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A novel DNA methylation signature 
to improve survival prediction 
of progression‑free survival 
for testicular germ cell tumors
Feng Gao 1,3, Qiaoping Xu 2,3, Yingjun Jiang 1 & Bingjun Lu 1*

This study aimed to develop a nomogram for predicting the progression‑free survival (PFS) 
of testicular germ cell tumors (TGCT) patients based on DNA methylation signature and 
clinicopathological characteristics. The DNA methylation profiles, transcriptome data, and clinical 
information of TGCT patients were obtained from the Cancer Genome Atlas (TCGA) database. 
Univariate Cox, lasso Cox, and stepwise multivariate Cox regression were applied to identify a 
prognostic CpG sites‑derived risk signature. Differential expression analysis, functional enrichment 
analysis, immunoinfiltration analysis, chemotherapy sensitivity analysis, and clinical feature 
correlation analysis were performed to elucidate the differences among risk groups. A prognostic 
nomogram integrating CpG sites‑derived risk signature and clinicopathological features was further 
established and evaluated likewise. A risk score model based on 7 CpG sites was developed and found 
to exhibit significant differences among different survival, staging, radiotherapy, and chemotherapy 
subgroups. There were 1452 differentially expressed genes between the high‑ and low‑risk groups, 
with 666 being higher expressed and 786 being lower expressed. Genes highly expressed were 
significantly enriched in immune‑related biological processes and related to T‑cell differentiation 
pathways; meanwhile, down‑regulated genes were significantly enriched in extracellular matrix tissue 
organization‑related biological processes and involved in multiple signaling pathways such as PI3K‑
AKT. As compared with the low‑risk group, patients in the high‑risk group had decreased lymphocyte 
infiltration (including T‑cell and B‑cell) and increased macrophage infiltration (M2 macrophages). They 
also showed decreased sensitivity to etoposide and bleomycin chemotherapy. Three clusters were 
obtained by consensus clustering analysis based on the 7 CpG sites and showed distinct prognostic 
features, and the risk scores in each cluster were significantly different. Multivariate Cox regression 
analysis found that the risk scores, age, chemotherapy, and staging were independent prognostic 
factors of PFS of TGCT, and the results were used to formulate a nomogram model that was validated 
to have a C‑index of 0.812. Decision curve analysis showed that the nomogram model was superior to 
other strategies in the prediction of PFS of TGCT. In this study, we successfully established CpG sites‑
derived risk signature, which might serve as a useful tool in the prediction of PFS, immunoinfiltration, 
and chemotherapy sensitivity for TGCT patients.

Testicular cancer is the most frequent type of malignancy in young men aged 15–34 years old, while testicular 
germ cell tumors (TGCT) account for 90–95% of all testicular  cancers1. TCGT was histologically divided into 
seminoma and non-seminoma germ cell  tumors2, and non-seminomas consist of either undifferentiated or 
differentiated histologic  subtypes3. TGCT presents high sensitivity to first-line platinum-based chemotherapy 
and radiotherapy, and the majority of patients could achieve high cure  rates4. However, approximately 15% of 
patients don’t respond to the first-line treatment. This is particularly true for non-seminomas, which cannot be 
cured using the first-line approach and require salvage  therapy5. Currently, serum biomarkers, such as alpha-
fetoprotein (AFP), human chorionic gonadotropin (HCG), and lactate dehydrogenase (LDH), and the Tumor 
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Node Metastasis (TNM) classification were used to assist to make treatment decisions for TGCT  patients6. 
However, the defects of these markers include poor specificity for the follow-up and monitoring of TGCT, and 
cannot accurately reflect the progression of the  disease7. Therefore, the development of reliable genetic prognostic 
biomarkers for TGCT, especially in high-risk group, is urgently needed.

DNA methylation is a typical epigenetic modification modulating gene transcription, and aberrant DNA 
methylation was reported to be closely associated with tumor  progression8. Growing evidence demonstrated 
that DNA methylation is implicated in the initiation, development, and progression of human cancers and may 
serve as potential prognostic biomarker. For instance, in TGCT, a previous study suggested that DNA methyla-
tion profiling could serve as a tool for testicular germ cell tumor  subtyping9. MGMT and CALCA promoter 
methylation predicted the worse prognosis of TGCT patients and could be used as new molecular markers of 
prognosis in TGCT 10. However, these studies focused on a few specific genes were limited by small sample sizes 
and generally generated unstable predictive robustness. Recently, DNA methylation signatures were identified to 
predict recurrence risk based on the whole-genome methylation profiles from the TCGA database for a variety 
of cancers, including lung  cancer11, thyroid papillary  carcinoma12, and gastric  cancer13.

In the current study, we aimed to identify the prognostic DNA methylation sites for TGCT patients by analyz-
ing the whole-genome DNA methylation profiles retrieved from a public database, and established a risk model 
for progression-free survival (PFS) prediction by combining the prognostic DNA methylation signature and 
clinicopathological parameters of TGCT patients.

Material and methods
Data resource. The DNA methylation data and corresponding clinical data of TGCT patients were obtained 
from the Cancer Genome Atlas (TCGA, https:// cance rgeno me. nih. gov/) database by using the R TCGAbiolinks 
 package14. All DNA methylation data were generated from the Illumina Infinium Human Methylation 450 plat-
form and the levels of DNA methylation were expressed as β values, and calculated as M/(M + U + 100). M and 
U represent the signal from methylated beads and unmethylated beads at the target CpG sites, respectively. The 
methylomic data from patients with complete clinicopathological information were selected. The most recent 
clinicopathological and follow-up information was obtained from the TCGA database on 6 January 2023, clini-
cal information and methylation data of a total of 128 TGCT samples were downloaded and analyzed in this 
study, and the samples were randomly classified into training cohort (89 samples) and validation cohort (39 sam-
ples) at a ratio of 7:3. Prognostic DNA methylation signature was identified based on the training cohort data, 
and the evaluation of the predictive ability was performed on the basis of the validation cohort data. Progression-
free survival was specified as the primary clinical endpoint, referring to the time period between the date of 
diagnosis and the date when a new event associated with the cancer—such as progression, local recurrence, 
distant metastases or death—occurred.

Preprocess of DNA methylation data. Preprocess of the DNA methylation data was essential before 
the statistical analyses and predictive model establishment. First of all, we counted the number of methylation 
sites with not available (NA) beta value and removed the sites with over 10% not available value. The remaining 
NA data was assumed with ‘impute.knn’ function from impute  package15. Then, the methylation β values were 
normalized using the ‘betaqn’ function from the wateRmelon  package16. All the samples were divided into with-
progression and without-progression group, and the methylation sites with significantly different levels between 
the two groups were identified based on the M value by using the ‘dmpFinder’ function in the minfi  package17.

Identification of the CpG sites‑derived risk signature. The univariate Cox proportional hazard anal-
ysis was implemented in the training cohort to screen methylation sites that are significantly related to TGCT 
patients’ PFS. Then, the lasso Cox regression analysis was performed using the ‘glmnet’ R package to screen 
the key methylation sites affecting the PFS of TGCT. Subsequently, key methylation sites from lasso analysis 
were further included in the multivariate Cox regression analysis. Finally, the risk score for every patient was 
calculated as follows: risk score = 

∑
(βi ∗ coefi)(‘i’ = the number of prognostic methylation sites, ‘βi’ represents 

the beta value of each methylation site, ‘coefi’ represents the coefficient of each methylation site. Then, TGCT 
patients were divided into high-risk and low-risk groups according to the median score. The differences in PFS 
between the high-risk and low-risk groups were analyzed using Kaplan–Meier (K–M) method using the public R 
package ‘survival’18. A receiver operating characteristic (ROC) curves were used to evaluate the risk score model 
performance using the ‘survivalROC’ package. The differences in risk score among different clinicopathological 
groups were compared and visualized.

Functional enrichment analysis. Transcriptome data of the TCGA–TGCT cohort from the TCGA 
database were retrieved and analyzed for differential expression between different risk groups using the limma 
 package19. Differentially expressed genes were screened by adjusted p-value < 0.05 and |logFC| > 1. Gene Ontol-
ogy (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)  pathway20–22 enrichment analyses were per-
formed using the clusterprofiler  package23, and terms were identified as significantly enriched while an adjusted 
p-value < 0.05 was achieved.

Immune infiltration and chemosensitivity. CIBERSORT is an algorithm utilizing the expression val-
ues of 547 genes to assess the composition of immune cells in tissues. Immune infiltration of the 22 immune 
cell types in the high- and low-risk groups of the TCGA–TGCT cohort was determined and compared using 
the CIBERSORT package based on TCGA–TGCT cohort transcriptome  data24. The differences in chemotherapy 
sensitivity between high- and low-risk groups were evaluated using the pRRophetic  package25.

https://cancergenome.nih.gov/
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Consensus clustering analysis. Consensus clustering was performed to identify a novel PFS-related CpG 
sites-based classification via the ‘ConsensusClusterPlus’ R  package26. Then, the K–M curve was conducted to 
appraise the PFS of different CpG site-derived clusters, and differences in risk scores among clusters were com-
pared and visualized.

Construction and validation of the nomogram. A nomogram was constructed using the ‘rms’ R pack-
age after identifying independent risk factors of PFS for TGCT  patients27. The univariate Cox proportional haz-
ard analysis and multivariate Cox proportional hazard analysis were performed to identify the independent 
prognostic factors of TGCT patients’ PFS. C-index and calibration plots were executed to weigh the predictive 
performance of the established nomogram. Decision curve analysis (DCA) was performed using the rmda pack-
age to compare the benefit of all strategies in PFS prediction.

Statistical analysis. All statistical analyses were conducted by the R software version 4.2.0 and SPSS soft-
ware version 12. Univariate and multivariate Cox regression analyses were conducted to identify independent 
risk factors for PFS prediction of TGCT. All statistical p values are two-sided and p < 0.05 represents statistical 
significance.

Results
Clinical characteristics of the study populations. In total, 128 TGCT patients with complete meth-
ylation and survival data were included in this study. The median age at diagnosis was 31 years (range, 18–67). 
Clinical stage of TGCT patients ranged from I to IS, with 42.97% (n = 55) in stage I, 10.94% (n = 14) in stage II, 
10.16% (n = 13) in stage III, and 35.94% (n = 46) in stage IS. Of these patients, 52.34% (n = 67) had seminoma 
and 47.66% (n = 61) had non-seminoma histology. Lymphovascular invasion was present in 42.97% (n = 55) 
of patients, and 53.91% (n = 69) and 19.53% (n = 25) had received chemotherapy and radiotherapy treatments, 
respectively. Serum markers were divided into five groups according to the serum level of LDH, hCG, and AFP: 
S0 (31.82%, n = 41), S1 (28.03%, n = 37), S2 (25.76%, n = 33), S3 (3.79%, n = 5), and SX (9.09%, n = 12). The 
number of patients with and without progression was 35 (27.34%) and 93 (72.66%), respectively. (Table 1). All 
patients were randomly divided into the training cohort (89 patients) and the validation cohort (39 patients). 
Figure 1 showed the overall design and flowchart of the present study.

Identification of methylation signature associated with PFS. Between the without-progression 
group and the with-progression group, we identified a large number of differential methylation sites (86,665 
sites, p < 0.05; 28,174 sites, p < 0.01). To narrow the scope, we carried out the subsequent analysis of 2268 dif-
ferential methylation genes with p values < 0.001. Univariate Cox regression analysis found that 1472 differential 
methylation positions were significantly correlated with PFS (p < 0.05). Seventeen sites with p values < 0.0005 
were selected for lasso and multivariate Cox regression analysis and eventually 7 independent prognosis-related 
CpG sites were obtained, namely cg00162940, cg02069592, cg02251771, cg06414941, cg08475576, cg20781201 
and cg27569752 (Fig.  2A,B). According to the median of β value of each site, 128 TCGA–TGCT individu-
als were divided into hypermethylation and hypomethylation groups, and K–M analysis was carried out. The 
results showed that these methylation sites were significantly correlated with the PFS of TGCT, among which 
cg27569752 hypermethylation predicted poor PFS, while hypermethylation of other sites predicted better PFS 
(Fig. 2C–I). As shown in Table 2, these positions are located in regions near 5 genes (PPM1D, PANX1, ENDOD1, 
MAF, MYH2), 1 DNase-I-hypersensitive site (DHS) region, and 3 enhancer regions.

Construction of CpG‑derived risk model. Based on the seven PFS-related methylation loci identified 
above, a risk score model was built with the following formula: Risk score = − 345.765933*cg00162940 − 21.2158
46*cg02069592 − 9.555835*cg02251771 − 39.638966*cg06414941 − 575.141219*cg08475576 + 10.56158*7cg207
81201 + 27.493894*cg27569752. The 128 patients in the TCGA cohort were divided into high-risk and low-risk 
groups according to the median of risk score (Fig. 3A). The K–M survival analysis showed significant differences 
in PFS between the high- and low-risk groups, with poorer PFS in the high-risk group and better PFS in the low-
risk group, which could be verified in both the training cohort and the whole cohort. The ROC analysis showed 
that the risk score model had better performance in predicting 1, 3, and 5-year PFS of TGCT (Fig. 3B–E). Due 
to the limited samples in the training cohort, its verification effect was not ideal (data not provided). To further 
assess the relationship between the risk model and PFS and its effectiveness in predicting PFS, we used the 
self-sampling validation method and selected 30% (39 cases) of the samples for prediction each time, as shown 
in Fig. 3F. Due to the limited number of samples, its prediction performance is generally poor, suggesting that 
more available sample data are urgently needed in the prognosis research of TGCT. Through 1000 random 
grouping (at a ratio of 7:3) and prognostic analysis, the incidence probability of risk score significantly correlated 
with PFS was 97.9% and 54.3% in the high-sample group (70% of samples) and the low-sample group (30% of 
samples), respectively, indicating that the insufficient sample size might increase the accuracy of predicting PFS 
(Fig. 3G,H).

The relationships between risk score and clinicopathological characteristics. To elucidate the 
relationship between risk scores and clinical pathological features, we compared the risk scores among differ-
ent prognosis status, stage, serum marker, radiotherapy, chemotherapy, adjuvant therapy, lymphatic vascular 
infiltration (LVI), histology, and age groups (Fig. 4). The results showed that there were significant differences 
in risk scores among different prognosis status, stage, chemotherapy, and radiotherapy groups. The cases with 
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progression had higher risk scores than those without progression, and the higher the stage, the higher the risk 
score. Patients who received radiotherapy had lower risk scores than those who did not receive radiotherapy. 
Conversely, patients who received chemotherapy had higher risk scores than those who did not receive chemo-
therapy. Furthermore, the methylation levels of these CpG sites in different survival status, stage, chemotherapy, 
and radiotherapy were compared (Figs. S1–S4). It was observed that several CpG sites had drastically different 
methylation levels between groups.

Functional enrichment analysis. The transcriptome data of 128 TCGA–TGCT patients were obtained 
from the TCGA database and analyzed for differential expression and enrichment (Fig. 5). Through these analy-
ses, we identified 1452 genes (p.adj < 0.05 and |logFC| > 1) that differentially expressed between high- and low-
risk groups, in which 666 genes were significantly up-regulated, and 786 genes were significantly down-regu-
lated. Specifically, higher-expressed genes were found to be significantly enriched in immunity-related biological 
processes, and and hematopoietic cell lineage/T cell differentiation pathways, whereas lower-expressed genes 
were significantly enriched in the biological processes involved in extracellular matrix organization and associ-
ated with the PI3K-AKT signaling pathway, focal adhesion, hippo signaling pathway, Wnt signaling pathway, 
protein digestion/absorption pathways.

Immunoinfiltration and chemotherapy sensitivity. Further analysis of the immune infiltration and 
chemosensitivity between different risk groups was conducted. We found that, out of the 22 types of immune 
cells, 16 were ubiquitously present in the TGCT cohort, and 9 of them exhibited significantly different infiltra-
tion levels between different risk groups. Specifically, the infiltration levels of activated NK cells, monocytes, M2 
macrophages, and resting mast cells in the high-risk group were significantly higher than those in the low-risk 

Table 1.  Clinical characteristics of included patients.

Characteristics

Total 
(n = 128)

Training 
dataset 
(n = 89)

Testing 
dataset 
(n = 39)

n % n % n %

Age

 ≥ 31 69 53.91 47 52.81 22 56.41

 < 31 59 46.09 42 47.19 17 43.59

Histology

 Seminoma 67 52.34 49 55.06 18 46.15

 Non-seminoma 61 47.66 40 44.94 21 53.85

Lymphatic vascular infiltration

 Yes 55 42.97 39 43.82 16 41.03

 No 73 57.03 50 56.18 23 58.97

Chemotherapy

 Yes 69 53.91 39 43.82 30 76.92

 No 59 46.09 50 56.18 9 23.08

Radiotherapy

 Yes 25 19.53 16 17.98 9 23.08

 No 103 80.47 73 82.02 30 76.92

Adjuvant therapy

 Yes 80 62.50 54 60.67 26 66.67

 No 48 37.50 35 39.33 13 33.33

Stage

 I 55 42.97 41 46.07 14 35.90

 II 14 10.94 7 7.87 7 17.95

 III 13 10.16 6 6.74 7 17.95

 IS 46 35.94 35 39.33 11 28.21

Serum markers

 S0 41 32.03 30 33.71 11 28.21

 S1 37 28.91 27 30.34 10 25.64

 S2 33 25.78 21 23.60 12 30.77

 S3 5 3.91 2 2.25 3 7.69

 SX 12 9.38 9 10.11 3 7.69

Survival status

 With progression 35 27.34 26 29.21 9 23.08

 Without progression 93 72.66 63 70.79 30 76.92
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group. Conversely, the infiltration levels of naive B cells, plasma cells, activated CD4 memory T cells, regula-
tory T cells, and gamma delta T cells in the high-risk group were significantly lower than those in the low-risk 
group (Fig. 6A). Further grouping of the 22 cells into dendritic cells, lymphocytes, macrophages, and mast cells 
revealed that the infiltration level of lymphocytes in the high-risk group was significantly higher than that in 
the low-risk group, while the infiltration level of macrophages was significantly lower than that in the low-risk 
group (Fig. 6B). Subsequent assessment of the chemosensitivity between high- and low-risk groups using the 
three most commonly used chemotherapeutic drugs in the TCGA–TGCT cohort, namely etoposide, cisplatin, 
and bleomycin, indicated that the low-risk group was more sensitive to etoposide and bleomycin than the high-
risk group (Fig. 6C–E).

Prognostic CpGs‑derived clusters. We employed a consensus clustering analysis of 128 TCGA–TGCT 
cohorts by seven CpG sites related to PFS. Considering the clustering performance and sample size, 128 samples 
were divided into three clusters (Fig. 7A–C). K–M survival analysis showed that the PFS of these three clusters 
significantly differed, with cluster 2 having the best prognosis followed by cluster 1 and then cluster 3 having the 
worst (Fig. 7D). Comparisons of the risk score distributions among different clusters in Fig. 7E showed that the 
risk score distributions significantly differed among clusters, with the risk score of cluster 3 being significantly 
higher than those of the other two clusters, and the risk scores of cluster 2 being significantly lower than those 
of the other two clusters.

Nomogram development and assessment. Univariate Cox survival analysis revealed that the clinical 
stage and the risk score were prognostic factors for PFS of TGCT patients. Subsequently, results of multivariate 
Cox regression analysis indicated that the risk score (p < 0.001), age (p = 0.035), chemotherapy (p = 0.012), and 
clinical stage (p = 0.006) were significantly associated with TGCT patients’ PFS (Table 3). Based on these results, 
a nomogram was constructed that incorporated the risk score model, age, stage, and chemotherapy, providing a 
reliable predictive tool with a C-index of 0.812 in the entire cohort. (Fig. 8A). The calibration curves exhibited 
a good predictive accuracy (Fig. 8B), with decision curve analysis suggestive of the superior performance of the 
prediction model compared to alternative strategies (Fig. 8C). Collectively, our results indicate the established 
nomogram provides an effective tool for predicting the PFS of TGCT patients.

Discussion
TGCT is the most prevalent tumor in young adults, having persisted in rising for the past several decades in 
most  populations28. Although the mortality rate of TGCT has improved, 20–30% of patients have shown resist-
ance to traditional chemotherapy, with some undergoing refractory  disease29. Currently, the dependability of 
traditional clinicopathological parameters, such as TNM staging and serum biomarkers, should be enhanced in 
order to more precisely predict the prognosis of TGCT. A variety of molecular markers have been developed to 
forecast the prognosis in various tumors, and the application of DNA methylation as a prognostic biomarker has 
a few merits over other molecular biomarkers, including higher  stability30, smaller sample size  requirement31, 
and relative higher  accuracy32. Evidentiary support has demonstrated that DNA methylation signatures had 
achieved satisfactory results in the prognostic prediction of multiple types of cancer. For example, a 13-DNA 
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Figure 1.  Flowchart of the present study.
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Figure 2.  Identification of independent prognostic CpG sites. (A) lasso coefficient profiles of the methylation 
sites. A coefficient profile plot was produced against log(lambda) sequence. (B) Ten-fold cross-validation for 
selection of the parameter λ. (C–I) K–M survival analysis of cg00162940, cg02069592, cg02251771, cg06414941, 
cg08475576, cg20781201, cg27569752 in the TCGA–TGCT cohort, respectively. The cohort was separated into 
high and low groups according to the median β value of each CpG site.

Table 2.  Overview of included CpG sites in terms of location, gene annotation, and gene function of the 
11 CpG-sites in the risk signature. CGI CpG island, DHS DNase-I-hypersensitive sites, PPM1D protein 
phosphatase,  Mg2+/Mn2+ dependent 1D, PANX1 pannexin 1, ENDOD1 endonuclease domain containing 
1, MAF MAF bZIP transcription factor, MYH2 myosin heavy chain 2, TSS200 transcription start sites, IGR 
intergenic region, 5′UTR  5′-untranslated region, 3′UTR  3′-untranslated region.

CpG sites Chromosome Strand Gene Feature CGI DHS Enhancer

cg00162940 17 F PPM1D TSS1500 Shore NA NA

cg02069592 14 R IGR Opensea TRUE TRUE

cg02251771 11 R PANX1 Body Opensea NA NA

cg06414941 11 F ENDOD1 3’UTR Opensea NA NA

cg08475576 16 R MAF TSS1500 Island NA NA

cg20781201 11 F IGR Opensea NA TRUE

cg27569752 17 F MYH2 5’UTR Opensea NA TRUE
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methylation signature was discovered to yield a high evaluative performance in the RFS prediction in stage I 
lung  cancer11. Another recent study revealed that a 6-DNA methylation signature displayed a better value for 
predicting recurrence-free survival of thyroid papillary  cancer12. In gastric cancer, Ma et al. found that DNA 
methylation signature performed well in prognostic prediction and established a nomogram model based on 
11-DNA methylation sites and clinicopathological  indicators13. However, a quantitative method to predict a 
TGCT patient’s probability of PFS based on DNA methylation signature has yet to be developed.

By analyzing whole-genomic methylation profiles in 128 TGCT samples, we found that 7 DNA methylation 
sites were related to PFS in patients with TGCT. The 7-DNA methylation signature was capable to distinguish 
patients with low- or high-risk, and serving as an independent factor for TGCT patients’ PFS after adjusting for 
the effects of clinical indicators. A previous study successfully established a nomogram with good predictive 
performance on the basis of a five-gene signature and four clinical factors (age, serum marker, lymphovascular 
invasion, and histological types) in a nomogram. In this study, we included a DNA methylation signature and 
three clinical factors (stage, age, and chemotherapy) in a nomogram, which yielded a better benefit in PFS pre-
diction of TGCT when compared to these factors used individually.

The 7 CpG sites identified in this study were associated with five genes: PPM1D, PANX1, ENDOD1, MAF, 
and MYH2. PPM1D is a tumor suppressor gene and has been associated with various types of cancer, including 
breast, ovarian, and colorectal cancer; mutations of this gene may impact the ability of the body to repair dam-
aged  DNA33. PANX1 encodes a protein involved in intercellular communication, and mutations of this gene are 
associated with an increased expression of molecules involved in cancer  growth34. ENDOD1 encodes a protein 
that is implicated in cell death, and is found at elevated levels in certain types of  cancer35. MAF is a gene involved 
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in cell proliferation and has been observed to be mutated frequently in various types of  cancer36. MYH2 encodes 
a protein involved in DNA repair, and is associated with colorectal  cancer37. Overall, further research is needed 
to fully understand the relationship between these genes and cancer.

It was revealed that differentially expressed genes between different risk groups were associated with pro-
cesses of immunity and extracellular matrix organization. Recent studies have suggested that a higher level of 
immunity may improve the prognosis of TGCT  cancer38,39. Therefore, it is important for patients to maintain 
an adequate level of immunity to enhance their chances of positive outcomes. In addition, it was demonstrated 
that differentially expressed genes between different risk groups were primarily enriched in T cell differentiation 
and multiple crucial signal transduction pathways, such as PI3K-AKT, Hippo, and Wnt signaling pathways. The 
differences in these biological processes and pathways may be the underlying cause for the significantly different 
PFS between different risk groups.

The association between immune response and prognosis for TGCT has been extensively studied in recent 
 years40. Results from several studies suggest that patients with higher levels of immune cells such as CD4 and 
CD8 T lymphocytes, natural killer cells, and monocytes, have a better prognosis than those with lower  levels41. 
Furthermore, there is evidence that these immune cells can be used to predict and classify the aggressiveness 
of TGCT tumors and that they may also have the therapeutic  potential42. In this study, higher lymphocytes 
infiltration and lower macrophage infiltration were observed in the low-risk group as compared to the high-risk 
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group. T cell infiltration and tumor-infiltrating lymphocytes have been associated with a favorable prognosis in 
TGCT. Moreover, the presence of T cells in the tumor microenvironment has been linked to a better response 
to chemotherapy and better overall  outcome43. Our results also showed that the low-risk group with higher T 
cell infiltration had greater sensitivity to etoposide and bleomycin chemotherapy. These results suggest that the 
CpG-based risk model has strong predictive capabilities in terms of both immune infiltration and chemothera-
peutic drug sensitivity, which may also play an important role in the current focus on immune therapy response 
but requires further analysis.

Apart from the inspiring results, there are also several limitations in our study. Firstly, the 7-DNA methylation 
signature was identified from the TCGA database, lacking of the external validation cohort. This may generate 
a hazard of selection bias. Secondly, the high cost of methylation tests limit their clinical application, but this is 
being resolved with the advancement of technology. Despite the above-mentioned limitations, our study still 
provided some valuable implications. Firstly, employing the lasso method to identify PFS-related methylation 
sites in the study solved the multicollinearity problem and generated more reliable results. Secondly, the 7-DNA 
methylation signature of TGCT was capable to separate TGCT patients into high- and low-risk groups and 
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predicted PFS with robust accuracy. Moreover, the established nomogram by integrating clinical indicators and 
methylation signature provided a quantitative method for accurate PFS prediction of TGCT patients, which will 
contribute to the development of the field of personalized medicine for TGCT.

Conclusion
In this study, we identified a 7-DNA methylation signature as an independent prognostic biomarker for predicting 
the PFS of TGCT patients and constructed a risk model based on the 7-DNA methylation sites to discriminate 
high- and low-risk TGCT patients. The CpG site-derived risk model was associated with various processes 
and pathways including immunity, extracellular matrix organization, T cell differentiation, and multiple signal 
transduction pathways. Meanwhile, significant differences were observed in immune infiltration and chemo-
sensitivity between different risk patients, which might contribute to the prognosis of TGCT. A nomogram that 
integrated the 7-DNA methylation signature, age, stage, and chemotherapy was also established with satisfactory 
performance to predict PFS of TGCT. Our results shed light on the methylation biology of TGCT and promote 
the development of effective prognostic biomarkers for TGCT.
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Table 3.  Univariate Cox regression analysis and multivariate Cox regression analysis outcome based on 
methylation risk score and other clinical factors. HR hazard ratio, LCI lower 95% confidence interval, UCI 
upper 95% confidence interval, LVI lymphatic vascular infiltration.

Factors

Univariate Cox analysis Multivariate Cox analysis

p-value HR LCI UCI p-value HR LCI UCI

Age 0.472 0.784 0.403 1.523 0.035 0.452 0.216 0.946

Histology 0.571 0.822 0.417 1.621

LVI 0.395 0.738 0.367 1.486

Chemotherapy 0.311 1.452 0.706 2.989 0.012 2.847 1.257 6.446

Radiation 0.577 0.795 0.356 1.779

Adjuvant therapy 0.805 1.112 0.477 2.591

Stage (I as reference) 0.02 0.006

II 0.073 0.153 0.02 1.192 0.007 0.054 0.006 0.449

III 0.282 0.436 0.096 1.98 0.026 0.166 0.034 0.808

IS 0.113 1.844 0.865 3.932 0.884 1.063 0.467 2.417

Serum markers (S0 as reference) 0.099

S1 0.265 1.792 0.643 4.997

S2 0.011 3.357 1.316 8.563

S3 0.23 3.751 0.433 32.477

SX 0.873 1.19 0.141 10.053

Risk score < 0.001 1.17 1.079 1.27 < 0.001 1.162 1.075 1.257
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Data availability
The data that support the fndings of this study are available from the Cancer Genome Atlas (TCGA, http:// cance 
rgeno me. nih. gov/).
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