
1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:4053  | https://doi.org/10.1038/s41598-023-30986-1

www.nature.com/scientificreports

Novel architecture for gated 
recurrent unit autoencoder trained 
on time series from electronic 
health records enables detection 
of ICU patient subgroups
Kilian Merkelbach 1, Steffen Schaper 2, Christian Diedrich 2, Sebastian Johannes Fritsch 3,4 & 
Andreas Schuppert 1*

Electronic health records (EHRs) are used in hospitals to store diagnoses, clinician notes, 
examinations, lab results, and interventions for each patient. Grouping patients into distinct subsets, 
for example, via clustering, may enable the discovery of unknown disease patterns or comorbidities, 
which could eventually lead to better treatment through personalized medicine. Patient data derived 
from EHRs is heterogeneous and temporally irregular. Therefore, traditional machine learning 
methods like PCA are ill-suited for analysis of EHR-derived patient data. We propose to address these 
issues with a new methodology based on training a gated recurrent unit (GRU) autoencoder directly 
on health record data. Our method learns a low-dimensional feature space by training on patient data 
time series, where the time of each data point is expressed explicitly. We use positional encodings for 
time, allowing our model to better handle the temporal irregularity of the data. We apply our method 
to data from the Medical Information Mart for Intensive Care (MIMIC-III). Using our data-derived 
feature space, we can cluster patients into groups representing major classes of disease patterns. 
Additionally, we show that our feature space exhibits a rich substructure at multiple scales.

Hospitals and other healthcare providers collect and store medical data on their patients in electronic health 
records (EHR) to document the course of their diseases and treatment. These measurements may include, among 
others, vital signs, the doses and types of medication administered, and laboratory or diagnostic parameters. 
As opposed to data assessed in a clinical study, each patient’s EHR provides different attributes of data since 
caregivers assess the necessary examinations for every new patient individually.

These complex time series contain a wealth of latent information. It would be beneficial for clinicians and 
researchers to be able to represent the totality of a patient’s data in a low-dimensional form. This would enable 
comparisons and groupings of individual patients and serve as a stepping stone for other methods, such as 
outcome prediction or monitoring.

The nature of such data, however, brings with it the following challenges, which traditional machine learning 
algorithms are ill-suited to  handle1: 

1. Irregularity: Patient data is not captured on a time-regular grid but assessed when deemed necessary by 
caregivers in charge of the patient.

2. Sparsity: Only a small number of data attributes are available for all patients since the examinations, diag-
nostics, and treatments are coordinated by caregivers according to the individual patient’s needs. The over-
whelming majority of data attributes only have information for a minority of the patients. Additionally, the 
fact that a data attribute is missing may be informative.
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3. High dimensionality: There exist many different attributes of data in use in critical care.

In this work, we address these challenges with an unsupervised deep learning method that learns a compact 
feature space for each admission into the intensive care unit (ICU). The proposed method can be used on the 
raw patient data without temporal interpolation and without the assumption that the same data attributes are 
available for all patients. This flexibility allows the method to form a consistent view of the patient’s condition 
using data from vastly different time scales. Importantly, our method learns to compress time series of clini-
cal data into a flat, time-independent representation, from which it can reconstruct the original time series’ 
dynamics again. Note that we reconstruct all of the time series belonging to an ICU admission using a single 
representation corresponding to the admission. Thus, many time series are reconstructed from a single point in 
our learned feature space. This dimensionality reduction is learned directly from the patient data. Importantly, 
this compression and reconstruction are lossy by design, which forces the neural network to distill regularities 
and patterns of the raw data into the learned feature space. We show that we can identify clinically meaningful 
groups by clustering the patients based on our trained feature space. The source code for our method is freely 
available (at https:// github. com/ JRC- COMBI NE/ ehr- time- series- gru- autoe ncoder).

The paper is structured as follows: Following the introduction, we present reconstruction and clustering 
results. Then we discuss the results. Finally, the methods section provides an overview of our method, the data 
we utilized, and the details of the machine learning model we employed. In the following, we first discuss related 
work.

Due to the high density of data points which hospitals store during medical treatment, the field of Intensive 
Care Medicine offers excellent preconditions for developing and applying machine learning models. Thus, many 
works employing machine learning in critical care have been published in recent  years2–4. However, most of these 
works use labeled data, for example, ICD-9 diagnoses, and thus fall under the umbrella of supervised learning 
approaches. They usually predict a clinical event of some kind—mortality, specific diagnoses, or the likelihood 
of re-admissions into the  hospital5–10. However, since these studies follow the paradigm of supervised learn-
ing, they are limited in what they can find. In contrast, unsupervised learning methods forego the use of such 
labels and by this means also avoid problems with incorrect or untimely diagnoses, negligent documentation, 
and heterogeneous  terminology11. A strength of unsupervised learning lies in the ability to gain insight into 
complex, multi-dimensional data sets which might be beyond the capabilities of human perception. Despite the 
good availability of such data sets, there is only a small number of publications applying unsupervised methods 
on Intensive Care data sets compared to supervised learning models. Vranas et al.12 applied a clustering analysis 
on a heterogeneous Intensive Care population and found six clinically recognizable clusters. Other researchers 
used electronic health record data, including diagnoses, for clustering analysis to identify latent disease clusters 
or phenotypes, partially limiting their approach to patients with distinct diagnoses like sepsis or COVID-1913–15. 
Hyun et al., however, could show that clustering was possible using exclusively laboratory test data without 
knowledge about the  diagnoses16. However, we note that dynamic data may contain the relevant information 
in their temporal course, making it impossible to choose a particular time point to generate a “snapshot” as 
input for a conventional machine learning model. An autoencoder can represent a time series of dynamic data 
in its feature space, including all relevant information from the whole length of stay. Beaulieu-Jones et al. used 
information on care events from the MIMIC-III data set as input data for an autoencoder and were able to find 
meaningful clusterings of  mortality17. Deep autoencoders have been applied to the problem of dimensionality 
reduction in many domains of research, including image processing, where they can be used to generate new 
 images18–20 and  engineering21,22.

Time series in the medical domain are often very sparse and irregular in the temporal dimension. This is 
because the intervals between observations (e.g., blood count) depend on the patient’s clinical condition and 
the doctors’ assessment of this situation. While some methods quantize the temporal dimension onto a regular 
 grid23–25, recently, there has been a growing trend of utilizing raw time  series9,26. This has the benefit of preserv-
ing the information contained in the missingness and sampling times of variables. Additionally, resampling to 
a regular temporal grid requires striking a compromise between a fine grid, which will end up very sparse, and 
a coarse grid, which will group many distinct observations.

Results
We evaluate the reconstruction fidelity by performing reconstruction of the original time series the same way 
as during training. Since our goal is a dimensionality reduction, the reconstruction is expected to deviate from 
the original time series. Within normalized space, we calculate the mean squared error (MSE) between each 
ground truth time series and its reconstruction. We take the median over all time series and arrive at a final 
reconstruction error of 0.25. If mean absolute percentage error (MAPE) is used instead of MSE, the reconstruc-
tion error is 9.28%.

We show an exemplary reconstruction plot in Fig. 1 and additional plots in the supplementary materials.
Additionally, we demonstrate that admissions with higher reconstruction error also have higher than average 

mortality (see Fig. 2).
Since the model can reconstruct a close approximation of the original time series from the learned feature 

space, it must contain the medical information necessary for this process. Following this line of thought, we 
examine the results of clustering on the feature space. The patient population in MIMIC is heterogeneous and 
multifaceted, so our approach is to identify multiple clusterings at different k. In particular, we present two 
clusterings: a coarse clustering with k = 2 and a finer clustering with k = 6 . Coarse clustering results are shown 
in Table 1, while the primary clustering results are shown in Table 2.

https://github.com/JRC-COMBINE/ehr-time-series-gru-autoencoder
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Note that the distribution of length of stay in the ICU over the clusters can also be of interest since it can indi-
cate diseases where therapy takes longer. For the patient’s age and the number of days spent in the ICU, we provide 
the median in addition to the first and third quartile ( Q1 and Q3 ). Mortality is defined as the 28-day mortality, 
according to which patients are considered deceased if they expire within 28 days of admission. In this case, the 
mortality registration is not limited to the hospital but is also recorded if the patient dies outside the hospital.

Figure 1.  Reconstruction example for Hematocrit. The mean squared error (MSE) of this reconstruction is 0.23, 
which is representative of the model, which has a median reconstruction MSE of 0.25. Note how high-frequency 
movements (e.g., downward spike at around three days) are not reconstructed, but large-scale movements are. 
This indicates that the model has learned to grasp the “trend” of the time series, making the feature space used 
for reconstruction more meaningful.

Figure 2.  Relationship between reconstruction error and mortality. For every admission, we assess the mean 
squared reconstruction error over all time steps and the 28-day mortality. We show admissions within different 
ranges of reconstruction error as bars, with the fraction of admissions with mortality and the total count of 
admissions displayed above each bar. On average, admissions with higher reconstruction error have higher 
mortality: Between the admissions with low reconstruction error and those with high reconstruction error, there 
is a five-fold increase in mortality. For this plot, we only include the bottom 99% of admissions (concerning the 
reconstruction error).
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Coarse cluster name Descriptive statistics Prevalent diagnoses Enriched diagnoses Prevalent procedures Enriched procedures

Population

N = 49599
43.9% female
Age: 66 years (53, 78)
ICU stay
- all: 2 days (1, 4)
 - survivors: 2 days (1, 4)
- deceased: 3 days (1, 6)
28-day mortality: 13.6%

401.9 - Unspecified essential 
hypertension (41.3%),
414.0 Coronary atherosclero-
sis (27.9%),
427.3 Atrial fibrillation and 
flutter (26.6%),
428.0 - Congestive heart fail-
ure, unspecified (26.2%),
250.0 Diabetes mellitus 
without mention of complica-
tion or
manifestation classifiable to 
250.1–250.9 (19.7%),
518.8 Other disease of lung 
(19.5%),
584.9 - Acute kidney failure, 
unspecified (18.2%),
272.4 - Other and unspecified 
hyperlipidemia (17.4%),
V58.6 Long-term (current) 
drug use (14.1%),
530.8 Other specified disor-
ders of esophagus (13.2%),
599.0 - Urinary tract infection, 
site not specified (13.1%),
V45.8 Other postprocedural 
status (12.3%),
403.9 Unspecified hyperten-
sive kidney disease (12.1%),
272.0 - Pure hypercholester-
olemia (11.8%),
995.9 Systemic inflammatory 
response syndrome (SIRS) 
(10.8%)

–

38.93 - Venous catheteriza-
tion, not elsewhere classified 
(25.1%),
96.04 - Insertion of endotra-
cheal tube (17.0%),
96.71 - Continuous invasive 
mechanical ventilation for less 
than 96
consecutive hours (15.6%),
96.6 - Enteral infusion of 
concentrated nutritional 
substances
(14.9%),
99.04 - Transfusion of packed 
cells (13.8%),
39.61 - Extracorporeal circula-
tion auxiliary to open heart 
surgery
(13.6%),
96.72 - Continuous invasive 
mechanical ventilation for 96 
consecutive
hours or more (11.2%),
88.56 - Coronary arteriog-
raphy using two catheters 
(10.2%),
36.15 - Single internal 
mammary-coronary artery 
bypass (8.8%),
38.91 - Arterial catheterization 
(8.7%),
88.72 - Diagnostic ultrasound 
of heart (6.6%),
37.22 - Left heart cardiac 
catheterization (6.4%),
39.95 - Hemodialysis (6.4%),
99.15 - Parenteral infusion 
of concentrated nutritional 
substances
(5.9%),
33.24 - Closed [endoscopic] 
biopsy of bronchus (5.3%)

–

Cluster 1

N = 19147
78.1% female
Age: 69 years (55, 81)
ICU stay
- all: 3 days (1, 6)
- survivors: 3 days (1, 6)
- deceased: 3 days (1, 7)
28-day mortality: 23.5%

∼ 401.9 - Unspecified essential 
hypertension (40.3%, -3.9%),
+ 518.8 Other disease of lung 
(29.2%, +118.1%),
+ 428.0 - Congestive heart 
failure, unspecified (28.5%, 
+15.1%),
∼ 427.3 Atrial fibrillation and 
flutter (27.2%, +3.9%),
+ 584.9 - Acute kidney failure, 
unspecified (21.1%, +28.4%),
− 414.0 Coronary atheroscle-
rosis (20.3%, -38.0%),
∼ 250.0 Diabetes mellitus 
without mention of complica-
tion or
manifestation classifiable to 
250.1-250.9 (19.8%, +1.3%),
+ 599.0 - Urinary tract infec-
tion, site not specified (18.2%,
+84.1%),
∼ 272.4 - Other and unspeci-
fied hyperlipidemia (17.0%, 
-3.7%),
+ V58.6 Long-term (current) 
drug use (16.2%, +26.4%),
+ 995.9 Systemic inflam-
matory response syndrome 
(SIRS) (14.9%,
+81.6%),
+ 244.9 - Unspecified acquired 
hypothyroidism (13.7%, 
+85.6%),
∼ 530.8 Other specified 
disorders of esophagus (13.4%, 
+2.8%)

+ 518.8 Other disease of lung 
(29.2%, +118.1%),
− 414.0 Coronary atheroscle-
rosis (20.3%, -38.0%),
− 600.0 Hypertrophy (benign) 
of prostate (1.0%, -82.9%),
+ 599.0 - Urinary tract infec-
tion, site not specified (18.2%,
+84.1%),
+ 733.0 Osteoporosis (6.9%, 
+219.8%),
+ 785.5 Shock without 
mention of trauma (12.7%, 
+112.0%),
+ 995.9 Systemic inflam-
matory response syndrome 
(SIRS) (14.9%,
+81.6%),
+ 038.9 - Unspecified septice-
mia (10.9%, +106.3%),
+ 244.9 - Unspecified acquired 
hypothyroidism (13.7%, 
+85.6%),
+ 294 Persistent mental 
disorders due to conditions 
classified
elsewhere (6.6%, +174.6%),
+ 518.5 Pulmonary insuf-
ficiency following trauma and 
surgery (6.2%,
+131.0%),
+ 276.2 - Acidosis (11.9%, 
+67.5%),
+ 507.0 - Pneumonitis due to 
inhalation of food or vomitus 
(9.9%,
+72.4%)

+ 38.93 - Venous catheteriza-
tion, not elsewhere classified 
(31.8%,
+52.1%),
+ 96.04 - Insertion of endotra-
cheal tube (26.7%, +144.9%),
+ 96.6 - Enteral infusion of 
concentrated nutritional 
substances
(23.0%, +132.5%),
+ 96.71 - Continuous invasive 
mechanical ventilation for 
less than
96 consecutive hours (21.7%, 
+84.7%),
+ 96.72 - Continuous invasive 
mechanical ventilation for 96
consecutive hours or more 
(19.7%, +240.9%),
− 99.04 - Transfusion of 
packed cells (13.0%, -9.0%),
+ 38.91 - Arterial catheteriza-
tion (12.7%, +104.2%),
+ 99.15 - Parenteral infusion 
of concentrated nutritional 
substances
(7.9%, +69.6%),
− 39.61 - Extracorporeal 
circulation auxiliary to open 
heart surgery
(7.6%, -56.0%),
+ 39.95 - Hemodialysis (7.3%, 
+26.8%),
− 88.56 - Coronary arteriogra-
phy using two catheters (7.1%, 
-42.0%),
+ 33.24 - Closed [endoscopic] 
biopsy of bronchus (7.0%, 
+68.0%),
+ 31.1 - Temporary tracheos-
tomy (6.1%, +236.4%)

+ 96.04 - Insertion of endotra-
cheal tube (26.7%, +144.9%),
+ 96.6 - Enteral infusion of 
concentrated nutritional 
substances
(23.0%, +132.5%),
+ 96.72 - Continuous invasive 
mechanical ventilation for 96
consecutive hours or more 
(19.7%, +240.9%),
− 36.15 - Single internal 
mammary-coronary artery 
bypass (3.9%,
-67.4%),
− 39.61 - Extracorporeal 
circulation auxiliary to open 
heart surgery
(7.6%, -56.0%),
+ 96.71 - Continuous invasive 
mechanical ventilation for 
less than
96 consecutive hours (21.7%, 
+84.7%),
+ 38.93 - Venous catheteriza-
tion, not elsewhere classified 
(31.8%,
+52.1%),
+ 31.1 - Temporary tracheos-
tomy (6.1%, +236.4%),
+ 38.91 - Arterial catheteriza-
tion (12.7%, +104.2%),
+ 43.11 - Percutaneous [endo-
scopic] gastrostomy [PEG] 
(5.1%,
+198.1%),
− 36.12 - (Aorto)coronary 
bypass of two coronary arter-
ies (1.8%,
-64.2%),
− 88.56 - Coronary arteriogra-
phy using two catheters (7.1%, 
-42.0%),
− 37.22 - Left heart cardiac 
catheterization (4.0%, -49.4%)

Continued
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We do not supply information about the mortality or diagnoses to our model during training or inference. It 
is only used for evaluating clustering results. Thus, patterns observed in the clusters originate from the patients’ 
age, sex, and dynamic data.

In the following, we first discuss the results of the coarse clustering (with k = 2 , Table 1) and then the pri-
mary clustering ( k = 6 , Table 2). Note that in the table columns for enriched codes (diagnoses and procedures), 
only positively or negatively enriched codes are shown, not those that appear within the clusters with about the 
same frequency as within the cluster’s complement. We show bar plots comparing the ICD diagnosis category 
distribution between the clusters in Fig. 3 (for k = 2 ) and Fig. 4 ( k = 6 ). For the primary clustering, we offer a 
tornado plot showing the differences in ICD disease category distribution between clusters (Fig. 5). These figures 
enable a quick visual comparison between diagnosis distribution in clusters. They were created by iterating over 
all patients within a cluster, examining each of their ICD diagnoses, and then counting the respective ICD top-
level categories (e.g., 460–519: Diseases of the Respiratory System, which becomes “Lung” in the figures). Every 
diagnosis is counted, even multiple ones for the same patient.

Since the coarse clustering splits the population into only two groups, the two resulting groups of patients 
are relatively large and still quite heterogeneous. However, it is noteworthy that Cluster 1 and 2 differ mainly 
in terms of the distribution of sex ( 78% female vs. 22% female) and mortality ( 23.5% vs. 7.3% ). In contrast, the 
length of stay on ICU and age distribution are relatively similar between the two clusters. As expected from the 
considerably different mortality rates alone, Cluster 1, i.e., the cluster with the higher mortality rate, was more 
likely to contain acute diagnoses, which are generally associated with greater severity of illness. These enriched 

Table 1.  Coarse clustering results. We show basic descriptive statistics of the two clusters as well as the 
population. Frequent ICD-9 diagnoses or procedures are shown if they are enriched within a cluster (“+” for 
positively enriched, “−” for negatively enriched) and are sorted by the degree of enrichment within the cluster 
from high to low. “Prevalent” codes are sorted by the prevalence. Note that often, negatively enriched codes 
can be just as important in understanding a cluster as positively enriched codes. After each code, we show its 
support within the cluster (i.e. the fraction of admissions within the cluster that exhibit all diagnoses in the 
itemset) and the ratio between support in the cluster and support in the complement. Distributions of frequent 
ICD-9 codes vary between clusters. While patients in Cluster 1 suffer from acute conditions (lung diseases, 
heart failure, acute kidney failure, septicemia) more often, patients in Cluster 2 are more likely to exhibit 
chronic conditions. Additionally, differences between the clusters in terms of age and sex distribution, length of 
ICU stay, and mortality can be observed. Apart from age and sex, none of this data is supplied as input to our 
model. Thus, it follows these differences stem from information captured in the learned feature space.

Coarse cluster name Descriptive statistics Prevalent diagnoses Enriched diagnoses Prevalent procedures Enriched procedures

Cluster 2

N = 30452
22.3% female
Age: 64 years (52, 76)
ICU stay
- all: 2 days (1, 4)
- survivors: 2 days (1, 4)
- deceased: 3 days (1, 6)
28-day mortality: 7.3%

∼ 401.9 - Unspecified essential 
hypertension (41.9%, +4.0%),
+ 414.0 Coronary atheroscle-
rosis (32.7%, +61.4%),
∼ 427.3 Atrial fibrillation and 
flutter (26.2%, -3.8%),
− 428.0 - Congestive heart 
failure, unspecified (24.7%, 
-13.1%),
∼ 250.0 Diabetes mellitus 
without mention of complica-
tion or
manifestation classifiable to 
250.1-250.9 (19.6%, -1.3%),
∼ 272.4 - Other and unspeci-
fied hyperlipidemia (17.7%, 
+3.8%),
− 584.9 - Acute kidney failure, 
unspecified (16.4%, -22.1%),
+ 272.0 - Pure hypercholester-
olemia (13.8%, +56.6%),
+ V45.8 Other postprocedural 
status (13.5%, +30.4%),
− 518.8 Other disease of lung 
(13.4%, -54.1%),
∼ 530.8 Other specified 
disorders of esophagus (13.0%, 
-2.7%),
− V58.6 Long-term (current) 
drug use (12.8%, -20.9%),
∼ 403.9 Unspecified hyper-
tensive kidney disease (12.0%, 
-2.9%)

− 518.8 Other disease of lung 
(13.4%, -54.1%),
+ 414.0 Coronary atheroscle-
rosis (32.7%, +61.4%),
+ 600.0 Hypertrophy (benign) 
of prostate (5.6%, +485.5%),
− 599.0 - Urinary tract infec-
tion, site not specified (9.9%, 
-45.7%),
− 733.0 Osteoporosis (2.2%, 
-68.7%),
− 785.5 Shock without men-
tion of trauma (6.0%, -52.8%),
− 995.9 Systemic inflam-
matory response syndrome 
(SIRS) (8.2%,
-44.9%),
− 038.9 - Unspecified septice-
mia (5.3%, -51.5%),
− 244.9 - Unspecified acquired 
hypothyroidism (7.4%, 
-46.1%),
− 294 Persistent mental 
disorders due to conditions 
classified
elsewhere (2.4%, -63.6%),
− 518.5 Pulmonary insuf-
ficiency following trauma and 
surgery (2.7%,
-56.7%),
− 276.2 - Acidosis (7.1%, 
-40.3%),
− 507.0 - Pneumonitis due to 
inhalation of food or vomitus 
(5.7%,
-42.0%)

− 38.93 - Venous catheteriza-
tion, not elsewhere classified 
(20.9%,
-34.3%),
+ 39.61 - Extracorporeal 
circulation auxiliary to open 
heart surgery
(17.3%, +127.3%),
+ 99.04 - Transfusion of 
packed cells (14.3%, +9.9%),
+ 88.56 - Coronary arteri-
ography using two catheters 
(12.2%, +72.4%),
+ 36.15 - Single internal 
mammary-coronary artery 
bypass (11.9%,
+206.4%),
− 96.71 - Continuous invasive 
mechanical ventilation for 
less than
96 consecutive hours (11.7%, 
-45.9%),
− 96.04 - Insertion of endotra-
cheal tube (10.9%, -59.2%),
− 96.6 - Enteral infusion of 
concentrated nutritional 
substances
(9.9%, -57.0%),
+ 37.22 - Left heart cardiac 
catheterization (7.9%, 
+97.6%),
+ 88.72 - Diagnostic 
ultrasound of heart (7.3%, 
+31.2%),
− 38.91 - Arterial catheteriza-
tion (6.2%, -51.0%),
+ 37.23 - Combined right and 
left heart cardiac catheteriza-
tion
(6.1%, +55.0%),
− 96.72 - Continuous invasive 
mechanical ventilation for 96
consecutive hours or more 
(5.8%, -70.7%)

− 96.04 - Insertion of endotra-
cheal tube (10.9%, -59.2%),
− 96.6 - Enteral infusion of 
concentrated nutritional 
substances
(9.9%, -57.0%),
− 96.72 - Continuous invasive 
mechanical ventilation for 96
consecutive hours or more 
(5.8%, -70.7%),
+ 36.15 - Single internal 
mammary-coronary artery 
bypass (11.9%,
+206.4%),
+ 39.61 - Extracorporeal 
circulation auxiliary to open 
heart surgery
(17.3%, +127.3%),
− 96.71 - Continuous invasive 
mechanical ventilation for 
less than
96 consecutive hours (11.7%, 
-45.9%),
− 38.93 - Venous catheteriza-
tion, not elsewhere classified 
(20.9%,
-34.3%),
− 31.1 - Temporary tracheos-
tomy (1.8%, -70.3%),
− 38.91 - Arterial catheteriza-
tion (6.2%, -51.0%),
− 43.11 - Percutaneous [endo-
scopic] gastrostomy [PEG] 
(1.7%, -66.4%),
+ 36.12 - (Aorto)coronary 
bypass of two coronary arter-
ies (5.1%,
+179.5%),
+ 88.56 - Coronary arteri-
ography using two catheters 
(12.2%, +72.4%),
+ 37.22 - Left heart cardiac 
catheterization (7.9%, +97.6%)
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diagnoses encompass two greater groups, namely diagnoses associated with sepsis (038.9; 995.9) and its compli-
cations (785.5, 584.5 and 584.9, 276.2), as well as diagnoses affecting the pulmonary system with at least partial 
requirement for mechanical ventilation (518.5, 518.8, 507.0, 486). The disease categories of infectious and para-
sitic diseases and diseases of the respiratory system are over-represented in Cluster 1 ( 40.7% and 45.3% more 
likely in Cluster 1 than in Cluster 2), and these categories also carry with them high mortality: 28.2% and 27.1% 
in Cluster 1, 12% and 11.2% in Cluster 2. These findings are congruent with the list of procedures conducted in 
the ICU which shows a clear enrichment of procedures associated with partly long-term mechanical ventilation 
(96.72 and 96.71, 31.1, 96.04) and special nutritional procedures indicating that an independent oral nutrition 
intake was not possible (43.11, 96.6, 99.15). Cluster 2, in contrast, shows enrichment of cardiac diseases (414.0, 
997.1, 412, 424.1, 424.0, 410.7) and the respective procedures (36.15 and 36.12, 39.61, 88.56, 37.22, 88.53, and 
37.23). Other enrichment phenomena derive from the unequal sex distribution between the two clusters. This 
affects diagnoses with a sex-specific distribution like Hypertrophy of the prostate (600.0) or Osteoporosis (733.0). 
Looking at the absolute prevalence of diagnoses in the two clusters, the picture is much less clear. Thus, among 
the 12 most frequently occurring diagnoses in both clusters, nine diagnoses occur among the Top 12 in both 
clusters, just with a different order of frequency. These frequent diagnoses include typical endemic diseases like 
Essential hypertension, Coronary atherosclerosis and Diabetes mellitus. Neoplasms, which form the most lethal 
category of diagnoses, with 21% of admissions ending with the patient’s death within 28 days of admission, are 
almost evenly distributed over the two clusters (taking their size difference into account). However, patients with 
neoplasm from Cluster 1 have a mortality of 30.5% , which is more than double that of those in Cluster 2 with 
the same diagnosis ( 14.7% ) It can therefore be concluded that it is not so much the most frequent diagnoses in 
absolute terms that lead to the marked difference in the outcome but other factors whose distribution differs 
across the clusters. In summary, patients in Cluster 1 are more likely to suffer from largely fatal conditions than 
those in Cluster 2, and this effect compounds over multiple disease categories.

The different distribution of certain diseases, degrees of severities and mortality, which was already indicated 
in the subdivision into two clusters, is now even more evident with a more detailed subdivision into six primary 
clusters, as the enriched frequent codes show in Table 2. Particularly, we compare the frequency of specific 
diagnoses within a cluster to its complement, i.e., to all admissions not in the cluster.

In the following, we give a short description of the resulting clusters:
Cluster 1 consists of the oldest patients (70 years), who are almost exclusively female. With about 11000 

admissions, it is the second-largest cluster. The striking imbalance concerning patient sex is responsible for the 
enrichment of several diagnoses, which are quite typical for female patients of higher age. This includes diagnoses 
like osteoporosis (733.0), acquired hypothyroidism (244.9), urinary tract infection (599.0), diastolic heart failure 
(428.3), and mental conditions (294, 311, and 300.0), but also sex-specific neoplasms (V10.3). In contrast, typical 
diseases of men are underrepresented (600.0). Apart from minor shifts due to the sex imbalance, the absolute 
prevalences of diagnoses within the cluster differ only insignificantly from the prevalences of the total population, 
resulting in a clear focus on cardiovascular diseases and its complications like essential hypertension (401.9), 
congestive or diastolic heart failure (428.0, 428.3), atrial fibrillation/flutter (427.3), or hypertensive kidney dis-
ease (403.9). The documented procedures do not show a clear picture since almost no procedure is enriched in 
this cluster. Although the cluster has both the highest age and diagnoses indicative of a certain degree of disease 
severity among those affected, mortality within the cluster does not differ from that of the overall population.

Cluster 2 can be seen as the counterpart to Cluster 1 since it contains nearly exclusively male patients. It is the 
largest cluster, with about 13 thousand admissions. The patients in this cluster are slightly younger than those 
in Cluster 1, but the first two clusters are largely similar regarding the length of stay and mortality. Again, the 
enrichment of diagnoses is mainly caused by the male predominance in this cluster. Thus, typical male diagnoses 
occur more frequently, like hypertrophy of the prostate (600.0), sleep apnea syndrome (327.2), gout (274.9) and 
tobacco use disorder (305.1). The ratio of female patients for diastolic heart failure is higher, while in systolic 
heart failure, the opposite is true. This can be seen in Cluster 1 and 2. Remarkably, the patients in Cluster 2 
were more frequently diagnosed with coronary atherosclerosis (414.0) compared to Cluster 1. Hyperlipidemia 
(272.4), a highly relevant risk factor for developing this disease, occurs in this cluster more than twice as often 

Figure 3.  Distribution of ICD categories within the coarse clustering ( k = 2 ). For each clustering, we examine 
every diagnosis code assigned to any patient and count it towards the ICD group to which it belongs. Every 
diagnosis is counted, even if a single admission exhibits multiple diagnoses from the same ICD category. 
Typically, patients suffer from conditions in multiple ICD categories, so most patients contribute to multiple 
categories. Note that total diagnosis counts are different between clusters, but the bars in the figure are 
normalized to the same length to enable an easier comparison.
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Primary cluster name Descriptive statistics Prevalent diagnoses Enriched diagnoses Prevalent procedures Enriched procedures

Cluster 1

N = 11174
99.5% female
Age: 70 years (56, 82)
ICU stay
- all: 2 days (1, 4)
- survivors: 2 days (1, 4)
- deceased: 3 days (1, 6)
28-day mortality: 13.6%

+ 401.9 - Unspecified essen-
tial hypertension (43.8%, 
+7.8%),
∼ 428.0 - Congestive heart 
failure, unspecified (27.7%, 
+7.6%),
∼ 427.3 Atrial fibrillation and 
flutter (27.4%, +4.0%),
+ 272.4 - Other and unspeci-
fied hyperlipidemia (22.9%, 
+44.2%),
− 414.0 Coronary atheroscle-
rosis (22.4%, -24.4%),
+ 599.0 - Urinary tract 
infection, site not specified 
(20.3%,
+84.4%),
∼ 250.0 Diabetes mellitus 
without mention of compli-
cation or
manifestation classifiable to 
250.1-250.9 (20.2%, +3.7%),
∼ 518.8 Other disease of lung 
(19.7%, +1.3%),
+ V58.6 Long-term (current) 
drug use (19.5%, +55.2%),
∼ 584.9 - Acute kidney 
failure, unspecified (19.3%, 
+7.5%),
+ 244.9 - Unspecified 
acquired hypothyroidism 
(16.9%, +116.5%),
+ 530.8 Other specified dis-
orders of esophagus (16.8%, 
+38.9%),
+ 285.9 - Anemia, unspeci-
fied (13.6%, +37.7%)

+ 733.0 Osteoporosis (9.5%, 
+302.5%),
− 600.0 Hypertrophy 
(benign) of prostate (0.1%, 
-98.4%),
+ 244.9 - Unspecified 
acquired hypothyroidism 
(16.9%, +116.5%),
+ V10.3 - Personal history of 
malignant neoplasm of breast 
(6.3%,
+328.8%),
+ 599.0 - Urinary tract 
infection, site not specified 
(20.3%,
+84.4%),
+ 428.3 Diastolic heart failure 
(12.6%, +114.4%),
+ 294 Persistent mental 
disorders due to conditions 
classified
elsewhere (7.9%, +172.7%),
+ 311 - Depressive disorder, 
not elsewhere classified 
(11.4%,
+110.1%),
+ 300.0 Anxiety states (6.4%, 
+152.2%),
+ V49.8 Other specified 
conditions influencing health 
status (6.4%,
+147.9%),
+ V58.6 Long-term (current) 
drug use (19.5%, +55.2%),
+ 272.4 - Other and unspeci-
fied hyperlipidemia (22.9%, 
+44.2%),
+ V12.5 Personal history of 
diseases of circulatory system 
(9.4%,
+81.7%)

− 38.93 - Venous catheteriza-
tion, not elsewhere classified 
(23.3%,
-9.2%),
∼ 96.71 - Continuous inva-
sive mechanical ventilation 
for less than 96
consecutive hours (14.9%, 
-5.6%),
− 96.04 - Insertion of 
endotracheal tube (13.4%, 
-25.7%),
− 96.6 - Enteral infusion of 
concentrated nutritional 
substances
(13.1%, -15.0%),
− 39.61 - Extracorporeal 
circulation auxiliary to open 
heart surgery
(8.6%, -42.8%),
− 96.72 - Continuous inva-
sive mechanical ventilation 
for 96
consecutive hours or more 
(8.5%, -29.1%),
∼ 38.91 - Arterial catheteriza-
tion (8.1%, -8.7%),
− 99.04 - Transfusion of 
packed cells (7.8%, -49.7%),
− 88.56 - Coronary arteri-
ography using two catheters 
(6.9%, -38.3%),
∼ 39.95 - Hemodialysis 
(5.9%, -8.7%),
+ 38.97 - Central venous 
catheter placement with 
guidance (5.8%,
+172.3%),
∼ 33.24 - Closed [endo-
scopic] biopsy of bronchus 
(4.7%, -13.0%),
∼ 45.13 - Other endoscopy of 
small intestine (4.4%, -18.5%)

− 99.04 - Transfusion of 
packed cells (7.8%, -49.7%),
− 36.15 - Single internal 
mammary-coronary artery 
bypass (4.1%,
-59.8%),
+ 38.97 - Central venous 
catheter placement with 
guidance (5.8%,
+172.3%),
− 36.0 Removal of coronary 
artery obstruction and 
insertion of
stent(s) (0.4%, -86.3%),
− 39.61 - Extracorporeal 
circulation auxiliary to open 
heart surgery
(8.6%, -42.8%),
− 36.12 - (Aorto)coronary 
bypass of two coronary 
arteries (1.7%,
-61.4%),
− 99.20 - Injection or infu-
sion of platelet inhibitor 
(1.4%, -63.5%),
− 88.53 - Angiocardiography 
of left heart structures (2.0%, 
-57.5%),
− 88.56 - Coronary arteri-
ography using two catheters 
(6.9%, -38.3%),
− 36.13 - (Aorto)coronary 
bypass of three coronary 
arteries (1.3%,
-63.4%),
− 99.07 - Transfusion of 
other serum (2.0%, -56.3%),
− 99.05 - Transfusion of 
platelets (0.9%, -66.1%),
− 37.23 - Combined right 
and left heart cardiac cath-
eterization
(3.2%, -46.5%)

Cluster 2

N = 12823
0.2% female
Age: 65 years (53, 77)
ICU stay
- all: 2 days (1, 4)
- survivors: 2 days (1, 4)
- deceased: 3 days (1, 6)
28-day mortality: 11.7%

∼ 401.9 - Unspecified essen-
tial hypertension (41.0%, 
-1.0%),
+ 414.0 Coronary atheroscle-
rosis (31.6%, +18.3%),
+ 272.4 - Other and unspeci-
fied hyperlipidemia (27.9%, 
+102.1%),
∼ 427.3 Atrial fibrillation and 
flutter (27.8%, +6.3%),
− 428.0 - Congestive heart 
failure, unspecified (24.4%, 
-9.2%),
∼ 250.0 Diabetes mellitus 
without mention of compli-
cation or
manifestation classifiable to 
250.1-250.9 (20.5%, +6.1%),
+ 584.9 - Acute kidney 
failure, unspecified (20.1%, 
+14.3%),
+ V58.6 Long-term (current) 
drug use (19.7%, +62.0%),
+ V45.8 Other postproce-
dural status (18.3%, +79.6%),
− 518.8 Other disease of lung 
(18.1%, -9.3%),
+ 403.9 Unspecified 
hypertensive kidney disease 
(16.9%, +61.6%),
+ 530.8 Other specified dis-
orders of esophagus (15.4%, 
+24.3%),
+ V15.8 Other specified 
personal history presenting 
hazards to
health (11.7%, +93.3%)

+ 272.4 - Other and unspeci-
fied hyperlipidemia (27.9%, 
+102.1%),
+ 600.0 Hypertrophy 
(benign) of prostate (9.0%, 
+354.6%),
− V10.3 - Personal history of 
malignant neoplasm of breast 
(0.1%,
-97.7%),
+ 428.2 Systolic heart failure 
(10.9%, +133.4%),
+ V45.8 Other postproce-
dural status (18.3%, +79.6%),
+ 327.2 Organic sleep apnea 
(8.6%, +145.4%),
+ V58.6 Long-term (current) 
drug use (19.7%, +62.0%),
+ V15.8 Other specified 
personal history presenting 
hazards to
health (11.7%, +93.3%),
+ 403.9 Unspecified 
hypertensive kidney disease 
(16.9%, +61.6%),
+ 585.9 - Chronic kidney 
disease, unspecified (10.4%, 
+82.3%),
+ 305.1 - Tobacco use disor-
der (9.9%, +79.2%),
− 733.0 Osteoporosis (1.8%, 
-62.9%),
+ 274.9 - Gout, unspecified 
(6.7%, +104.2%)

− 38.93 - Venous catheteriza-
tion, not elsewhere classified 
(21.2%,
-20.0%),
∼ 96.71 - Continuous inva-
sive mechanical ventilation 
for less than 96
consecutive hours (15.7%, 
+0.7%),
∼ 96.6 - Enteral infusion 
of concentrated nutritional 
substances
(14.6%, -3.3%),
∼ 39.61 - Extracorporeal 
circulation auxiliary to open 
heart surgery
(14.2%, +6.0%),
− 96.04 - Insertion of 
endotracheal tube (13.4%, 
-26.3%),
+ 36.15 - Single internal 
mammary-coronary artery 
bypass (9.9%,
+17.9%),
− 96.72 - Continuous inva-
sive mechanical ventilation 
for 96
consecutive hours or more 
(9.0%, -25.0%),
− 88.56 - Coronary arteri-
ography using two catheters 
(8.9%, -16.5%),
− 38.91 - Arterial catheteriza-
tion (7.5%, -17.6%),
∼ 39.95 - Hemodialysis 
(7.0%, +14.0%),
− 99.04 - Transfusion of 
packed cells (6.3%, -61.7%),
∼ 37.22 - Left heart cardiac 
catheterization (6.1%, -6.8%),
∼ 33.24 - Closed [endo-
scopic] biopsy of bronchus 
(5.9%, +15.9%)

− 99.04 - Transfusion of 
packed cells (6.3%, -61.7%),
− 36.0 Removal of coronary 
artery obstruction and 
insertion of
stent(s) (0.3%, -90.6%),
− 88.53 - Angiocardiography 
of left heart structures (1.9%, 
-61.0%),
− 00.17 - Infusion of vaso-
pressor agent (0.4%, -79.9%),
− 99.05 - Transfusion of 
platelets (0.9%, -68.7%),
− 99.07 - Transfusion of 
other serum (2.1%, -55.2%),
− 37.23 - Combined right 
and left heart cardiac cath-
eterization
(3.1%, -47.9%),
+ 38.97 - Central venous 
catheter placement with 
guidance (4.7%,
+99.9%),
− 96.04 - Insertion of 
endotracheal tube (13.4%, 
-26.3%),
− 38.93 - Venous catheteriza-
tion, not elsewhere classified 
(21.2%,
-20.0%),
− 89.64 - Pulmonary artery 
wedge monitoring (0.9%, 
-63.2%),
− 99.20 - Injection or infu-
sion of platelet inhibitor 
(2.0%, -48.8%),
− 36.06 - Insertion of non-
drug-eluting coronary artery 
stent(s)
(1.2%, -55.8%)

Continued
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Primary cluster name Descriptive statistics Prevalent diagnoses Enriched diagnoses Prevalent procedures Enriched procedures

Cluster 3

N = 10472
46.5% female
Age: 63 years (50, 76)
ICU stay
- all: 2 days (1, 3)
- survivors: 2 days (1, 3)
- deceased: 3 days (1, 5)
28-day mortality: 5.5%

∼ 401.9 - Unspecified essen-
tial hypertension (39.8%, 
-4.6%),
∼ 414.0 Coronary atheroscle-
rosis (28.4%, +2.1%),
∼ 428.0 - Congestive heart 
failure, unspecified (26.1%, 
-0.5%),
− 427.3 Atrial fibrillation and 
flutter (21.9%, -21.3%),
− 250.0 Diabetes mellitus 
without mention of compli-
cation or
manifestation classifiable to 
250.1-250.9 (17.8%, -12.0%),
− 584.9 - Acute kidney 
failure, unspecified (15.7%, 
-17.3%),
+ 272.0 - Pure hypercholes-
terolemia (15.3%, +40.1%),
− 530.8 Other specified dis-
orders of esophagus (11.4%, 
-16.3%),
+ 276.5 Volume depletion 
(11.0%, +37.9%),
− V45.8 Other postproce-
dural status (11.0%, -13.7%),
− 599.0 - Urinary tract 
infection, site not specified 
(10.7%,
-22.5%),
− 403.9 Unspecified 
hypertensive kidney disease 
(10.1%, -20.4%),
− 272.4 - Other and unspeci-
fied hyperlipidemia (9.5%, 
-51.2%)

− 518.8 Other disease of lung 
(7.1%, -68.9%),
− V49.8 Other specified 
conditions influencing health 
status (0.2%,
-95.3%),
− 272.4 - Other and unspeci-
fied hyperlipidemia (9.5%, 
-51.2%),
− 518.5 Pulmonary insuffi-
ciency following trauma and 
surgery (0.5%,
-90.3%),
− 276.0 - Hyperosmolality 
and/or hypernatremia (1.1%, 
-79.1%),
− 507.0 - Pneumonitis due to 
inhalation of food or vomitus 
(3.0%,
-65.0%),
− 294 Persistent mental 
disorders due to conditions 
classified
elsewhere (1.0%, -79.3%),
− 785.5 Shock without 
mention of trauma (4.3%, 
-55.5%),
− V58.6 Long-term (current) 
drug use (8.8%, -43.3%),
− 995.9 Systemic inflam-
matory response syndrome 
(SIRS) (6.2%,
-48.7%),
− 276.2 - Acidosis (5.1%, 
-48.6%),
− V12.5 Personal history of 
diseases of circulatory system 
(3.1%,
-55.7%),
− V66.7 - Encounter for pal-
liative care (0.4%, -83.9%)

− 38.93 - Venous catheteriza-
tion, not elsewhere classified 
(18.5%,
-31.3%),
+ 99.04 - Transfusion of 
packed cells (18.2%, +43.2%),
+ 88.56 - Coronary arteri-
ography using two catheters 
(13.1%, +38.9%),
+ 37.23 - Combined right and 
left heart cardiac catheteri-
zation
(8.7%, +100.5%),
+ 99.20 - Injection or infu-
sion of platelet inhibitor 
(8.3%,
+303.8%),
+ 36.0 Removal of coronary 
artery obstruction and inser-
tion of
stent(s) (7.4%, +539.8%),
∼ 37.22 - Left heart cardiac 
catheterization (6.8%, 
+8.9%),
+ 45.13 - Other endoscopy 
of small intestine (6.7%, 
+39.5%),
∼ 39.95 - Hemodialysis 
(5.7%, -13.7%),
+ 36.06 - Insertion of non-
drug-eluting coronary artery 
stent(s)
(5.6%, +269.2%),
− 39.61 - Extracorporeal 
circulation auxiliary to open 
heart surgery
(5.5%, -65.2%),
+ 36.07 - Insertion of drug-
eluting coronary artery 
stent(s) (5.1%,
+230.9%),
∼ 88.53 - Angiocardiography 
of left heart structures (4.8%, 
+21.0%)

− 96.04 - Insertion of 
endotracheal tube (2.4%, 
-88.7%),
− 96.71 - Continuous inva-
sive mechanical ventilation 
for less than
96 consecutive hours (2.8%, 
-85.4%),
− 96.6 - Enteral infusion of 
concentrated nutritional 
substances
(3.1%, -82.9%),
− 96.72 - Continuous inva-
sive mechanical ventilation 
for 96
consecutive hours or more 
(0.5%, -96.4%),
+ 36.0 Removal of coronary 
artery obstruction and 
insertion of
stent(s) (7.4%, +539.8%),
− 39.61 - Extracorporeal 
circulation auxiliary to open 
heart surgery
(5.5%, -65.2%),
+ 99.20 - Injection or infu-
sion of platelet inhibitor 
(8.3%,
+303.8%),
− 38.97 - Central venous 
catheter placement with 
guidance (0.0%,
-100.0%),
− 31.1 - Temporary tracheos-
tomy (0.2%, -94.5%),
− 36.15 - Single internal 
mammary-coronary artery 
bypass (3.5%,
-65.3%),
− 33.24 - Closed [endo-
scopic] biopsy of bronchus 
(1.5%, -76.9%),
+ 36.06 - Insertion of non-
drug-eluting coronary artery 
stent(s)
(5.6%, +269.2%),
− 43.11 - Percutaneous 
[endoscopic] gastrostomy 
[PEG] (0.4%, -89.9%)

Continued
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Primary cluster name Descriptive statistics Prevalent diagnoses Enriched diagnoses Prevalent procedures Enriched procedures

Cluster 4

N = 7007
31.5% female
Age: 64 years (53, 75)
ICU stay
- all: 2 days (1, 4)
- survivors: 2 days (1, 4)
- deceased: 3 days (2, 5)
28-day mortality: 2.9%

+ 401.9 - Unspecified essen-
tial hypertension (47.2%, 
+17.0%),
+ 414.0 Coronary atheroscle-
rosis (42.2%, +64.7%),
∼ 427.3 Atrial fibrillation and 
flutter (27.8%, +5.4%),
∼ 428.0 - Congestive heart 
failure, unspecified (24.1%, 
-9.2%),
+ 272.0 - Pure hypercholes-
terolemia (21.3%, +106.5%),
∼ 250.0 Diabetes mellitus 
without mention of compli-
cation or
manifestation classifiable to 
250.1-250.9 (21.2%, +9.0%),
− 518.8 Other disease of lung 
(14.4%, -29.3%),
− 530.8 Other specified dis-
orders of esophagus (11.5%, 
-14.8%),
− 272.4 - Other and unspeci-
fied hyperlipidemia (10.8%, 
-41.6%),
+ 411.1 - Intermediate 
coronary syndrome (10.4%, 
+393.7%),
+ 997.1 - Cardiac complica-
tions, not elsewhere classified 
(10.2%,
+171.6%),
+ 424.0 - Mitral valve disor-
ders (9.6%, +83.4%),
− 584.9 - Acute kidney 
failure, unspecified (9.3%, 
-52.8%)

+ 411.1 - Intermediate 
coronary syndrome (10.4%, 
+393.7%),
+ 414.0 Coronary atheroscle-
rosis (42.2%, +64.7%),
+ 272.0 - Pure hypercholes-
terolemia (21.3%, +106.5%),
− 584.9 - Acute kidney 
failure, unspecified (9.3%, 
-52.8%),
− 995.9 Systemic inflam-
matory response syndrome 
(SIRS) (4.2%,
-65.1%),
+ 997.1 - Cardiac complica-
tions, not elsewhere classified 
(10.2%,
+171.6%),
− V58.6 Long-term (current) 
drug use (6.8%, -55.8%),
− V49.8 Other specified 
conditions influencing health 
status (0.2%,
-95.0%),
− 785.5 Shock without 
mention of trauma (3.6%, 
-61.6%),
− 272.4 - Other and unspeci-
fied hyperlipidemia (10.8%, 
-41.6%),
− 038.9 - Unspecified septice-
mia (3.1%, -62.0%),
− 403.9 Unspecified hyper-
tensive kidney disease (6.8%, 
-47.9%),
− 294 Persistent mental 
disorders due to conditions 
classified
elsewhere (1.1%, -76.1%)

+ 39.61 - Extracorporeal 
circulation auxiliary to open 
heart surgery
(41.0%, +351.3%),
+ 36.15 - Single internal 
mammary-coronary artery 
bypass (28.4%,
+410.7%),
+ 96.71 - Continuous inva-
sive mechanical ventilation 
for less than
96 consecutive hours (22.9%, 
+59.5%),
+ 99.04 - Transfusion of 
packed cells (22.2%, +78.4%),
− 38.93 - Venous catheteriza-
tion, not elsewhere classified 
(20.5%,
-20.7%),
+ 96.04 - Insertion of 
endotracheal tube (19.8%, 
+19.9%),
+ 88.56 - Coronary arteri-
ography using two catheters 
(17.2%, +88.8%),
+ 88.72 - Diagnostic 
ultrasound of heart (14.2%, 
+165.3%),
+ 37.22 - Left heart cardiac 
catheterization (13.0%, 
+145.2%),
+ 36.12 - (Aorto)coronary 
bypass of two coronary arter-
ies (12.9%,
+459.5%),
+ 88.53 - Angiocardiogra-
phy of left heart structures 
(12.2%,
+332.7%),
+ 36.13 - (Aorto)coronary 
bypass of three coronary 
arteries (9.4%,
+383.6%),
− 96.6 - Enteral infusion of 
concentrated nutritional 
substances
(9.1%, -42.9%)

+ 39.61 - Extracorporeal 
circulation auxiliary to open 
heart surgery
(41.0%, +351.3%),
+ 36.15 - Single internal 
mammary-coronary artery 
bypass (28.4%,
+410.7%),
+ 36.12 - (Aorto)coronary 
bypass of two coronary 
arteries (12.9%,
+459.5%),
+ 88.53 - Angiocardiogra-
phy of left heart structures 
(12.2%,
+332.7%),
+ 36.13 - (Aorto)coronary 
bypass of three coronary 
arteries (9.4%,
+383.6%),
− 96.72 - Continuous inva-
sive mechanical ventilation 
for 96
consecutive hours or more 
(3.4%, -72.5%),
+ 88.72 - Diagnostic 
ultrasound of heart (14.2%, 
+165.3%),
+ 36.11 - (Aorto)coronary 
bypass of one coronary 
artery (6.0%,
+384.7%),
+ 37.22 - Left heart cardiac 
catheterization (13.0%, 
+145.2%),
− 38.97 - Central venous 
catheter placement with 
guidance (0.0%,
-100.0%),
+ 99.04 - Transfusion 
of packed cells (22.2%, 
+78.4%),
+ 35.21 - Open and other 
replacement of aortic valve 
with tissue
graft (7.0%, +222.8%),
+ 88.56 - Coronary arteri-
ography using two catheters 
(17.2%, +88.8%)
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Primary cluster name Descriptive statistics Prevalent diagnoses Enriched diagnoses Prevalent procedures Enriched procedures

Cluster 5

N = 3119
42.6% female
Age: 68 years (56, 81)
ICU stay
- all: 2 days (1, 5)
- survivors: 2 days (1, 5)
- deceased: 2 days (1, 5)
28-day mortality: 34.1%

− 401.9 - Unspecified essen-
tial hypertension (36.6%, 
-12.0%),
+ 518.8 Other disease of lung 
(32.9%, +76.9%),
+ 584.9 - Acute kidney 
failure, unspecified (31.3%, 
+79.9%),
+ 995.9 Systemic inflam-
matory response syndrome 
(SIRS) (29.9%,
+213.7%),
∼ 427.3 Atrial fibrillation and 
flutter (27.5%, +3.7%),
∼ 428.0 - Congestive heart 
failure, unspecified (26.8%, 
+2.6%),
+ 785.5 Shock without 
mention of trauma (22.3%, 
+191.0%),
+ 038.9 - Unspecified septice-
mia (20.8%, +218.4%),
+ 276.2 - Acidosis (20.3%, 
+146.6%),
∼ 250.0 Diabetes mellitus 
without mention of compli-
cation or
manifestation classifiable to 
250.1-250.9 (19.5%, -0.9%),
+ 486 Pneumonia, organism 
unspecified (16.9%, +86.0%),
− 414.0 Coronary atheroscle-
rosis (16.8%, -41.4%),
∼ 272.4 - Other and unspeci-
fied hyperlipidemia (16.4%, 
-6.1%)

+ 995.9 Systemic inflam-
matory response syndrome 
(SIRS) (29.9%,
+213.7%),
+ 038.9 - Unspecified septice-
mia (20.8%, +218.4%),
+ 785.5 Shock without 
mention of trauma (22.3%, 
+191.0%),
+ 276.2 - Acidosis (20.3%, 
+146.6%),
+ 518.8 Other disease of lung 
(32.9%, +76.9%),
+ 584.9 - Acute kidney 
failure, unspecified (31.3%, 
+79.9%),
+ E933.1 - Antineoplastic and 
immunosuppressive drugs 
causing
adverse effects in therapeutic 
use (5.3%, +521.9%),
− 414.0 Coronary atheroscle-
rosis (16.8%, -41.4%),
+ V49.8 Other specified 
conditions influencing health 
status (8.6%,
+177.5%),
+ 486 Pneumonia, organism 
unspecified (16.9%, +86.0%),
+ 038.4 Septicemia due to 
other gram-negative organ-
isms (6.0%,
+225.7%),
+ 287.5 - Thrombocyto-
penia, unspecified (11.9%, 
+108.2%),
+ 780.6 Fever and other 
physiologic disturbances of 
temperature
regulation (5.9%, +196.7%)

+ 38.93 - Venous catheteriza-
tion, not elsewhere classified 
(37.2%,
+52.8%),
+ 96.04 - Insertion of 
endotracheal tube (23.1%, 
+39.3%),
+ 96.71 - Continuous inva-
sive mechanical ventilation 
for less than
96 consecutive hours (22.1%, 
+45.7%),
∼ 96.6 - Enteral infusion 
of concentrated nutritional 
substances
(17.0%, +14.7%),
+ 96.72 - Continuous inva-
sive mechanical ventilation 
for 96
consecutive hours or more 
(14.2%, +29.9%),
+ 38.91 - Arterial catheteriza-
tion (14.0%, +67.2%),
∼ 99.04 - Transfusion of 
packed cells (11.3%, -19.2%),
+ 99.15 - Parenteral infusion 
of concentrated nutritional 
substances
(9.7%, +72.0%),
+ 33.24 - Closed [endo-
scopic] biopsy of bronchus 
(8.8%, +72.9%),
∼ 39.95 - Hemodialysis 
(8.2%, +30.8%),
+ 38.97 - Central venous 
catheter placement with 
guidance (7.0%,
+157.5%),
+ 54.91 - Percutaneous 
abdominal drainage (5.4%, 
+96.9%),
+ 99.25 - Injection or infu-
sion of cancer chemothera-
peutic substance
(5.1%, +577.0%)

− 39.61 - Extracorporeal 
circulation auxiliary to open 
heart surgery
(2.5%, -82.3%),
− 36.15 - Single internal 
mammary-coronary artery 
bypass (1.2%,
-86.9%),
+ 99.25 - Injection or infu-
sion of cancer chemothera-
peutic substance
(5.1%, +577.0%),
+ 38.93 - Venous catheteriza-
tion, not elsewhere classified 
(37.2%,
+52.8%),
− 88.56 - Coronary arteri-
ography using two catheters 
(4.3%, -59.6%),
+ 38.97 - Central venous 
catheter placement with 
guidance (7.0%,
+157.5%),
− 36.12 - (Aorto)coronary 
bypass of two coronary 
arteries (0.6%,
-84.8%),
− 36.13 - (Aorto)coronary 
bypass of three coronary 
arteries (0.4%,
-86.8%),
− 37.22 - Left heart cardiac 
catheterization (2.4%, 
-63.9%),
+ 38.91 - Arterial catheteri-
zation (14.0%, +67.2%),
+ 96.71 - Continuous inva-
sive mechanical ventilation 
for less than
96 consecutive hours (22.1%, 
+45.7%),
− 88.53 - Angiocardiography 
of left heart structures (1.2%, 
-71.9%),
− 99.20 - Injection or infu-
sion of platelet inhibitor 
(0.8%, -76.5%)

Continued
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as in the other clusters. Consequently, this results in a slight enrichment of coronary bypass procedures (36.13, 
36.15) treating this condition. Except for the codes mentioned above and similarly to Cluster 1, the diagnoses 
and procedures of this cluster do not differ relevantly from the total population.

Cluster 3 contains the youngest patient population (63 years), which shows relatively low mortality ( 5.5% ). 
The distribution of men and women and the most frequent diagnoses correspond to that of the total population. 
However, based on the enrichment analysis, it is noticeable that Cluster 3 is characterized by numerous diagnoses 
occurring less frequently than in other clusters. These also encompass very severe diagnoses, like pulmonary 
insufficiency (518.5), shock (785.5) and systemic inflammatory response syndrome (995.9), which can contrib-
ute to a prolonged length of stay and increased mortality. Also, the most frequent diagnoses in this cluster, like 
hypertension, acute atrial fibrillation, diabetes mellitus, or acute kidney failure, occur less frequently than in 
other clusters. Concerning the performed procedures, it can be assumed that a relevant proportion of patients 
were treated with a cardiac catheterization partly with the insertion of one or more stents into the coronary 
arteries (36.0, 36.06, 36.07, 37.22, 37.23, 88.53, 88.56). Although the absolute counts for the single interventions 
are quite low, they are significantly enriched in this cluster. For instance, the procedure “removal of coronary 
artery obstruction and insertion of stent(s)” (36.0) was conducted in 7.4% of the cluster patients but more than 
six times more frequent ( +639.8% ) than in the other clusters.

The patients in Cluster 4 have the lowest mortality of all clusters ( 2.9% ). The median age is two years lower 
than within the population (64y vs. 66y), and the cluster has a slight male predominance. In the synopsis of 
procedures and diagnoses, it becomes clear that this cluster consists of patients who underwent a cardiac pro-
cedure, partly interventional, partly surgical. Thus, codes representing different kinds of cardiac catheterization 
are highly enriched (88.53, 37.22, 88.56, 37.23). Surprisingly, procedures with stent implantation (36.0, 36.06, 
36.07) are underrepresented in this cluster. Additionally, different procedures of cardiac surgery, like coronary 
artery bypass surgery (36.12, 36.13, 36.11, 36.15) or heart valve replacement (35.21) are highly enriched, with 
an up to 5.6-fold higher probability in this cluster. Also, procedures that are typically associated with cardiac 
surgery are highly enriched, like extracorporeal circulation during surgery (39.61), cardiac ultrasound (88.72), 
transfusion of different blood products (99.04, 99.05, 99.07) or short-term mechanical ventilation (96.71). This 
interpretation is supported by the clear enrichment of diagnoses that affect the coronary arteries (411.1, 413.9, 

Primary cluster name Descriptive statistics Prevalent diagnoses Enriched diagnoses Prevalent procedures Enriched procedures

Cluster 6

N = 5004
43.9% female
Age: 67 years (53, 78)
ICU stay
- all: 9 days (4, 17)
- survivors: 12 days (6, 22)
- deceased: 5 days (2, 10)
28-day mortality: 37.0%

+ 518.8 Other disease of lung 
(47.3%, +189.0%),
− 401.9 - Unspecified essen-
tial hypertension (34.5%, 
-18.1%),
+ 428.0 - Congestive heart 
failure, unspecified (30.2%, 
+17.3%),
∼ 427.3 Atrial fibrillation and 
flutter (29.2%, +10.8%),
+ 584.9 - Acute kidney 
failure, unspecified (21.0%, 
+16.8%),
+ 507.0 - Pneumonitis due to 
inhalation of food or vomitus 
(18.3%,
+200.6%),
∼ 250.0 Diabetes mellitus 
without mention of compli-
cation or
manifestation classifiable to 
250.1-250.9 (18.2%, -8.4%),
+ 785.5 Shock without 
mention of trauma (18.1%, 
+141.4%),
+ 995.9 Systemic inflam-
matory response syndrome 
(SIRS) (17.8%,
+78.0%),
− 414.0 Coronary atheroscle-
rosis (17.1%, -41.2%),
+ 599.0 - Urinary tract 
infection, site not specified 
(15.8%,
+23.3%),
+ 518.5 Pulmonary insuffi-
ciency following trauma and 
surgery (15.7%,
+470.7%),
+ 486 Pneumonia, organism 
unspecified (15.6%, +75.9%)

+ 518.8 Other disease of lung 
(47.3%, +189.0%),
+ 518.5 Pulmonary insuffi-
ciency following trauma and 
surgery (15.7%,
+470.7%),
− 272.4 - Other and unspeci-
fied hyperlipidemia (5.0%, 
-73.6%),
+ 482.4 Pneumonia due 
to Staphylococcus (8.5%, 
+600.8%),
+ 507.0 - Pneumonitis due to 
inhalation of food or vomitus 
(18.3%,
+200.6%),
+ 785.5 Shock without 
mention of trauma (18.1%, 
+141.4%),
+ 038.9 - Unspecified septice-
mia (15.1%, +129.1%),
+ 427.5 - Cardiac arrest 
(7.7%, +252.8%),
− 414.0 Coronary atheroscle-
rosis (17.1%, -41.2%),
+ 584.5 - Acute kidney 
failure with lesion of tubular 
necrosis
(10.3%, +162.0%),
− 530.8 Other specified 
disorders of esophagus (5.8%, 
-58.7%),
− V49.8 Other specified 
conditions influencing health 
status (0.2%,
-95.3%),
+ 995.9 Systemic inflam-
matory response syndrome 
(SIRS) (17.8%,
+78.0%)

+ 96.04 - Insertion of 
endotracheal tube (56.9%, 
+355.1%),
+ 96.72 - Continuous inva-
sive mechanical ventilation 
for 96
consecutive hours or more 
(54.1%, +751.5%),
+ 38.93 - Venous catheteriza-
tion, not elsewhere classified 
(52.2%,
+136.1%),
+ 96.6 - Enteral infusion of 
concentrated nutritional 
substances
(51.5%, +376.6%),
+ 96.71 - Continuous inva-
sive mechanical ventilation 
for less than
96 consecutive hours (29.3%, 
+109.1%),
+ 99.04 - Transfusion 
of packed cells (27.3%, 
+121.7%),
+ 38.91 - Arterial catheteriza-
tion (23.1%, +224.9%),
+ 31.1 - Temporary tracheos-
tomy (18.7%, +947.0%),
+ 99.15 - Parenteral infusion 
of concentrated nutritional 
substances
(18.2%, +299.9%),
+ 33.24 - Closed [endo-
scopic] biopsy of bronchus 
(14.4%, +236.0%),
+ 43.11 - Percutaneous 
[endoscopic] gastrostomy 
[PEG] (13.2%,
+614.7%),
+ 99.07 - Transfusion of other 
serum (10.4%, +219.5%),
+ 88.72 - Diagnostic 
ultrasound of heart (10.4%, 
+67.4%)

+ 38.93 - Venous catheteriza-
tion, not elsewhere classified 
(52.2%,
+136.1%),
+ 31.1 - Temporary tracheos-
tomy (18.7%, +947.0%),
+ 96.72 - Continuous inva-
sive mechanical ventilation 
for 96
consecutive hours or more 
(54.1%, +751.5%),
+ 96.04 - Insertion of 
endotracheal tube (56.9%, 
+355.1%),
+ 96.6 - Enteral infusion of 
concentrated nutritional 
substances
(51.5%, +376.6%),
+ 43.11 - Percutaneous 
[endoscopic] gastrostomy 
[PEG] (13.2%,
+614.7%),
+ 38.91 - Arterial catheteri-
zation (23.1%, +224.9%),
+ 99.15 - Parenteral infusion 
of concentrated nutritional 
substances
(18.2%, +299.9%),
+ 99.04 - Transfusion 
of packed cells (27.3%, 
+121.7%),
+ 96.71 - Continuous inva-
sive mechanical ventilation 
for less than
96 consecutive hours (29.3%, 
+109.1%),
+ 33.24 - Closed [endo-
scopic] biopsy of bronchus 
(14.4%, +236.0%),
+ 00.17 - Infusion of 
vasopressor agent (7.1%, 
+574.6%),
+ 89.64 - Pulmonary artery 
wedge monitoring (7.5%, 
+389.8%)

Table 2.  Primary clustering results.  Large differences between the clusters in terms of age distribution, length 
of ICU stay, and mortality can be observed. Distributions of ICD-9 diagnoses vary strongly between clusters. 
(For information about the population, please refer to Table 1).
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414.0, 410.7) or the heart valves (424.0, 424.1). Procedures that occur in the context of cardiac surgery, but 
indicate the occurrence of surgery-related complications, like a temporal tracheostomy (31.1) or hemodialysis 
(39.95), occur significantly less in this cluster. Due to the very low mortality, it can be assumed that the patients 
in this cluster develop serious complications only to a minimal extent.

Although similar in biometric features compared to previous clusters, the patients in Cluster 5, the smallest 
cluster with 3119 admissions, exhibit a relevantly increased mortality ( 34.1% ). There are prevalent diagnoses 
associated with sepsis, a life-threatening condition that arises when the body’s response to infection damages 
its tissues and organs. In the enrichment analysis, there are almost exclusively diagnoses representing the sepsis 
itself (038.9, 038.4) or its symptoms, like systemic inflammatory response syndrome or fever (995.9, 780.6), their 
triggering infectious conditions, like pneumonia (486), and finally its complications, like shock, acidosis, acute 
kidney failure or thrombocytopenia (785.5, 276.2, 584.9, 287.5). Also highly enriched is iatrogenic immuno-
suppression through immunosuppressive or antineoplastic drugs (E933.1), which increases the risk for sepsis. 
Moving beyond the enriched diagnoses listed in Table 2, there is a multitude of additional sepsis triggers, like 
intestinal infection (008.4), aspirational pneumonitis (507.0), urinary tract infection (599.0) or infection of an 
internal prosthetic device, implant, or graft (996.6). The cornerstone of sepsis therapy consists of sufficient intra-
venous fluid replacement and therapy with broad-spectrum antibiotics. If a focus of infection is evident, it needs 
to be controlled, usually by draining the infectious fluids. Such a measure of focus control is the percutaneous 
abdominal drainage (54.91), which is enriched in this cluster. Apart from that, only a few interventions occur 
more frequently in this cluster than in its complement. Among them, there are central venous catheterizations 
for fluid replacement (38.97, 38.93), arterial catheterizations (38.91), and measures to treat organ dysfunctions, 
like mechanical ventilation (86.04, 96.71, 96.72), hemodialysis (38.95, 39.95) and administration of vasopressive 
agents (00.17).

Finally, Cluster 6 represents the cluster with the highest mortality of 37.0% , which is almost three times as 
high as within the total population. Moreover, it is the cluster with by far the most extended treatment duration 
in the ICU, namely 9 days in the median. The patients exhibit a clear gap in the length of stay between survivors 
and deceased patients (12 days vs. 9 days), indicating a prolonged recovery time if a life-threatening condition 
was survived. In the list of the most prevalent diagnosis as well as in the list of enriched diagnoses, lung-related 
problems, such as pneumonia/pneumonitis (507.0, 482.4, 486) or pulmonary insufficiency (518.5), are dominant. 
The most prevalent and most enriched diagnosis “518.8 - Other diseases of the lung” ( 47.3% , +189.0% ) contains 
different forms of acute and chronic respiratory failures, but also the acute respiratory distress syndrome (ARDS), 

Figure 4.  Distribution of ICD categories within the primary clustering ( k = 6 ). For each clustering, we 
examine every diagnosis code assigned to any patient and count it towards the ICD group to which it belongs. 
Every diagnosis is counted, even if a single admission exhibits multiple diagnoses from the same ICD category. 
Clusters 1 and 2 appear very similar concerning ICD categories; they differ more strongly on lower levels of 
the ICD tree. Cluster 4 has the highest fraction of heart-related diagnoses, while Cluster 6 contains the most 
injuries. Note that total diagnosis counts are different between clusters, but the bars in the figure are normalized 
to the same length to enable an easier comparison.
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a syndrome with a mortality up to 40% , which does not yet have a specific code in ICD-9. This clear focus on 
pulmonary diseases also results in an extraordinarily high rate of patients requiring mechanical ventilation, 
which applies to 84.4% of patients (96.71 - 29.3% and 96.72 - 54.1% ). Not only pulmonary diseases but also other 
severe conditions requiring mechanical ventilation, such as sepsis (038.9, 995.9), shock (785.5) and congestive 

Figure 5.  Differences of distribution of ICD categories within the primary clustering ( k = 6 ). For every ICD 
category, we measure the frequency within the entire population (denoted in parentheses after the category 
name) and then plot the difference in frequency in different clusters compared to the population frequency. 
Categories are sorted by the magnitude of the largest difference found within any clusters for the category. Note 
that since patients may have many diagnoses, clusters can have a higher frequency than the population for many 
categories (e.g. Cluster 5).
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heart failure (428.0), occur more frequently in this cluster. The corresponding procedures are suggestive for 
patients with a long-term critical status requiring interventions according to the circumstances. These measures 
were carried out almost exclusively on patients in this cluster, resulting in substantial enrichment metrics. For 
instance, a percutaneous gastrostomy (43.11) for a long-term nutrition of a patient is carried out in 13.2% of the 
patients in Cluster 6, while this applies to 1.9% of the remaining clusters only. Similar rates can be found for a 
temporal tracheostomy (31.1) ( 18.7% in Cluster 6 vs. 1.8% in clusters 1 to 5), resulting in a nearly 10-fold higher 
proportion. Additionally, other strongly enriched interventions, like enteral or parenteral nutrition (96.6, 99.15), 
transfusion of different blood products (99.05, 99.07, 99.04), application of vasopressors (00.17) give a strong 
indication of the critical status of the patients and requirement of long-term treatment in this cluster, since these 
measures would usually not be necessary for a less severely affected population.

In summary, we performed two clusterings: A coarse clustering with 2 clusters and a finer one with 6 clusters. 
The coarse clustering already shows clear differences in mortality and diagnosis distribution, especially regarding 
specific diagnoses as opposed to ICD categories. The primary clustering shows more homogeneous groups of 
patients with different disease patterns, such as severe lung problems, sepsis, or heart disease.

Discussion
In this work, we developed an autoencoder model trained on dynamic clinical data with time as an additional 
input. Using positional encodings inspired by Vaswani et al.27 to express time allowed the model to reconstruct 
the time series without relying on a temporal grid of fixed size, resulting in an 18% reduction in reconstruction 
error when compared with a simple time representation. Note that the positional encodings do not add any 
information not already available to the model since the time is also supplied as the number of minutes since 
the start of the admission. However, the positional encodings are a representation of time that is more intuitive 
for the GRU model to learn and reason with, and thus leads to better reconstruction than just expressing time 
in minutes. Our finding demonstrates that representations can be powerful tools to augment the capabilities of 
machine learning models.

By clustering on the learned feature space at multiple scales, we were able to identify clinically meaningful 
clusters: They exhibit patterns also observed in clinical practice, such as sepsis or severe lung problems. These 
patterns observed in ICD diagnoses were learned without giving the model access to the diagnoses.

However, the discovered clusters are not pure, i.e., there are no clusters that only contain a single disease 
class. Additionally, we only include the 75 dynamic data attributes measured for at least 50% of the population, 
so many laboratory results used in clinical practice (especially those that make up the “long tail” of rare attrib-
utes) are not accessible to our model, even though these could be extremely informative. Another limitation 
is that the model sometimes fails to capture the temporal characteristics of time series (for examples, see our 
supplementary materials).

Due to the advantage of being able to deal with longitudinal data, we chose an autoencoder to examine the 
database for meaningful clusters. We focused on dynamic patient data supplemented with a minimum of static 
data like sex and age.

The outcome of a clustering analysis critically depends on the number of clusters sought. While data-driven 
approaches, such as scree plots or silhouette score, can already supply valuable information, in medicine, it is 
essential to integrate expert knowledge into the interpretation of the results. In our work, we used two cluster-
ings, a coarse clustering with two clusters and a more detailed one with six clusters. Even in the two-cluster 
approach, there is a distinct separation of two patient groups, showing a relevantly diverging outcome with a 
more than three-fold increased mortality in one cluster compared to the other. However, a medical interpreta-
tion of the two clusters is difficult since clear diagnosis pattern groups did not emerge. This significantly changes 
when increasing the granularity of the clustering to six clusters. Two clusters (3 and 4) stand out at first sight 
due to their strongly decreased mortality. In Cluster 3, the predominant procedure was a cardiac catheteriza-
tion; the patients undergoing this procedure were relatively young, exhibited less concomitant diseases, and did 
not develop complications to a relevant extent. Cluster 4, in contrast, contains mainly cardiac surgery patients. 
Examining the description of the MIMIC-III dataset, it stands out that two organizational units are not defined 
as intensive care units, namely the Coronary Care Unit and the Cardiac Surgery Recovery Unit. It would be 
conclusive that the patients from these two clusters who showed more or less unremarkable hospital stays were 
treated on these wards presumably designed for lighter cases. In addition, we note that the above-mentioned 
cardiac interventions, in the absence of more severe complications, have a very uniform  course28 so that the “typi-
cal courses” are also reflected in the data and therefore facilitate the formation of a cluster. Cluster 5, however, 
seems to form a homogeneous group of patients suffering from sepsis. This disease affects virtually all organs 
due to the dysregulated immune response to an infectious agent. Due to that, acute failure of the organs such as 
kidney, bone marrow (as thrombocytopenia), blood vessels (as septic shock), liver, and dysregulation of electro-
lytes are much more frequent in this cluster than in the  others29. Additionally, all possible focuses of infections 
(lung, urinary tract, intestines, implants) are more prevalent in Cluster 5 than in its complement. Cluster 6, 
finally, appears to have distinctly unique characteristics, with a significantly prolonged ICU stay and the highest 
mortality of all clusters. This feature seems to be associated with a need for mechanical ventilation due to various 
conditions in the vast majority of patients. The common feature of patients in this cluster is not a pulmonary 
pathology but the requirement for mechanical ventilation itself. Of course, there is a clear predominance of 
lung-related diagnoses in this cluster, but there are, in the same way, diagnoses that lead to ventilation due to 
other reasons. For instance, patients with the neurological diagnoses “Intracerebral hemorrhage” and “convul-
sions”, and patients after cardiac arrest, which can result in severe brain damage, are significantly enriched in this 
cluster. These neurological causes can lead to impaired consciousness, lack of protective reflexes, or impaired 
respiratory drive, so it may be necessary to definitively secure the airway and provide sustained ventilation to the 
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patient. But also sepsis-related diagnoses are present in this cluster, whose treatment can be very lengthy. These 
considerations can explain this cluster’s extended length of stay compared to the remaining ones. Additionally, 
we observe strong enrichment of procedures typically found in patients requiring long-term medical care, like 
a temporary tracheostomy, percutaneous endoscopic gastrostomy (PEG), or enteral or parenteral nutrition via 
infused  substances30,31. While the four clusters discussed previously can be reasonably interpreted with medical 
background knowledge, an interpretation of clusters 1 and 2 is more challenging. While clusters 5 and 6, for 
example, can be identified with a specific keyword, namely “sepsis” and “mechanical ventilation,” no such clear 
picture emerges in the first two clusters. Looking at the enriched diagnoses, it is eye-catching that most of them 
have clear sex-specific  imbalances32, resulting in diagnoses typical for male or female patients heading the list 
of enriched diagnoses. In contrast, the absolute prevalences of diagnoses are similar to the diagnosis list of the 
total population and differ only slightly due to sex-related differences in diseases. Thus, it has to be at least con-
sidered that clusters 1 and 2 actually form one cluster, which is divided only by the sex of patients, which is part 
of the input data of the model. The diagnoses contain a common spectrum of cardiovascular diseases, which is 
barely surprising since nearly half of all U.S. adults have some cardiovascular  disease33. In the MIMIC-III data 
set, two of the three top admission diagnoses are cardiovascular diseases, namely “Coronary atherosclerosis” 
(414.01) and “Subendocardial infarction” (410.71). Additionally, the performed procedures do not give a clear 
picture of a specific therapeutic approach for a particular type of patient or disease but represent more or less 
typical procedures of intensive care medicine. The same applies to the enriched procedures with only placement 
of a central venous catheter being enriched, which might be due to the lack of this procedure in the less severely 
affected patients in clusters 3 and 4. We summarize that our method can identify clusters with very distinct fea-
tures, such as patients that only need to undergo an observation without the need for more invasive procedures 
or patients that suffer from certain diseases that strongly impact their treatment in a very special way. A very 
relevant question is the appropriate number of clusters: A higher granularity of clusters might have also identified 
more specialized patient groups with, e.g., more precise patterns. However, it could also create more artificial 
clusters that are not usefully interpretable from a medical point of view.

Another interesting result of our work is that the reconstruction quality decreases with the severity of diseases 
in patients (see Fig. 2). The reasons for this finding still need to be fully understood. A possible explanation 
for this may be that lab results and vital parameters may be outside of normal ranges for critically ill patients, 
resulting in fewer training examples for these cases. However, it is also possible that professionals have to correct 
deregulated physiological functions of these highly sick patients through external interventions, such as increas-
ing their blood pressure by infusing vasopressive agents. Such a nurse-patient feedback control system can never 
be as precise and smooth as the physiological internal feedback systems. Ultimately, the reason for this pattern 
in the data needs to undergo further investigation.

The treatment of intensive care patients is a very demanding task for physicians and nurses. In a still widely 
“analog” process, a vast amount of data points containing information like vital parameters, laboratory test 
results, blood gas analyses, in addition to results from physical examinations have to be evaluated and classified 
for their relevance. This mosaic of data and information has to be correctly interpreted to discover critical situ-
ations early, allowing a timely treatment. This task can lead to cognitive overload among healthcare workers in 
intensive care  units34. Compared to the limited capability of working with multidimensional data of a human 
brain, a computer-based model is able to handle a multitude of data easily. Dimensionality reduction techniques 
like autoencoders might be helpful in intensive care settings as well. They could help to recognize minuscule 
changes in multiple parameters that would frequently escape the healthcare professionals’ attention, but indicate 
the onset of a severe condition such as sepsis, whose early recognition can be life-saving. The advantage of our 
method is that, independent of labeling by a medical expert, the structured data already available in electronic 
health records may be sufficient to detect critical diseases by placing a patient into a certain cluster in the feature 
space of the autoencoder. To enable such use, experiments regarding the method’s behaviour on incomplete time 
series would have to be performed.

We welcome more research on unsupervised machine learning in the clinical domain. To improve repro-
ducibility and to facilitate research in this crucial area, we release the code for our method as open source. 
While supervised methods and tasks are vital tools, unsupervised methods could be more suited for answering 
open-ended questions, such as the discovery of so far unknown disease patterns. However, it is noteworthy that 
while the method itself is unsupervised, the method of data collection, namely, everyday clinical practice is not 
unsupervised. The caregivers’ actions are always part of the data, even if they are not explicitly used as input for 
a model.

There are many possible avenues for future work: using more of the available dynamic data attributes, an 
examination of the geometry within the learned feature space, experiments into the relationship between mor-
tality and model performance, or a more in-depth medical and clinical analysis of clusters, especially within a 
clustering hierarchy. The model and method could also be extended using deep-embedded  clustering35 or an 
attention  mechanism27. Finally, future work could also focus on modifying the proposed method for prognosis 
or risk stratification.

Methods
In this section, we present our method for clustering ICU admissions: starting with the input dataset, we then 
outline the data processing pipeline of our method and show our deep neural network model. Finally, we examine 
the training scheme and clustering method.

Data. MIMIC  III36 is a monocentric database for critical care information, including nurse-verified vital 
signs, medication administrations, laboratory results, final diagnoses, and other information routinely assessed 
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in ICUs. It contains the medical information of around 60 thousand unique ICU admissions of patients admitted 
to the Beth Israel Deaconess Medical Center in Boston. The ICU was divided into five subsections focusing on 
different types of patients: 1. Coronary Care Unit, 2. Cardiac Surgery Recovery Unit, 3. Medical Intensive Care 
Unit, 4. Surgical Intensive Care Unit, and 5. Trauma Surgical Intensive Care Unit.

Some types of data do not have a timestamp associated with them, those we call static; others are dynamic and 
may change over time. A patient’s age, sex, or even the diagnoses given by clinicians are static data in MIMIC, 
while the heart rate, blood pressure, or laboratory results are timestamped and thus dynamic. MIMIC’s public 
availability has made it a popular dataset for scientific research. This also increases the reproducibility of experi-
ments conducted on the data.

Admission selection. Neonates and adults have significantly different medical profiles (e.g. heart rate is much 
higher in neonates) and receive vastly different care. Thus, neonates and adult ICU patients constitute disparate 
sets within the population. For this reason, we only include patients aged 22 and up in our study. The age of 22 
was chosen because it marks the age at which the FDA classifies patients as  adults37.

We also exclude admissions that do not have any dynamic data. This results in a total of 49599 admissions 
for our study (out of the about 60 thousand admissions in MIMIC III). All further statements about the data 
are based on this selection.

Note that if a single patient has multiple admissions, they are counted as two distinct admissions. This allows 
our method to examine these admissions in separation (and, more importantly, no admission is discarded).

Static data. We include two attributes of static data in the input for our model: the patients’ age in years and 
their sex. The age is expressed as a floating point number, i.e,. 65.5 means 65 years and 6 months. Our cohort’s 
median age is 66 years (IQR: 53–78 years). 43.8% of the admitted patients are female. The patient’s sex is expressed 
as an integer index (0 or 1). Our system is designed to smoothly support other attributes of static data, either 
numerical (like age) or categorical (like sex).

Except for age and sex, all other static information, like the in-hospital survival of individual admissions is 
hidden from the model and only used for evaluating the final clusterings.

Number of observations. The number of observations (i.e., data points) varies strongly between admissions, 
with a median of 422 (IQR: 210–849) and a mean of 818 observations. The minimum and maximum number of 
observations for an admission are 1 and 48583, respectively.

Data preprocessing. Since attributes in MIMIC-III are distributed over multiple databases internally, there exist 
a large number of labeling conflicts, both in the sense that different attributes are given the same label, as well as 
different labels being given to attributes that refer to the same kind of measurement. In some cases, even single 
time series are split between attributes, e.g., for ‘Heart Rate,‘ both the attribute ‘220045‘ and the attribute ‘211‘ 
contain parts of the time series in a single admission. Other attributes, however, are assigned the same label 
even though they refer to different types of data (e.g., for ‘pH,‘ where attributes are measured in different bodily 
fluids). We identified 119 such label collisions and resolve them either via fusing the attributes (if they measure 
the same concept from the same fluid) or split them (if they originate from different fluids or exhibit different 
data distributions). For details on data preprocessing, as well as a table of label collisions, please refer to our sup-
plementary materials.

Data attribute distribution. Not a single attribute of dynamic data is available for every admission. There are 
17 attributes that have observations for at least 99% of the admissions: Hematocrit, Creatinine, Urea Nitrogen, 
Platelet Count, White Blood Cells, Hemoglobin, MCHC, MCH, MCV, Red Blood Cells, RDW, Potassium, Sodium, 
Chloride, Bicarbonate, Glucose, and Anion Gap are all results of blood or urine tests. However, the number of dis-
tinct attributes quickly increases when lowering the minimum requirement for support: There are 23 attributes 
at 75% , 73 attributes at 50% , 244 attributes at 25% and 812 attributes at 1% . In total, there are 3106 attributes. This 
distribution of attribute frequency demonstrates a fundamental problem in clinical data analysis: an overwhelm-
ing majority of attributes are only available for a minority of admissions. Due to constraints in compute, we use 
as input for our model only the 75 attributes with a minimal support of 50% . Our method learns to model the 
temporal characteristics of all of an admission’s time series (up to 75) through a single point in the feature space. 
In addition to the two static data attributes, this results in 77 data attributes as input to our model.

Pipeline. The method consists of four steps: preprocessing, training, clustering, and evaluation, which are 
summarized in Fig. 6. Preprocessing is performed using scikit-learn38 and  NumPy39 on both static and dynamic 
data. The available admissions are split into a training set ( 90%) and a validation set ( 10%) to assess model training 
and generalization. The split is determined randomly. We scale the input data using quantile  transformation38, 
which is more robust to outliers than z-score transformation. First, each data point is mapped to its quantile, 
resulting in a uniform distribution. Then, the percent-point function (quantile function) is applied, which gives 
the data a normal distribution with zero mean and unit variance. This is performed for each input feature sepa-
rately. The normalization is first fit on the training set and then applied to the complete data so that the normali-
zation is not biased concerning the validation set.

In dynamic data, time is represented as the number of minutes that have passed since the beginning of the 
admission. Inspired by Vaswani et al.27, we concatenate onto our dynamic data matrices 64 positional encod-
ing features to express time in addition to a “flat” representation. The positional encodings follow the concept 
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outlined by Vaswani et al. by using sines and cosines alternatingly and with increasing frequencies. This encoding 
allows the model to learn both relative and absolute times. Since we also keep the normalized time in minutes, 
this results in 65 temporal features. To test the influence of positional encodings on reconstruction loss, we per-
formed an experiment in which we trained multiple models on 1000 admissions that were randomly sampled 
for each model. The models using positional encodings achieved, on average, a reconstruction loss of 18% lower 
than those using a flat time representation.

Since each observation of dynamic data is associated with a point in time in such a way, this representation 
allows the neural network model to learn how patient conditions may change over time in absolute terms, allow-
ing it to compare, e.g., how much time passes within an hour or within a week.

We interpolate between any two measurements with missing time points in between. The interpolation is 
performed linearly with regard to the time of measurement. Features without any measurements for an admis-
sion are set to the median of the respective attribute. The median is calculated on the train split. Note that we do 
not re-sample the time series to any grid of fixed step size.

After preprocessing, the model is trained using the training data, and its progress is assessed after each epoch 
using the validation set. The main product of the training process is a feature space (discussed in more detail 
in the “Model” section) in which each admission is assigned a feature vector of fixed size, allowing them to be 
clustered using traditional clustering algorithms within the feature space. Due to randomness in the clustering 
algorithm, clustering multiple times can result in multiple different clusterings. Each of the produced clusterings 
is ensured to be robust against minor changes in the input data to improve the robustness of the overall method 
(see  “Clustering” section). Note that the different clusterings are not competing but complement each other to 
facilitate a more comprehensive understanding of the underlying clinical data. Finally, the clusterings are evalu-
ated, e.g., by analyzing patterns of diagnoses that often co-occur within a cluster.

Diagnoses (in the form of ICD-9 codes) provide insight into the diseases and conditions present in clusters. In 
order to quantify the notion of diagnoses frequently occurring in clusters, we employ the FP-Max  algorithm40,41 to 
mine frequent itemsets of diagnoses. Fisher’s exact  test38,42 is used to determine if itemsets are positively enriched 
(i.e., more frequent in the cluster than in the complement), negatively enriched (more frequent in complement), 
or not enriched. To account for multiple testing, we use Bonferroni  correction43. The alpha level of α = 0.01 is 
thus divided by the number of tests nt = nis · nc , where nis is the number of distinct itemsets found, and nc is 
the number of clusters within the clustering. Bonferroni correction is performed separately for each clustering.

Model. Our model follows the design philosophy of  autoencoders44, which consist of an encoder and a 
decoder part. Both parts are trained jointly: The encoder learns to compress the high-dimensional input data in 
such a way that the decoder is able to unpack the compressed representation (the feature space) into the original 
data again. This compression is lossy, which allows the feature space to capture structure and regularities in the 
input data. In particular, our model is designed to be able to compress time series of clinical data, the challenge of 
which lies in producing a feature space without explicit time dependence that yet contains temporal information 
about the progression of conditions and diseases.

Dynamic autoencoder. As illustrated in Fig. 7, the model comprises two parts: dynamic data encoding and 
decoding, which are trained jointly.

Dynamic data is presented to the model as a matrix whose rows correspond to time steps and columns to 
input features. Static data (age, sex) is included in each admission’s matrix as a value that repeats for each time 
step. Thus, the input to the model is a multivariate time series for each admission.

The most important building block for the model architecture is the GRU 45 block, consisting of two GRU 
layers: one reads the input forward and one backward. To improve training stability, we use non-recurrent 
Dropout  regularization46 in the GRU layers. The resulting two different temporal features are summed for each 
time step, and we apply layer  normalization47. Both the encoder and the decoder use a GRU block, but they do 
not share weights.

Within the encoder, the features in the GRU block’s output are averaged over time and processed using a 
dense layer, resulting in a tensor with a single time step called the bottleneck. The bottleneck is named as such 

Figure 6.  Data processing pipeline. First, medical data is extracted from MIMIC, converted into a format 
suitable for training the model, and normalized. In the second step, the deep autoencoder model is trained, and 
a feature vector for each admission is computed. Step 3 is clustering, which first generates clustering candidates 
through the application of standard clustering algorithms and then ensures the robustness of each clustering 
using a bootstrapping process. Clusterings that are not robust are filtered out. Finally, the clusterings are 
evaluated by creating plots, performing statistical tests, and mining frequent ICD codes.
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because it represents a dimensionally narrow step in the computation. Clustering is later performed based on 
the contents of the bottleneck, which serves as a feature space.

In the decoder, the bottleneck is repeated in time, so it has the same number of time steps as the input. Then, 
the original input’s temporal features are appended. This step is necessary because time is not sampled on a regu-
lar grid. If the temporal features were not available in the decoder, it would not be able to reconstruct the original 
time series. A GRU block is then used to uncover temporal behaviors, and a dense layer is applied at each time 
step in separation. The final output is the reconstructed version of the original time series. The model is trained 
to make the reconstruction resemble the original multivariate time series as much as possible.

For clustering, the output of the bottleneck is used as a feature space. It carries the information about the 
admission that the encoder uses to reconstruct the original time series.

Training. We train our model in  Keras48 using the Adam  optimizer49 with a learning rate of 0.00075 and 
Huber loss with a delta of 1.0. We clip gradient norms to 1 during training. Training is terminated using early 
stopping with a patience of 8 epochs with respect to the validation loss. We did not observe overfitting: in our 
final model, the validation loss is slightly lower than the training loss.

Mini batches of size 4 (i.e., four admissions) are assembled by padding shorter admissions to the length of 
the longest admission in the batch. We employ a masking layer so that our loss and model ignores the padding. 
Small batch sizes lead to faster convergence for our method.

In addition to the Dropout regularization that is part of the GRU blocks, we add Gaussian noise to the input 
time series (only the dynamic features, not the temporal features). Note that noise is not added to the prediction 
target. This functions as a form of data augmentation.

The training of the model with 497588 parameters for 24 epochs takes 1 day and 17 hours on a high-memory 
CPU machine. After training is complete, we compute the feature space using an encoder variant of the model 
that shares weights with the trained autoencoder model but ends after the bottleneck layer.

Random architecture search. In order to find good values for the model’s hyperparameters (e.g., layer dimen-
sions, RNN type, batch size), it needs to be trained with each combination to determine its performance. How-
ever, an exhaustive search would be prohibitively expensive. Both grid and random searches are particularly 
suited for training in parallel since the hyperparameter configurations do not depend on previous runs. How-

Figure 7.  Neural network model. The model consists of an encoder and a decoder part, but these parts are 
trained jointly. Neural network layers are shown using green boxes with round corners; blue boxes represent 
tensors, and vector operations like concatenation are shown as yellow boxes with dashed lines. The GRU block 
is part of the encoder and the decoder and consists of a bidirectional GRU layer, whose outputs are summed 
for each time step. In the encoder, the resulting features are average pooled over time and then processed 
using a dense layer, resulting in the encoder’s output: the bottleneck. The decoder repeats the low-dimensional 
representation in time and concatenates it with the original input’s time features. The same GRU block 
architecture as for the encoder is used to calculate the temporal dynamics of the time series. Weights are not 
shared between the two GRU blocks in the model. As a final step, a dense layer is applied to each time step to 
reconstruct the original features. The model is trained to predict its original input.
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ever, random searches have been shown to be more sample-efficient50,51 at finding well-performing hyperpa-
rameter combinations than grid searches. Our strategy for finding reasonable hyperparameters was to perform 
random searches on a reduced number of admissions (1000) to gain intuition about the influence of specific 
hyperparameters. Using this strategy to narrow the search space iteratively allowed us to arrive at the final model 
presented in this work without performing an exhaustive search over hyperparameter combinations. The final 
hyperparameters of the model are listed in Table 3.

The number of dimensions in the bottleneck is of particular interest since it determines the upper limit of 
information expressed in the feature space. We carried out an experiment to determine the optimal number of 
bottleneck dimensions (see Fig. 8). We kept all hyperparameters except for the bottleneck size fixed and trained 
runs with 1000 admissions randomly sampled each time. As a compromise between preserving information 
(where a higher dimensionality would be preferable) and dimensionality reduction (a lower dimensionality would 
be preferable), we chose 46 dimensions since this is the smallest number of dimensions that allows reconstruction 
on par with the best possible reconstruction.

Clustering. Clustering is performed on the 46-dimensional feature space engineered using the autoencoder 
model. Since the MIMIC dataset is very heterogeneous in terms of demographics, conditions, and diseases, 
there does not exist a clustering that would reveal every pattern there is in the data. Thus, our goal is to find 
multiple clusterings that are not competing explanations of the data but complement each other to form a more 
comprehensive picture. We cluster using the k-medoids  algorithm38, which has been shown to be more robust to 
outliers than k-means52. For k-medoids, we utilize the k-medoids++ initialization. We examine the clustering 
results using descriptive statistics of the clusters. These statistics assess the mortality within the clusters, the age 
distribution, and diagnoses often occurring within a cluster.

Robustness To improve the stability of clustering results, we employ the k-medoids++ initialization 
 method38,53. Nonetheless, clustering the same data twice can sometimes lead to entirely different results, and it 
is then unclear which of the two groupings is to be trusted. To alleviate this problem, we aim to ensure robust 
clusters using a bootstrapping method.

We perform clustering on all admissions for different k for k-medoids and then remove trivial clusterings, i.e., 
those that only contain a single cluster or those where the largest cluster contains more than 90% of admissions. 
Afterward, we are left with nc clusters. The same clustering procedure is applied to nb = 10 different bootstrapped 
versions of the feature space, where 70% of the data is randomly sampled without repetition. If we find clusterings 

Table 3.  Model hyperparameter values. The values are the result of an iterative search process, where ranges of 
well-performing values are successively made smaller.

Hyperparameter name Value

GRU size 158

Bottleneck size 46

Non-recurrent dropout 26.7%

Non-recurrent activation ELU

Gaussian noise sigma 0.0573

Figure 8.  Bottleneck size experiment. Reconstruction loss decreases with increasing size of the bottleneck. 
However, once a certain threshold of dimensions is reached (at 46 dimensions), the loss stops improving rapidly 
and only slowly decreases when adding more dimensions to the bottleneck. In red, we show a polynomial of 
degree 4 that was fit on the data for illustrative purposes. Note that odd bottleneck sizes are rounded up (e.g., 45 
becomes 46) to create an even-dimensional feature space for downstream tasks.
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similar to the respective clusterings in each bootstrapped version of the data, those clusterings can be considered 
robust regarding variations in the input data.

We use three metrics for measuring cluster similarity: mutual information, Rand Index, and Jaccard  index38 
denoted with simh for h ∈ 1, 2, 3 . Every metric is implemented to be invariant to differences in label literals, e.g., 
the labeling [0, 0, 1, 1] would be identical to the labeling [1, 1, 0, 0]. We use these metrics to 
quantify the similarity between each full data clustering Cf ,i for i ∈ [1, nc] and each corresponding bootstrapped 
clustering Cbj ,i for j ∈ [1, nb] . The metric is only applied to admissions present in each of the bootstrapped 
clusterings, respectively. For each full clustering Cf ,i and similarity metric simh , we calculate a lower bound on 
the robustness

where P10 denotes the 10th percentile of the similarity values. We also compute a robustness threshold threshi,h , 
calculated as the 90th percentile of similarities between the real cluster labeling and nb shuffled instances of it: 
simh(labi , shuffle(labi)) . The threshold needs to be calculated for every pair of clustering and similarity metric 
because the expected similarity when clustering on a bootstrapped version of the data depends on the cluster 
size distribution and the behavior of the similarity metric. A full data clustering Cf ,i is considered robust if, for 
all similarity metrics simh , it holds that robi,h > threshi,h.

Data availability
The dataset analyzed in this work can be found at https:// mimic. physi onet. org 36. In particular, we analyze the 
MIMIC-III dataset (https:// mimic. mit. edu/ docs/ iii/).
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