)
 • Get the new state s′ and the reward r (C)
 • Update �θ (C)

Additional features of the algorithm
The quantum enhanced RL algorithm presented above resorts to quantum acceleration to remove bottlenecks
of classical approaches. We provide, here, an assessment of the advantages obtained.

In the case of a finite and yet large number of actions |As| ≫ 1 ∀s , one has that, classically, for a given state s,
the number of calls to the function Q∗

�θ (s, a) increases asymptotically as O(|As|) . Conversely, with our quantum
protocol the number of calls of Ĵ , and therefore of Q∗

�θ (s, a) , is asymptotically O(
√|As|) . Nonetheless, the larger

the number of actions, the lower the bound on the error, which is of O(1/
√|As|) (see section “Optimal number

of iterations of the Grover algorithm” for details). Thus, as it is the case for all of the quantum algorithms based
on Grover’s, we obtained a quadratic speed-up over the classical algorithm of updating a probability distribution.

Our strategy of discretizing the Q∗
�θ (s, a) values into bins affects also the reinforcement learning procedure,

both from the point of view of the accuracy with which we are reproducing the desired probability distribution,
and for the exploitation-exploration interplay. Let ǫ be the error introduced by the discretization with respect
to the target probability distribution. In general, it may depend on features of the target distribution which are
independent of the total number of actions and of bins. However, for a rough quantitative estimate, we can take
it to scale proportionally to the size of the bins, obtaining the upper bound ǫ ∼ M−m

J , as a direct consequence
of the rectangle method accuracy to approximate the integral. In fact, it is important that in the process of the
definition of sub-intervals, the maximum (M) and the minimum (m) values of Q∗

�θ (s, a) are computable in advance
by means of well-established quantum routines that do not increase the complexity of our procedure36, 37.

The discretization has also a direct impact on the number of calls needed to update the values of the prob-
ability distribution. Indeed, the larger the number of bins the more the calls to Grover oracle, which scale linearly
with the number of bins (again, see section “Optimal number of iterations of the Grover algorithm” for details).
The total computational time for the training is, in general, strictly problem dependent. It depends on the chosen
cost function as well as other details of the RL. As such, the size of the bins, although not estimable a priori, is
yet another parameter that can be used to lower the convergence time of the learning.

Finally, let us quantify the quantum resources needed in order to implement our algorithm. In the ideal noise-
less case, as reported above, the qubits needed to implement our strategy can be organized into two registers: A
and I . The first one has to encode, in each case, all the actions of the reinforcement learning protocol and, as a
consequence, it will require log2(maxs |As|)⌉ qubits. The second one is, instead, devoted to encoding the J classes
used to discretize the Q∗-values, needing ⌈log2(J)⌉ qubits. Moreover, ancillary qubits can be necessary to imple-
ment the oracle Ôj , but their number is strictly dependent on the specific problem. As a function of the number
of actions, we can conclude that we have a logarithmic scaling of the number of required qubits.

In a more realistic scenario, in which decoherence affects the operations, one possibility to preserve the
advantage is to resort to error correction algorithms. This unavoidably results in an increase in the amount of
quantum resources. In our algorithm, the most sensitive part to noise is the amplification of the amplitudes
via Grover’s algorithm on each interval. In Ref.38, an extensive analysis of the effect of noise on Grover search
has been reported. The authors show that a [[7, 1]] Steane code39 is an effective strategy to correct errors in the
Grover’s search algorithm. Allowing for a lower gain, the [[15, 7]] QBCH code40 can reduce the total amount of
resource needed. As suggested in Ref.38, a hybrid approach can be considered, as a possible compromise between
the two methods.

Details on the probability distribution encoding algorithm
In this more technical section, we provide some details on the routine presented in section “Preparing a quantum
probability distribution”, which are important for its actual implementation. Specifically, we address the prob-
lems of (i) how to compute the optimal number of iterations of the Grover algorithm in order to store a single
instance of the probability distribution, (ii) how to compute quantities which are needed to link the update of
the values of the probability distribution on different sub-intervals from one step to another, and, finally, (iii)
evaluate its complexity.

6

Vol:.(1234567890)

Scientific Reports | (2023) 13:3913 | https://doi.org/10.1038/s41598-023-30990-5

www.nature.com/scientificreports/

Optimal Number of iterations of the Grover algorithm. In order to compute the optimal number of
iterations in a single step we exploit the results reported in Ref.41, where the Grover algorithm has been general-
ized to the case of an initial non-uniform distribution and define the following quantities :

where t is the number of Grover iteration already performed, N is the dimension of the Hilbert space (in our
context it is the total number of actions : N = |As|) , {k(i)j (t)} are the coefficients of the ri basis states that will be
amplified by the Grover iterations at the step i of the algorithm (in our application ri = |Ci|), and {l(i)j (t)} are the
coefficients of all the other basis states, while K̄ (i)(t) and L̄(i)(t) are their averages and we have labeled them with
the step-counting variable i. Let’s assume now that only one basis state at a time is amplified by Grover iterations,
namely ri = 1 . Applying the results in Ref.41 to our case we obtain:

where w = 2 arcsin(
√
1/N) . With the first of these equations we can compute the number of steps t(i)f needed to

set the coefficient k(t) to the desired value with the wanted precision so as to bring the value of the probability
distribution to P(xi) = |bi k(i)(t(i)f)|2 . Notice that we need the values of k(i)(0) and L̄(i)(0) to perform this calcu-
lation, which values can be extracted from the form of the global state at the previous step and specifically from
the last iteration of the Grover algorithm.

Variation of quantum state within the Grover iterations. Let us consider the quantum state of the
action-register plus the ancilla system at a given iteration t of the Grover algorithm at a given step i:

where bi = (1−∑j−1

k=1
a2k)

1/2 and t = 0 at the beginning of the Grover algorithm. Let us write the state |βi(t)� in
a form which highlights its decomposition into three sets of basis states:

where we have made explicit the dependence of the coefficients of the decomposition on the step i, for this will
be useful in the following. The |xi� is the one we want to use to encode the value of the probability distribution
at the current step i of our algorithm, the {xj} with j ∈ [1, i − 1] basis states that are generated by the reflection
operation around the mean and whose amplitudes have been updated in the previous i − 1 steps, and the {xj}
with j ∈ [i + 1,N] basis state, all having the same amplitude α(i)(t) for all the operations performed up to this
point did not change them.

Using this expression, it is possible to derive a recursive relation to compute α(i)(t) iteratively as a function of
L̄(i)(t) and k(i)(t) . As we shall see below this will be useful in order to compute the initial k(i+1)(0),L̄(i+1)(0) and
α(i+1)(0) for the next step. To find this recursive relation let us first apply the Grover operator onto |βi(t)�|1�a
and then project onto any of the states {xi+1, xi+2, · · · , xN } . Without loss of generality we choose xi+1:

K̄ (i)(t) = 1

ri

ri
∑

j=1

k
(i)
j (t)

L̄(i)(t) = 1

N − ri

N
∑

j=ri+1

l
(i)
j (t)

(2)
K̄
(i)(t) = k

(i)(0) cos(wt)+ L̄
(i)(0)

√
N − 1 sin(wt)

L̄
(i)(t) = L̄

(i)(0) cos(wt)− k
(i)(0)

√

1

N − 1
sin(wt),

|ψ(t)� =
i−1
∑

k=1

ak|xk�|0�a + bi|βi(t)�|1�a

(3)|βi(t)� = k(i)(t)|xi� +
i−1
∑

k=1

l
(i)
k (t)|xk� +

N
∑

k=i+1

α(i)(t)|xk�,

(4)

α(i)(t + 1) = �xi+1|R̂Ôi|βi(t)�
= �xi+1|

�

2|φ��φ| − I

�

×

−k(i)(t)|xi� +
i−1
�

k=1

l
(i)
k |xk� +

N
�

k=i+1

α(i)(t)|xk�

= �xi+1|
�

2

�

− 1√
N
k(i)(t)+ N − 1√

N
L̄(i)(t)

�

|φ�

+ k(i)(t)|xi� −
i−1
�

k=1

l
(i)
k |xk� −

N
�

k=i+1

α(i)(t)|xk�
�

= 2

N
L̄(i)(t)(N − 1)− 2

N
k(i)(t)− α(i)(t)

7

Vol.:(0123456789)

Scientific Reports | (2023) 13:3913 | https://doi.org/10.1038/s41598-023-30990-5

www.nature.com/scientificreports/

Using Eqs. (2) and (4), as well as the initial values of α(0) , k(0) and L̄(0) , at the beginning of the Grover iterations,
together with the number of iterations t(i)f , with a simple classical iterative procedure, we can compute the final
values of α(i)(t

(i)
f) , k(i)(t(i)f) and L̄(i)(tf) . This concludes one step of the embedding algorithm.

Linking two consecutive steps of the distribution‑encoding algorithm. Let us see how to use the
αi(t

(i)
f) , ki(t(i)f) and L̄i)(t(i)f) computed at the end of step i to obtain the values α(i+1)(0) , k(i+1)(0) and L̄(i+1)(0) ,

which are needed in the following step i + 1.
We first consider the global state at the end of the step i before applying the F̂ i operator to mark the state |xi�

whose amplitude has just been updated:

where

After applying F̂ i we obtain the initial global state which will be the seed of the Grover iterations at the step i + 1:

where

In this new state, the coefficient bi+1 ensures that |βi+1(0)� is unit. By looking at the coefficient of |xi� in both (5)
and (6), it is easy to see that ai = bik

(i)(t
(i)
f) . In the same way, we can compare the coefficients that in (6) appear

with the state |1�a of the ancilla with the corresponding components in (5):

It follows that:

Finally we obtain that:

It is also possible to generalize these results in the case in which the states to be updated are superposition of
more than one basis states. Let us assume that we have ri > 1 . In this case the general relations for ¯K (i)(t) and ¯L(i)(t) read :

with w = 2 arcsin(
√
ri/N) . Since all the marked states have the same probability, we conclude that the probability

of a single state is K̄ (i)(t)2 . Moreover the expression for L̄(i+1)(0) now is:

∣

∣

∣
ψ(t

(i)
f)

〉

=
i−1
∑

j=1

aj
∣

∣xj
〉

|0�a + bi

∣

∣

∣
βi(t

(i)
f)

〉

|1�a

(5)

∣

∣

∣
βi(t

(i)
f)

〉

= k(i)(t
(i)
f)|xi� +

∑

k �=i

lk(t
(i)
f)|xk�.

(6)|ψ(0)� =
i−1
∑

k=1

ak|xk�|0�a + ai|xi�|0�a + bi+1|βi+1(0)�|1�a,

|βi+1(0)� = k(i+1)(0)|xi+1� +
∑

k �=i+1

l
(i)
k (0)|xk�

bi+1|βi+1(0)�|1�a = bi

(∣

∣

∣βi(t
(i)
f
)

〉

− k
(i)(t

(i)
f
)|xi�

)

|1�a

= bi

(

∑

k �=i

l
(i)
k
(t
(i)
f
)|xk�

)

|1�a

|βi+1(0)� =
bi

bi+1

∑

k �=i

l
(i)
k (t

(i)
f)|xk�

α(i+1)(0) = k(i+1)(0) = bi

bi+1

α(i)(t
(i)
f)

L̄(i+1)(0) =
�

k �=i+1 l
(i+1)
k (0)

N − 1
= bi

bi+1

�

k �=i+1 l
(i)
k (t

(i)
f)

N − 1

= bi

bi+1

L̄(i)(t
(i)
f)−

α(t
(i)
f)

N − 1

K̄ (i)(t) = K̄ (i)(0) cos(wt)+ L̄(i)(0)

√

N − ri

ri
sin(wt)

L̄(i)(t) = L̄(i)(0) cos(wt)− K̄ (i)(0)

√

ri

N − ri
sin(wt).

8

Vol:.(1234567890)

Scientific Reports | (2023) 13:3913 | https://doi.org/10.1038/s41598-023-30990-5

www.nature.com/scientificreports/

The other updating rules will be the same. It is important to underline that in this general case it is necessary
to know in advance the number of states related to each oracle. As mentioned above, this can be set from the
beginning or achieved by means of a quantum counting procedure.

Complexity and precision. In order to compute the complexity of the algorithm, we start from the obser-
vation, derived in Ref.41, that the optimal number of Grover’s iterations for a given step i is upper bounded by :

Expanding N (i)
I to the leading-order in our working assumptions (N >> 1), we obtain:

From this expression, we can conclude that the initial conditions of the state can only reduce the optimal number
of calls of Grover’s operators because we are dealing only with positive amplitudes, and we have K̄(0), L̄(0) ≥ 0 .
It is worth to note that in our case we want to set the amplitude of each action not to the maximum value but to
the value that is determined by a probability distribution, therefore the number of Grover’s iterations is typically
much lower than the upper bound given above.

As explained in section “Improving reinforcement learning”, the number of times that the Grover procedure
has to be executed is equal to the number of sub-intervals (J) chosen, and so the total complexity is:

where we took into account that for a given state s, N = |As| , the complexity is equal to O
(√|As|

)

.
A useful quantity to compute in a practical implementation of the algorithm is the precision �P . It is the vari-

ation of the probability associated to an action between two consecutive iterations of the amplitude amplification
(from t to t + 1). This can be used as a criterion to stop the iterations. It can be quantified as follows:

Recalling that we assumed |As| >> 1 and considering the upper bound case in which t ∼ √|As| and r1 << N ,
we can expand �P to the leading-order in 1/|As| , we have:

Interestingly, the precision is bounded from below and the bound is obtained for bi = 1 , K(0) ∼ |As|−1/2 and
L̄(0) ∼ |As|−1/2:

The quantity �P can also be seen as the minimum error on the probability update, no matter how many itera-
tions we perform.

Conclusions
In our work, we presented a routine, based on the Grover’s algorithm, to encode a probability distribution
onto a quantum register with a quadratic speed-up improvement. This quantum routine can find several useful
applications in the context of hybrid classical-quantum workflows. In this spirit, we have shown how to exploit
it for the training of the Q-learning strategy. We have shown that this gives rise to a quadratic quantum speed
up of the RL algorithm, obtained by the inclusion of our quantum subroutine in the stage of action selection of

L̄(i+1)(0) = bi

bi+1

(N − ri)L̄
(i)(t

(i)
f)− ri+1α

(i)(t
(i)
f)

N − ri+1

,

N
(i)
I =

π
2
− arctan

(

K̄(0)
L̄(0)

√

ri
N−ri

)

arccos
(

1− 2
ri
N

) .

N
(i)
I ≃ −1

2

K̄(0)

L̄(0)
+ π

4

√

N

ri
.

O

(

J
√
N
)

= O

(√
N
)

,

(7)

�P = |�xi|�1|a|ψ(t + 1)�|2 − |�xi|�1|a|ψ(t)�|2

= b
2
i

(

K̄(t + 1)2 − K̄(t)2
)

= b
2
i

(

K̄(0)2[cos(w(t + 1))2 − cos(wt)2]

+ L̄(0)2
(N − ri

ri

)

[sin(w(t + 1))2 − sin(wt)2]

+ K̄(0)L̄(0)

√

N − ri

ri
[sin(2w(t + 1))− sin(2wt)]

)

.

�P ∼ b2i

(

K̄(0)2
1√|As|

+ L̄(0)2|As|
1√|As|

+ K̄(0)L̄(0)
√

|As|
)

�P ∼ 1√|As|
.

9

Vol.:(0123456789)

Scientific Reports | (2023) 13:3913 | https://doi.org/10.1038/s41598-023-30990-5

www.nature.com/scientificreports/

the RL workflow for a large but finite number of actions. This effectively enables achieving a trade off between
exploration and exploitation, thanks to the intrinsic randomness embodied by the extraction from a QR of the
action to be performed and, also, to the possibility of dynamically changing the relationship between the action
and their values (and, thus, their relative probabilities). In the classical case, the trade off between exploitation
and exploration needs to be implemented as an extra control parameter, typically via a random variable and a
user-defined threshold that manages the rate of acceptance of non-optimal stat-action pairs.

Finally, we stress once again that, with our procedure, we can use Grover’s oracles, which are given once and
for all if i) the minimum and maximum range of action values, and ii) the number of intervals in which this
range is divided are specified in advance.

Data availability
All data generated or analysed during this study are included in this published article.

Received: 5 September 2022; Accepted: 6 March 2023

References
 1. Biamonte, J. et al. Quantum machine learning. Nature 549(7671), 195–202 (2017).
 2. Dunjko, V., Taylor, J. M. & Briegel, H. J. Quantum-enhanced machine learning. Phys. Rev. Lett. 117(13), 130501 (2016).
 3. Kaelbling, L. P., Littman, M. L. & Moore, A. W. Reinforcement learning: A survey. J. Artif. Intell. Res. 4, 237–285 (1996).
 4. Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT Press, 2018).
 5. Meyer, N., et al. A survey on quantum reinforcement learning. arXiv: 2211. 03464 (2022).
 6. Saggio, V. et al. Experimental quantum speed-up in reinforcement learning agents. Nature 591(7849), 229–233 (2021).
 7. Paparo, G. D., Dunjko, V., Makmal, A., Martin-Delgado, M. A. & Briegel, H. J. Quantum speedup for active learning agents. Phys.

Rev. X 4, 031002 (2014).
 8. Sriarunothai, T. et al. Speeding-up the decision making of a learning agent using an ion trap quantum processor. Quantum Sci.

Technol. 4(1), 015014 (2018).
 9. Jerbi, S., Gyurik, C., Marshall, S., Briegel, H. J. & Dunjko, V. Variational quantum policies for reinforcement learning

arXiv:2103.05577 (2021).
 10. Crawford, D., Levit, A., Ghadermarzy, N., Oberoi, J. S. & Ronagh, P. Reinforcement learning using quantum Boltzmann machines.

Quantum Inf. Comput. 18(1–2), 51–74 (2018).
 11. Levit, A., Crawford, D., Ghadermarzy, N., Oberoi, J. S., Zahedinejad, E. & Ronagh, P. Free energy-based reinforcement learning

using a quantum processor. arXiv: 1706. 00074 (2017).
 12. Olivares-Sánchez, J., Casanova, J., Solano, E. & Lamata, L. Measurement-based adaptation protocol with quantum reinforcement

learning in a Rigetti quantum computer. Quantum Rep. 2(2), 293–304 (2020).
 13. Shenoy, K. S., Sheth, D. Y., Behera, B. K. & Panigrahi, P. K. Demonstration of a measurement-based adaptation protocol with

quantum reinforcement learning on the IBM Q experience platform. Quantum Inf. Process. 19(5), 1–13 (2020).
 14. Flamini, F. et al. Photonic architecture for reinforcement learning. New J. Phys. 22(4), 045002 (2020).
 15. Lamata, L. Quantum reinforcement learning with quantum photonics. Photonics 8(2), 33. https:// doi. org/ 10. 3390/ photo nics8

020033 (2021).
 16. Grover, L. K. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-eighth Annual ACM Sympo-

sium on Theory of Computing, 212–219 (1996).
 17. Dong, D., Chen, C., Li, H. & Tarn, T.-J. Quantum reinforcement learning. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 38(5),

1207–1220 (2008).
 18. Li, J.-A. et al. Quantum reinforcement learning during human decision-making. Nat. Hum. Behav. 4, 294–307, 03 (2020).
 19. Grover, L. & Rudolph, T. Creating superpositions that correspond to efficiently integrable probability distributions. arXiv e-print-

sarXiv: quant- ph/ 02081 12 (2002).
 20. Gilliam, A., et al.. Foundational patterns for efficient quantum computing. arXiv: 1907. 11513 (2019).
 21. Schuld, M. & Petruccione, F. Supervised Learning with Quantum Computers Vol. 17 (Springer, 2018).
 22. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information: 10th Anniversary Edition 10th edn. (Cambridge

University Press, 2011).
 23. Brassard, G., HØyer, P. & Tapp, A. Quantum Counting. In Lecture Notes in Computer Science, 820–831 (1998).
 24. Bonabeau, E., Dorigo, M. & Theraulaz, G. Swarm Intelligence: From Natural to Artificial Systems (Oxford University Press, 1999).
 25. Mastroianni, C., Meo, M. & Papuzzo, G. Probabilistic consolidation of virtual machines in self-organizing cloud data centers. IEEE

Trans. Cloud Comput. 1(2), 215–228 (2013).
 26. Hester, T., et al. Deep q-learning from demonstrations. In Thirty-Second AAAI Conference on Artificial Intelligence (2018).
 27. Van Hasselt, H., Guez, A. & Silver, D. Deep reinforcement learning with double q-learning. In Proceedings of the AAAI Conference

on Artificial Intelligence 30(1) (2016).
 28. Dulac-Arnold, G., et al. Deep reinforcement learning in large discrete action spaces. arXiv preprintarXiv: 1512. 07679 (2015).
 29. Weisz, G., Budzianowski, P., Su, P.-H. & Gašić, M. Sample efficient deep reinforcement learning for dialogue systems with large

action spaces. IEEE/ACM Trans. Audio Speech Lang. Process. 26(11), 2083–2097 (2018).
 30. Andriotis, C. & Papakonstantinou, K. Managing engineering systems with large state and action spaces through deep reinforce-

ment learning. Reliab. Eng. Syst. Saf. 191, 106483 (2019).
 31. Jerbi, S., Trenkwalder, L. M., Nautrup, H. P., Briegel, H. J. & Dunjko, V. Quantum enhancements for deep reinforcement learning

in large spaces. PRX Quantum 2(1), 010328 (2021).
 32. Skolik, A., Jerbi, S. & Dunjko, V. Quantum agents in the gym: A variational quantum algorithm for deep q-learning Quantum. 6,

720 (2022).
 33. Chen, S.Y.-C. et al. Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141 007-141 024 (2020).
 34. He, Z., Li, L., Zheng, S., Li, Y. & Situ, H. Variational quantum compiling with double q-learning. New J. Phys. 23(3), 033002 (2021).
 35. Lockwood, O. & Si, M. Reinforcement learning with quantum variational circuit. Proceedings of the AAAI Conference on Artificial

Intelligence and Interactive Digital Entertainment 16(1), 245–251 (2020).
 36. Ahuja, A. & Kapoor, S. A quantum algorithm for finding the maximum. arXiv:quant-ph/9911082 (1999).
 37. Dürr, C. & Høyer, P. A quantum algorithm for finding the minimum. arXivarXiv: quant- ph/ 96070 14 (1996).
 38. Botsinis, P. et al. Quantum error correction protects quantum search algorithms against decoherence. Sci. Rep. 6(1), 38095. https://

doi. org/ 10. 1038/ srep3 8095 (2016).
 39. Steane, A. M. Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797. https:// doi. org/ 10. 1103/ PhysR evLett. 77. 793

(1996).

http://arxiv.org/abs/2211.03464
http://arxiv.org/abs/1706.00074
https://doi.org/10.3390/photonics8020033
https://doi.org/10.3390/photonics8020033
http://arxiv.org/abs/quant-ph/0208112
http://arxiv.org/abs/1907.11513
http://arxiv.org/abs/1512.07679
http://arxiv.org/abs/quant-ph/9607014
https://doi.org/10.1038/srep38095
https://doi.org/10.1038/srep38095
https://doi.org/10.1103/PhysRevLett.77.793

10

Vol:.(1234567890)

Scientific Reports | (2023) 13:3913 | https://doi.org/10.1038/s41598-023-30990-5

www.nature.com/scientificreports/

 40. Grassl, M., Beth, T. & Pellizzari, T. Codes for the quantum erasure channel. Phys. Rev. A 56(1), 33–38. https:// doi. org/ 10. 1103/
physr eva. 56. 33 (1997).

 41. Biron, D., Biham, O., Biham, E., Grassl, M. & Lidar, D. A. Generalized Grover search algorithm for arbitrary initial amplitude
distribution. In Quantum Computing and Quantum Communications (ed. Williams, C. P.) 140–147 (Springer, 1999).

Acknowledgements
This work was partially funded by the Italian MUR Ministry under the project PNRR National Centre on HPC,
Big Data and Quantum Computing, PUN: B93C22000620006, and from the Spanish State Research Agency,
through the QUARESC project (PID2019-109094GB-C21/AEI/ 10.13039/501100011033) and the Severo Ochoa
and María de Maeztu Program for Centers and Units of Excellence in R &D (MDM-2017-0711), from CAIB
through the QUAREC project (PRD2018/47).

Author contributions
All the authors conceived the idea, derived the technical results, discussed all stages of the project, and prepared
the manuscript and the figure.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to F.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.1103/physreva.56.33
https://doi.org/10.1103/physreva.56.33
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A hybrid classical-quantum approach to speed-up Q-learning
	Preparing a quantum probability distribution
	Improving reinforcement learning
	Additional features of the algorithm
	Details on the probability distribution encoding algorithm
	Optimal Number of iterations of the Grover algorithm.
	Variation of quantum state within the Grover iterations.
	Linking two consecutive steps of the distribution-encoding algorithm.
	Complexity and precision.

	Conclusions
	References
	Acknowledgements

