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Fiber enhancement and 3D 
orientation analysis in label‑free 
two‑photon fluorescence 
microscopy
Michele Sorelli 1,2, Irene Costantini 2,3,4*, Leonardo Bocchi 5, Markus Axer 6, 
Francesco Saverio Pavone 1,2,4 & Giacomo Mazzamuto 1,2,4

Fluorescence microscopy can be exploited for evaluating the brain’s fiber architecture with 
unsurpassed spatial resolution in combination with different tissue preparation and staining protocols. 
Differently from state‑of‑the‑art polarimetry‑based neuroimaging modalities, the quantification of 
fiber tract orientations from fluorescence microscopy volume images entails the application of specific 
image processing techniques, such as Fourier or structure tensor analysis. These, however, may lead 
to unreliable outcomes as they do not isolate myelinated fibers from the surrounding tissue. In this 
work, we describe a novel image processing pipeline that enables the computation of accurate 3D 
fiber orientation maps from both grey and white matter regions, exploiting the selective multiscale 
enhancement of tubular structures of varying diameters provided by a 3D implementation of the 
Frangi filter. The developed software tool can efficiently generate orientation distribution function 
maps at arbitrary spatial scales which may support the histological validation of modern diffusion‑
weighted magnetic resonance imaging tractography. Despite being tested here on two‑photon 
scanning fluorescence microscopy images, acquired from tissue samples treated with a label‑free 
technique enhancing the autofluorescence of myelinated fibers, the presented pipeline was developed 
to be employed on all types of 3D fluorescence images and fiber staining.

The integration of different imaging modalities at micro-, meso- and macroscopic spatial scales is widely rec-
ognized as an essential requirement for advancing our current knowledge of the human brain connectional 
 anatomy1–3. In this regard, the possibility to investigate brain myeloarchitectonics with single fiber resolution 
over extended tissue volumes represents a compelling research area. The introduction of increased magnetic 
field strengths and the development of improved theoretical contrast models in diffusion-weighted magnetic 
resonance imaging (dMRI), fostered by the Human Brain Connectome  project4, have recently enabled the 
quantitative mapping of the human brain connectivity with sub-millimetric resolution, and improved angular 
 accuracy5–8. The ultra-high b-values available nowadays in clinical and pre-clinical scanners provide increased 
signal-to-noise ratios and, thus, enhanced spatial resolution; this, in turn, represents a key factor in improving 
the quality of dMRI-based fiber  tractography9,10. However, despite its unique capability to provide an in vivo 
interrogation of the structural organization and connectivity of the human brain, state-of-the-art dMRI may 
still inadequately capture the tissue microstructure within voxels containing complex branching or interdigi-
tated fiber  architectures3. Therefore, the development of a gold standard method capable of providing reliable 
multiscale ground-truth datasets for the comprehensive validation of dMRI-based connectivity information is 
of paramount importance. This has motivated several research groups to apply dMRI to post-mortem histologi-
cal tissue sections in combination with a range of optical modalities, namely 3D polarized light imaging (3D-
PLI)1,11, 3D polarized-sensitive optical coherence tomography (3D-PSOCT)10,12, 2D and 3D confocal scanning 
fluorescence  microscopy13–15 and 3D light-sheet fluorescence microscopy (LSFM)16, also combining OCT and 
 LSFM17, with the aim to identify suitable approaches for validating dMRI-based fiber tractography, and unveiling 
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its potential limitations in brain regions with challenging fiber compositions and geometrical configurations. 
3D-PLI and 3D-PSOCT exploit the inherent birefringence of brain tissue, analyzing the change in polarization 
of light transmitted through unstained samples in order to detect fiber structures and estimate their 3D orienta-
tion. On the other hand, fluorescence microscopy generally relies on tissue clearing methods, such as CLARITY 
(Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging compatible Tissue hYdrogel)18,19, or SWITCH 
(System-Wide control of Interaction Time and kinetics of CHemicals)20–22 to render samples transparent, and 
histological stains for generating contrast between fibers and other tissue components. Furthermore, despite 
offering a superior spatial resolution with respect to polarimetry-based imaging modalities, which enables the 
targeting of finer microstructural details, in fluorescence microscopy the evaluation of fiber orientations is subject 
to the application of dedicated image processing techniques, namely Fourier  analysis23,24 and structure tensor 
 analysis13–15. However, a relevant limitation of these techniques is the non-specificity of the estimated orientation 
vectors, as they are not able to distinguish between fibers and surrounding brain tissue. In this regard, Morawski 
and co-workers16 have applied a supervised Random Forest classifier, cascaded with a multiscale enhancement 
Frangi  filter25, for the automatic identification of fiber structures. However, their orientation analysis was lim-
ited to the image plane due to the marked anisotropic resolution of the employed light-sheet microscope and, 
moreover, it relied on the availability of manual segmentations produced by expert neuroanatomists. Here we 
present a novel image processing pipeline built around a 3D implementation of the Frangi filter that enables 
the unsupervised enhancement of myelinated fiber structures of varying diameters in tiled brain microscopy 
reconstructions of arbitrary size, and the generation of accurate 3D fiber orientation maps in both grey and white 
matter regions. The analysis pipeline features the generation of orientation distributions functions (ODFs) at 
arbitrary spatial  scales26, that may be used in the future to enable a direct comparison with micrometric fiber 
orientations obtained via 3D-PLI or 3D-PSOCT, and to validate the meso- and macro-scale brain connectivity 
information targeted by state-of-the-art dMRI.

Results
In this work, we combined the myelin autofluorescence enhancement achieved by a pioneering label-free prepara-
tion protocol named MAGIC (Myelin Autofluorescence imaging by Glycerol Induced Contrast  enhancement27) 
(Fig. 1a) with the sub-micron resolution and deep imaging capabilities offered by two-photon fluorescence 
microscopy (TPFM) (Fig. 1b). Adjacent TPFM image tiles were preliminary corrected for shading so as to sup-
press unwanted vignetting artefacts (Fig. 1c), and then aligned and stitched to generate high-resolution tiled 
mesoscale reconstructions of the human brain fiber organization (Fig. 1d). Single fiber orientations were finally 
computed from the myelinated fiber autofluorescence at � = 482 nm by means of a novel image processing pipe-
line (Foa3D) which is presented in detail in the following Methods section (Fig. 1e).

In order to validate the reliability of the 3D fiber orientation maps estimated by the developed software tool, 
random image slices were automatically extracted from a reference dataset acquired from different subjects, 
comprised of 10 TPFM stacks including grey matter (GM) tissue and 10 stacks including white matter (WM). 
These image slices were then methodically rotated within and out of the image plane of the microscopy system, 
and fed to the Frangi-based orientation analysis pipeline, quantitatively evaluating the degree of agreement 
between the resulting distributions of the fiber azimuth ( φxy ) and elevation ( θzy ) angles and the ones obtained 
from the original unrotated slices, in terms of their median value and their Bhattacharyya coefficient. The results 
of the validation procedure are summarized in Fig. 2, which separately shows the accuracy performance related 
to the assessment of the φxy and θzy angles in GM and WM image samples. A detailed example of the adopted 
validation strategy is provided in the Supplementary Information (Fig. S1).

In specific, the overall distributions grouping the inter-median errors pertaining to each tested rotation range 
(Fig. 2a,d,g,j) exhibit a near-zero mean value, which implies the absence of a systematic bias in the developed 
fiber orientation analysis. However, their standard deviation is notably lower in the case of the φxy orientations 
evaluated within the imaging plane of the TPFM system, where the optical resolution achieved is higher. This 
is made evident by the trend of the absolute inter-median error |�φ̃xy| along the whole range of tested rotations 
(Fig. 2b,e) whose median value, despite exhibiting a sensible increase for larger rotations, never exceeds 2 ◦ in 
the case of the azimuth angular coordinate φxy , in both the test sets of GM and WM image patches. Conversely, 
Fig. 2h,k show a tendency towards relatively larger inter-median distances |�θ̃zy| for the elevation angle between 
the myelinated fiber structures detected by the pipeline and the imaging plane of the TPFM system. Despite being 
higher, median error values nevertheless stay below 3 ◦ in both the evaluated GM and WM samples. Moreover, as 
highlighted by the boxplots of the Bhattacharyya coefficient, representing the amount of overlap with the original 
reference angular distributions of θzy (Fig. 2i,l), the image processing pipeline appears to exhibit an asymmetri-
cal performance with respect to the direction of the applied rotation. This may be ascribed to the preferential 

Figure 1.  Workflow for the analysis of 3D fiber orientations from large-volume fluorescence microscopy 
images, showing the sample preparation, imaging and image processing stages (created with BioRender.com).
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orientation statistics of the selected WM image tiles, despite the random axis inversion preliminarily applied 
to the image patches considered in the present validation. On the other hand, consistently with the trend of the 
inter-median distance |�φ̃xy| , the estimated Bhattacharyya coefficients are remarkably uniform for the different 
planar rotations applied about the z-axis, with their median value never dropping below 0.99 in both the GM and 
WM image samples (Fig. 2c,f). Tables S1 and S2 in the Supplementary Information report the complete median 
values and interquartile ranges of the distributions shown in Fig. 2.

Figure 3 summarizes the runtime performance of the Frangi-based fiber orientation analysis pipeline, applied 
to the TPFM reconstruction shown in Fig. 4. In detail, using Frangi filters with an increasing number of spatial 
scales determines an expected rise in the memory usage of the fiber orientation analysis stage (Fig. 3a). However, 
by parallelizing the estimation of the vesselness probability function (Eq. 9, Fig. 5), the interrogation of multiple 
scales does not lead to a proportional increase in the computational time of the filter. This accounts for a large 
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Figure 2.  Validation of the 3D Frangi-based fiber orientation maps accuracy ( N = NTPFM × NROT , where 
NTPFM denotes the total number of sample image patches, and NROT = 18 is the number of test rotations). Left 
column: overall distributions of the inter-median errors; center column: absolute inter-median distances against 
the test rotation applied; right column: Bhattacharyya coefficient against test rotations. (a–c) Azimuth angle φxy , 
grey matter images; (d–f) azimuth angle φxy , white matter; (g–i) elevation angle θzy , grey matter; (j–l) elevation 
angle θzy , white matter.
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percentage of the total execution time of the pipeline (Fig. 3b), with respect to the subsequent estimation of the 
fiber ODFs (Fig. 3c). As shown in 2, the adoption of larger ODF super-voxel sizes, and the consequent decrease 
in their overall number, is not accompanied by a monotonic reduction in the time required to generate the 
fiber ODF maps of the whole TPFM volume image: this is related to the continuous setting of Alimi’s analytical 
approach, which computes the spherical harmonics coefficients (Eq. 16) for each native voxel of the ODF com-
partments, independently from their size. Similarly, processing larger chunks of the TPFM reconstruction does 
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Figure 3.  Runtime performance of the image processing pipeline: (a) execution times and memory usage 
of the Frangi-based fiber orientation analysis stage against the number of spatial scales of the Frangi filter ( σ 
= 1.25 µm , image chunk size = 50 MB); (b) total execution time against different combinations of the spatial 
resolution of the fiber ODFs and the size of the basic image chunks analyzed iteratively ( σ = 1.25 µm ); (c) fiber 
ODFs estimation time, against different configurations of the designed pipeline.

Figure 4.  Frangi-based orientation analysis of myelinated fibers in a mesoscale tiled TPFM reconstruction 
(final stitched size: 8859.9 µm× 5204.8 µm× 98.0 µm , acquisition time: 14h 12min) of a brain region in 
between the primary and secondary visual cortex (V1/V2): (a) multichannel image (fibers: � = 482 nm, 
cell bodies: � = 618 nm) aligned and fused using ZetaStitcher (scale bar: 0.5 mm)28,29, following the uneven 
illumination correction achieved via the CIDRE  method30; (b) myelinated fiber ODF map ( � = 482 nm) 
returned by the image processing pipeline ( α = 0.001, β = 1, scales = 1.25, 2.5 µm ; ODF super-voxel: 80 µm× 
80 µm× 80 µm ); (c) MIP of a 10 µm-deep section including grey matter (green square, scale bar: 50 µm ); (d) 
corresponding grey matter ODFs (super-voxel: 10 µm× 10 µm× 10 µm ); (e) MIP of a 10 µm-deep section 
including white matter (red square); (f) corresponding white matter ODFs (super-voxel: 10 µm× 10 µm× 
10 µm ). Fiber ODF maps were displayed using the open-source software package for medical image processing 
and visualisation  MRtrix331.
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not appear to be generally beneficial for the computational efficiency of the developed processing pipeline, with 
a tendency towards longer execution times when the basic chunk size is increased, in spite of their lower number 
(Fig. 3b). Figure 4 finally highlights the capability of the image processing pipeline to reproduce the orientation 
of myelinated fiber structures at multiple spatial scales in unstained brain tissue slices imaged by TPFM. Adopt-
ing differently sized ODF super-voxels, thus producing a different level of downscaling of the high-resolution 
vector fields returned by the Frangi-based orientation analysis, allows to shift the focus from microscopic single 
fiber tracts to mesoscopic long-range fiber bundles in WM areas.

Discussion
In this study, we employed two-photon excitation microscopy with the glycerol-based MAGIC tissue preparation 
protocol to acquire 3D micron-resolution mesoscopic reconstructions of the human brain myeloarchitectonics, 
without the requirement of exogenous staining of myelinated fiber axons. We then applied the image processing 
tool presented in this work to derive fiber-specific orientation maps, exploiting a multiscale 3D Frangi filter for 
obtaining a targeted enhancement and segmentation of elongated image structures. The optimal spatial scale 
of the filter with respect to the cross-sectional size of myelinated fibers was thoroughly assessed, whereas the 
internal sensitivity parameters related to the geometrical features exploited by the enhancement mechanism were 
empirically tailored through a qualitative evaluation of the improvement of the fiber autofluorescence contrast at 
482 nm, and the suppression of neuronal bodies with respect to the soma-specific fluorescence emission at 618 
nm. A data-driven fine-tuning of these parameters on a manually generated ground truth of classified TPFM 
images of myelinated fiber structures may be considered in future work. Nonetheless, the results of the validation 
procedure outlined in the Methods section demonstrate that the current configuration of the fiber orientation 
analysis pipeline is able to provide an accurate evaluation of white matter fiber tract and grey matter single fiber 
3D orientations, even without the application of cutting-edge deep learning techniques, and despite the widen-
ing of the point spread function (PSF) along the optical axis of the employed microscopy system. In general, 
the poorer axial resolution of fluorescence microscopes, LSFM systems particularly, poses a critical restraint on 
the feasibility of a 3D quantification of myelinated fiber orientations, and has forced other authors to limit their 
studies to 2D analyses orthogonal to the optical  axis16,23. In the present work, this translated in a relatively higher 
reliability of the φxy fiber azimuth angles, both in grey and white matter regions. The achieved performances 
may, however, increase as a result of a preliminary deconvolution of the TPFM volume images, not applied 
here because of the severe spatial undersampling of the PSF. Nevertheless, as pointed out by  Morawski16, this 
inherent limitation can be overcome by employing multi-view imaging systems, such as dual inverted selective 
plane illumination microscopes (diSPIM)32, and making use of dedicated multi-view deconvolution algorithms.

The unsupervised nature of the developed fiber orientation analysis tool brings the key advantage of relaxing 
the need for a high-quality ground truth of volumetric segmentations of fiber architectures, manually annotated 
by expert operators. Nevertheless, cascading the 3D Frangi filter with state-of-the-art deep neural networks, 
such as the 3D U-Net classifier recently proposed  in33 may lead to a remarkable improvement of the automatic 
identification of myelinated fibers with respect to the binarization mechanism of Li’s thresholding algorithm, 
which minimizes the cross entropy between the classified foreground and the foreground mean, and the back-
ground and the background mean. Training 3D deep learning models generally requires a comprehensive manual 
annotation of volumetric microscopy images, possibly entailing an overwhelming human effort that was not 
feasible in the present work. However, in this regard, semi-supervised frameworks as the one introduced  in34, 
which make use of sparse partial annotations complemented by pseudo-labels inferred on unlabelled regions, 
may speed up the training process.

In the present study, the accuracy of the Frangi-based fiber orientation analysis pipeline was evaluated at the 
micron scale, analyzing image slices randomly sampled from a set of TPFM stacks of grey and white matter, and 
properly rotated within and out of the image plane of the microscopy setup. In view of this, future work may 
consider a multimodal evaluation of myelinated fiber orientations, comparing the 3D vector maps returned by 
the developed pipeline with the ones directly generated by means of polarimetry-based techniques, such as RP-
CARS (Rotating-Polarization Coherent Anti-Stokes Raman  Scattering35,36) and the already mentioned 3D-PLI 
and 3D-PSOCT. Indeed, the unsurpassed spatial resolution of fluorescence microscopy may help corroborating 
3D-PLI and 3D-PSOCT fiber orientation estimates or, on the other hand, characterize potential limitations of 
these polarimetry-based modalities.

Most importantly, the combination of the label-free MAGIC preparation protocol, TPFM, and 3D Frangi-
based analysis of myelinated fiber orientations may represent a powerful approach for a quantitative histological 
validation of 3D fiber ODF maps obtained by dMRI, aiding the assessment of the brain region-specific reliability 
of state-of-the-art dMRI-based tractography.

Methods
Specimen collection. Tissue sections imaged and analyzed in this study were obtained from two postmor-
tem human brains. The human brains were acquired in accordance with the ethics committee at the Medical 
Faculty of the University of Rostock, Germany (#A2016-0083) and the Netherlands Institute of Neuroscience, 
Amsterdam. The patients/participants provided written informed consent for the general use of post mortem tis-
sue for aims of research and education. The experimental protocol was approved by the ethics committee of the 
medical faculty of the Heinrich Heine University Düsseldorf (#4863) and by the Netherlands Brain Bank (ethics 
approval NBB-1037/2018). All methods were carried out in accordance with relevant guidelines and regulations.

MAGIC preparation protocol and two‑photon fluorescence microscopy. Human brain samples 
were preliminarily treated for fluorescence microscopy following the label-free MAGIC preparation technique, 
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developed by Costantini et al.27. This method originates from the evidence that glycerol removal from fixed and 
embedded brain tissue leads to a specific increase in myelin autofluorescence and thus to an enhanced signal-
to-background ratio of myelinated axons. In detail, brain tissue was initially fixed with a 4% paraformaldehyde 
(PFA) solution for >12 weeks. Then, it was first embedded in a 10% glycerol, 2% DMSO, 4% formaldehyde 
solution and, second, in a 20% glycerol, 2% DMSO, 4% formaldehyde solution for >3 weeks. These steps were 
conducted at a tightly controlled temperature of 4 ◦C . Afterwards, brain samples were treated with a 2% dimethyl 
sulfoxide solution for cryoprotection and immersed in isopentane ( −50◦C ) for >30 mins. Next, frozen human 
brains were sliced at a temperature of −30◦C into 60 µm-deep coronal sections using a cryostat microtome 
(Leica Microsystems, Germany). Finally, brain tissue slices were incubated at ambient temperature in a 0.01 
M phosphate buffer saline solution (PBS) for three months. Prior to imaging, sections were coverslipped and 
mounted in PBS.

Brain slices treated with the MAGIC preparation protocol were imaged using a custom TPFM system. As 
excitation source, the system employs a Chameleon (Coherent, US) tunable mode-locked Ti:Sapphire laser (120 
fs pulse width, 90 MHz pulse rate) operating at 800 nm. The laser source is optically coupled with a custom 
lateral scanning system comprising a pair of galvanometric mirrors (LSKGG4/M, Thorlabs, US), and focused 
onto the brain tissue slices by means of a tunable 25x objective (LD LCI Plan-Apochromat 25x/0.8 Imm Corr 
DIC M27, Zeiss, Germany), characterized by a 0.8 numerical aperture and a free working distance of 0.57 mm. 
The resulting field of view is 450 µm× 450 µm . ≈100 mW were delivered to the imaged brain samples, adopt-
ing a pixel dwell time of 5 µs . 482/35 nm and 618/50 nm single-band bandpass emission filters  (BrightLine®, 
Semrock, US) were respectively used for detecting myelinated fibers and neuronal bodies. The fluorescence 
intensity signal was collected by a GaAsP photomultiplier tube (H7422, Hamamatsu Photonics, JP) and digitized 
with 8-bit precision. The PSF of the TPFM system was previously characterized  in27, by imaging 100 nm beads 
(FluoSpheresTM carboxylate-modified microspheres, yellow-green fluorescent, Thermo Fisher Scientific, US) 
embedded at a 1:1000 concentration in a PBS gel reproducing the refractive index of the immersion medium 
employed for the brain slice imaging. The average shape of the PSF was estimated using the Huygens PSF distiller 
tool (version 19.04, Scientific Volume Imaging, NL), resulting in a measured FWHM of 0.692, 0.692, 2.612 µm 
along the x, y, and z axes, respectively. No preliminary deconvolution was applied to the TPFM images acquired 
in this work. The TPFM system features a closed-loop XY stage (U-780 PILine XY Stage System, Physik Instru-
mente, Germany) enabling the lateral translation of the imaged specimen, and a closed-loop piezoelectric stage 
(ND72Z2LAQ PIFOC Objective Scanning System, Physik Instrumente, Germany) for the vertical displacement 
of the objective. The LabVIEW software controlling the system enables the sequential acquisition of adjacent 
overlapping 3D tiles, allowing for mesoscale reconstructions of entire brain slices with a maximum lateral reso-
lution of 0.44 µm (corresponding to 1024 px × 1024 px images) and a minimum axial sampling step of 1 µm . 
A voxel size of 0.88 µm× 0.88 µm× 1 µm and a lateral tile overlap of 40 µm were adopted in the present study.

Frangi filter theory. The Frangi filter produces a specific enhancement of tubular objects in 2D or 3D 
images, exploiting geometrical information on the local gray level structure derived from the eigenvalue decom-
position of Hessian matrices estimated at the pixel level. As detailed  in25, the structural properties of an image 
I can be characterized within a neighborhood defined by the scale space parameter σ through the following 
second-order Taylor expansion:

where ∇x,σ and Hx,σ denote the gradient vector and the Hessian matrix of the partial spatial derivates computed 
in x which respectively describe the first- and second-order local structure of the image. In the particular case 
of a 3D image, the Hessian matrix is defined as:

where the scale representation of the image I at scale σ , I(x, σ) , is generally obtained via a preliminary convolu-
tion with a Gaussian kernel of variance σ2:

In order to compensate for the progressive attenuation of spatial image derivatives at increasing analysis scales, 
with the consequential underestimation of Hx,σ matrices for larger σ values, the Frangi filter makes use of scale-
normalized spatial derivatives, that is:
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Otherwise, finer image details would be systematically over-enhanced with respect to coarser structures.
The eigenvalue decomposition of the scaled Hessian matrix determines the principal directions of the second-

order structure of the image; specifically, the Hessian matrix maps a finite image neighborhood onto a 3D ellip-
soid whose semiaxes have a length corresponding to the estimated eigenvalues �i and are oriented according to 
the related eigenvectors vi . This second-order ellipsoid thus provides an intuitive description of the local image 
behavior, exploited by Frangi et al. to design geometrical features which enable the specific segmentation of 
tube-like objects. Indeed, in presence of specific spatial contrast patterns, particular relations must hold between 
the three eigenvalues (Table 1). Namely, assuming |�1| ≤ |�2| ≤ |�3| , a pixel belonging to a bright 3D tubular 
structure over a dark background would be ideally characterized by a near-zero �1 (the dominant eigenvalue 
identifying the local direction of minimum intensity variation), and by �2 and �3 having a large similar magnitude 
and a consistent negative sign. On this basis, the first geometrical feature proposed by Frangi et al. accounts for 
the similarity to blob-like structures, which attains its maximum for locally isotropic objects (Table 1, first row):

This blobness metric alone, however, would not discriminate between plate-shaped and tubular objects; accord-
ingly, Frangi et al. introduced an additional geometrical grey-level-invariant feature, which evaluates the aspect 
ratio of the image ellipsoid in the plane orthogonal to the direction of minimum contrast, i.e. the ratio between 
the two largest second derivatives:

As shown in Table 1, this latter feature decays to 0 only within the neighborhood of plate-like structures, 
where |�2(σ )| becomes significantly lower than |�3(σ )|.

Furthermore, Frangi et al. adopted a feature of image structureness, defined as the Frobenius norm of the 
Hessian matrix, which enables the distinction of low-contrast background regions, generally associated with 
small spatial derivatives and, thus, small eigenvalues:

The above features are finally combined in a probability-like vesselness function which, in the case of a positive 
contrast polarity, is defined as:

(5)
δ

δx
I(x, σ) = σ ·

δ

δx
I(x)
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|�1(σ )|√
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Table 1.  Relations between the eigenvalues of the Hessian matrix for different geometrical patterns (L/H: 
low/high absolute value; adapted  from37). ûi denote the normalized eigenvectors related to the ith eigenvalue. 
Tubular structures are characterized by large-magnitude �2 and �3 eigenvalues and by a small dominant �1 ; the 
sign of �2 and �3 is determined by the contrast polarity (negative for a positive contrast, i.e. light objects against 
a dark background).
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where the product of the basic exponential terms implies the suppression of all image regions which do not 
concurrently meet all the above criteria.

β , α and γ are internal parameters of the Frangi filter which respectively tune its sensitivity to variations 
in the RB , RA and S features. Namely, an increase in β would lead to a relatively higher sensitivity to blob-like 
structures, decreasing the related penalty introduced in the evaluation of the vesselness probability. On the other 
hand, lower α values would amplify the response of the filter to the presence of elongated structures. Usually, the 
α and β sensitivity parameters are heuristically fixed for the specific application or image modality of interest. 
Conversely, since the structureness S is directly influenced by the dynamic range of the raw input image, the 
related γ sensitivity may be automatically adapted: according to Frangi et al., setting γ to half of the maximum 
Hessian norm obtained at each scale (i.e., half of the maximum image structureness, S(σ ) ) ensures robust results.

The Frangi filter was devised as a multiscale method: accordingly, the above vesselness likelihood function 
is estimated for different levels of interest of the image scale-space, after a convolution with Gaussian kernels of 
different variance, σ 2 . As done in the present implementation of the filter, the multiscale analysis of the vesselness 
probability function may be parallelized over multiple cores, thus making the computational time independ-
ent from the number of spatial scales of interest. Finally, the maximum intensity projection (MIP) of the filter 
response along the image scale dimension is considered:

where, as discussed in the following, V(σ ) locally reaches its maximum at a scale directly related to the cross-
sectional diameter of the tubular structures present in the image. The main steps of the Frangi filter’s algorithm 
are summarized in Fig. 5.

Fiber orientation analysis pipeline. The image processing pipeline for the 3D analysis of myelinated 
fiber orientations (Foa3D) was developed in Python and is made available as an open-source software at https:// 
github. com/ lens- bioph otoni cs/ Foa3D. The following paragraphs describe its main stages.

TPFM image preprocessing. The separate TPFM image tiles composing the mesoscale reconstructions of the 
acquired brain slices are preliminarily aligned using ZetaStitcher, a custom software tool for high-resolution 
large volumetric  stitching28,29. ZetaStitcher exploits the overlap between adjacent image stacks to compensate for 
possible misalignments due to the microscopy setup. Firstly, a 2D cross-correlation map is evaluated at several 
imaging depths for each pair of neighboring stacks to estimate their relative position. Secondly, the final loca-
tion of all stacks is determined through global optimization of the displacements applied to the individual pairs. 
ZetaStitcher is also employed to programmatically access and iteratively process basic sub-volumes fitting the 
system’s memory, thus enabling the analysis of submicron-resolution TPFM reconstructions of arbitrary exten-
sion.

First, however, the uneven illumination of the separate TPFM stacks is improved via the retrospective CIDRE 
correction  method30, so as to suppress the stitching artifacts which would otherwise arise when fusing the aligned 
TPFM tiles. Alternatively, this shading correction can also be performed using  BaSiC38, which similarly provides 
a retrospective estimate of the flat-field and dark-field images. The spatial intensity gain models related to the 
� = 618 nm and � = 482 nm wavelengths, shown in Fig. 6, were estimated using a reference dataset comprising 
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Figure 5.  Block scheme representing the main computational steps of the Frangi filter. In the present 
application, the estimation of the vesselness probability function over different spatial scales was parallelized for 
efficiency’s sake.
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56299 and 66297 TPFM images, respectively. The effect of the CIDRE illumination correction on the fiber ori-
entation maps generated by the Foa3D pipeline is shown in Fig. S2.

Furthermore, if required, the coronal XY-plane of the sliced TPFM sub-volumes is preliminarily blurred using 
a 2D Gaussian smoothing filter, adopting a variance tailored with respect to the anisotropy of the PSF of the 
TPFM system; i.e., σ 2

x = σ 2
PSFz

− σ 2
PSFx

 , σ 2
y = σ 2

PSFz
− σ 2

PSFy
 , where σ 2

PSFi
 represents the variance of the PSF model 

along the i-axis. Indeed, confocal laser scanning and light-sheet microscopes provide 3D images characterized 
by a poorer resolution along the direction of the optical axis: if not properly corrected, the anisotropic resolution 
of the microscope would introduce a systematic bias in the computation of the Hessian matrices of the second 
directional derivatives and, thus, in the resulting 3D orientation  estimates16. Conversely, this transverse degrada-
tion of the optical resolution may be skipped if the TPFM tiles are preliminarily deconvolved. Following this 
optional smoothing stage, TPFM images are downsampled in the coronal plane, in order to obtain an isotropic 
1 µm× 1 µm× 1 µm voxel size. While the TPFM tile alignment and illumination correction must be performed 
separately via the respective tools, the image resolution isotropization is integrated within the developed 
pipeline.

Multiscale Frangi filter. The Frangi filter was originally designed as a multiscale method for the analysis of 
angiography  images25, able to provide a concurrent enhancement of major arteries and veins, and peripheral 
blood vessels characterized by different cross-sectional sizes. However, for avoiding image artifacts, the analysis 

Figure 6.  Example of the CIDRE-based tile illumination correction (MIPs, scale bar: 50 µm ): (a) spatial 
intensity gain model at � = 618 nm (neurons); (b) gain model at � = 482 nm (myelinated fibers); (c) original 
TPFM tile (stack size: 450 µm× 450 µm× 71 µm , acquisition time: 3 min 33 s); (d) corrected TPFM tile (zero-
light preserved  mode30).
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Figure 7.  (a) Cross-sectional view of the Frangi’s vesselness probability of a simulated 3D fiber (left), obtained 
by adopting increasing scale-to-radius ratios; (b) 1D cross-sectional vesselness profiles, normalized with 
respect to the original intensity; (c) normalized maximum intensity; (d) normalized FWHM. The optimal scale 
corresponds to a scale-to-radius ratio of 50%.
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scales of the filter should be rigorously tuned with respect to the expected radius of the tubular structures of 
interest. As shown in 37, the smoothing Gaussian kernel behaves similarly to a Dirac delta function if its standard 
deviation becomes too small compared to the diameter of the analyzed myelinated fibers; as a consequence, the 
scale-selection stage would yield the original fiber structure, and the subsequent analysis of the local Hessian 
matrices and estimation of the vesselness score would produce a spurious high-probability ridge at the fiber 
edge. Conversely, as the standard deviation gets relatively large, the Gaussian convolution would yield the kernel 
itself, with the fiber starting to act as a Dirac function. Fig. 7a shows the cross-sectional view of the Frangi’s 
vesselness probability of an ideal cylinder simulating a 3D myelinated axon (pixel density: 50 px/µm ; length/
diameter aspect-ratio: 12), related to different scale-to-radius ratios. The evaluation of the 1D vesselness profile 
(Fig. 7b) in terms of maximum relative intensity (Fig. 7c) and FWHM (Fig. 7d) shows half of the expected fiber 
radius to be the optimal spatial scale which best preserves the original intensity and cross-sectional size of the 
analyzed tubular structure.

Regarding the three sensitivity parameters of the Frangi filter, γ was automatically tailored for each filtered 
sub-volume, and filtering scale, to the maximum norm of the estimated Hessian matrices. On the other hand β 
and α , which respectively tune the sensitivity of the filter to the geometrical features RB and RA (Eqs. 6, 7), were 
empirically adjusted through a visual inspection of the processed images. In particular, the myelinated fiber 
enhancement and the background suppression were evaluated in the � = 482 nm channel, while the � = 618 nm 
channel was considered for assessing the rejection of the neuronal bodies. Indeed, this channel can be used as a 
comparative reference since the soma can be clearly distinguished due to the characteristic autofluorescence of 
lipofuscins, a pigment that accumulates with ageing in the lysosomal compartment of postmitotic cells, includ-
ing  neurons39. This evaluation led to a final sensitivity configuration given by α = 0.001 and β = 1 which, as 

Figure 8.  Frangi-based enhancement of myelinated fibers in the 3D TPFM tile shown in Fig. 6 (MIPs, scale bar: 
50 µm ): (a) myelinated fibers autofluorescence ( � = 482 nm), enhanced via the MAGIC preparation  protocol27; 
(b) Frangi’s fiber probability map ( α = 0.001 , β = 1 , scales = 1, 1.25, 1.5 µm ); (c) neuronal bodies ( � = 618 nm); 
(d) neuron rejection mask (Yen’s thresholding method).
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made evident in Fig. 8a,b, is able to produce a marked selective enhancement of tubular fiber structures and a 
considerable rejection of the cell soma.

The Frangi-enhanced images generated from the � = 482 nm channel were binarized using Li’s minimum cross 
entropy thresholding  method40. 3D fiber orientations were then identified as the eigenvectors associated with 
the dominant eigenvalues of the Hessian matrices belonging to voxels classified as myelinated fiber structures. 
In order to improve the specificity of the resulting fiber orientation maps, provided by the inherent attenuation 
of non-tubular objects achieved by the Frangi filter, the developed pipeline optionally performs a postprocess-
ing step which suppresses the neuronal bodies by masking the � = 618 nm channel via Yen’s  binarization41. An 
example of this lipofuscin autofluorescence-based neuron segmentation is shown in Fig. 8c,d.

Analytical fiber orientation distribution functions. High-resolution fiber orientation data obtained at the native 
pixel size of the TPFM system can be integrated into  ODFs26, providing a comprehensive statistical description 
of 3D fiber tract orientations within larger spatial compartments or super-voxels. Due to their widespread use in 
the neuroimaging community, the estimation of TPFM-based ODFs is highly suitable for a multimodal quan-
titative comparison with spatial fiber architectures mapped by other advanced optical modalities, as 3D-PLI11. 
Furthermore, the spatial downscaling produced by the ODF estimation allows to bridge the gulf between single 
fiber orientations obtained via optical microscopy and the meso- and macro-scale connectomics that is gener-
ally targeted by diffusion magnetic resonance  imaging1. In the developed image processing pipeline, the ODFs 
of myelinated fibers were estimated from the 3D orientation vector fields returned by the Frangi filtering stage 
by means of the fast analytical approach proposed by  Alimi42,43. The present method is computationally efficient 
and is characterized by improved angular precision and resolution with respect to deriving the ODFs by mod-
eling local directional histograms of discretized fiber  orientations2. In detail, fiber orientation vectors are para-
metrized in terms of their coordinates φ and θ = 90◦ − α on the unit sphere S2 , which respectively denote the 
azimuth angle representing the orientation of the fiber axis within the XY-plane, and the polar angle related to 
the α angle between the fiber and the XY-plane. Their square-integrable statistical distribution f (θ ,φ) ∈ L2(S2) 
can then be expanded as a linear combination of spherical harmonics:

where Ym
l (θ ,φ) are the spherical harmonics of order l and degree m, defined by:

In the above expression, Pml  represents the associated Legendre polynomial whereas Nm
l  is a normalization fac-

tor given by:

The coefficients clm uniquely describing the fiber orientation distribution f (θ ,φ) can be recovered from its 
spherical Fourier transform, defined as:

In the adopted approach, fiber orientation vectors are regarded as two-dimensional Dirac delta functions on 
S2 ; thus, the distribution fSV(θ ,φ) of K orientations included in a given super-voxel can be modeled as follows:

As shown by Alimi et al., substituting Eqs. 12 and  15 into Eq. 14, and applying the sifting property of Dirac func-
tions, finally yields the continuous analytical expression of the spherical harmonics coefficients, reported below:

In this work, the series expansion of the analytical ODF was limited to the 6th order ( lmax=6), as previously 
performed by Axer et al. for the estimation of 3D-PLI-based fiber  ODFs1.

Pipeline configuration and computational runtimes. The runtime performance of the designed image process-
ing pipeline (Fig. 9) was evaluated on a high-performance computer cluster comprising a pair of twin computing 
nodes, each equipped with 192 GB of RAM and two  Intel®  Xeon® Silver 4214R 12-core processors operating at 
2.4 GHz.
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A first evaluation concerned the variation in the computational time and the memory usage of the Frangi-
based fiber orientation analysis stage with respect to the number of spatial scales employed by the Frangi filter. 
In order to ensure an unbiased comparison, a fixed spatial scale of 1.25 µm was adopted in this regard i.e., a dif-
ferent number of scales of identical value was fed to the pipeline. Furthermore, the execution time of the entire 
processing workflow, including the generation of the Frangi-based fiber ODFs, was assessed adopting different 
combinations of the size of the basic image chunks analyzed iteratively, and the size of the orientation map super-
voxels defined for the estimation of the fiber ODFs. In detail, chunk sizes of 50, 100, 150, 200 and 250 MB, and 
ODF super-voxel sides of 16, 32, 48, 64 and 80 µm were tested in this work. The present tests were conducted 
on a reference 8859.9 µm× 5204.8 µm× 98.0 µm TPFM reconstruction of a human brain region (252 3D tiles, 
16.4 GB) in between the primary and secondary visual cortex (V1/V2) (Fig. 4).

Validation of fiber orientation estimates. An ad hoc validation module was developed for verifying the reli-
ability of the 3D orientation estimates returned by the image processing pipeline designed in this work. 10 GM 
and 10 WM TPFM stacks were independently considered. Based on the characterization of the scale-dependent 
response of the Frangi filter to tubular structures of different cross-sectional size, three spatial scales, namely 
1, 1.25 and 1.5 µm , were adopted in the present validation; these respectively correspond to an optimal fiber 
diameter of 4, 5 and 6 µm . In detail, an automatic image patch generator was conceived so as to randomly sample 
and analyze basic 75 µm× 75 µm× 15 µm (x, y, z) slices of the original TPFM stacks. The ranges of the sliced 
sub-volumes were properly extended in order to cope with the boundary artifacts caused by the convolution 
with the smoothing Gaussian kernel, implementing the scale selection step of the Frangi filter. Furthermore, 
each sampled image patch was randomly flipped along its three axes with the aim to decrease the dependency of 
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Figure 9.  Block diagram schematizing the image processing pipeline for the 3D analysis of myelinated fiber 
orientations. Adjacent microscopy image stacks are preliminary corrected for shading using the CIDRE method 
and then aligned to generate high-resolution mesoscale reconstructions of the human brain tissue using 
ZetaStitcher. Single fiber orientations are then obtained from the myelinated fiber autofluorescence at � = 482 
nm using the novel Foa3D software tool, which iteratively analyzes basic sub-volumes of the whole image 
reconstruction. The � = 618 nm channel may be used to further reject the contribution of the soma in addition 
to the inherent attenuation produced by the Frangi filter (scale bar: 100 µm).
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the obtained results on the orientation statistics of the assessed image stacks. In detail, similarly to the approach 
followed  in44, the sliced patches were separately rotated about the z- and x-axis over a -45◦ to 45◦ range, with a 
sampling step of 5 ◦ , in order to produce a controlled reorientation of myelinated fiber structures, respectively 
within and outside of the image plane of the TPFM system. A bicubic spline interpolation with prefiltering was 
applied when rotating the randomly sampled patches. The transformed images, and their original, unrotated 
version, were separately processed by the developed pipeline in order to derive patch-wise distributions of the 
in-plane azimuth angle φxy and the out-of-plane elevation angle θzy . At this stage, the extended edge intro-
duced to account for the smoothing-related boundary artifacts was properly masked prior to the evaluation of 
the angular distributions. These were corrected according to the applied 1D rotations, i.e. rotating the angular 
reference system, and then compared to the distributions generated from the original image. Specifically, the 
discrepancy between the distributions was characterized by means of the inter-median distances �φ̃xy and �θ̃zy 
and, secondly, by their Bhattacharyya  coefficient45:

which estimates the amount of overlap between two statistical samples, computed here adopting N=180 bins of 
1 ◦ in width. A threshold of 1% was imposed on the relative number of pixels classified as belonging to myelinated 
fibers: TPFM patches not meeting this criterion for each tested rotation were systematically excluded from further 
consideration. This ensured that the above metrics were obtained only from adequately populated data samples, 
with an equal number of patches related to each tested rotation value.

Data availibility
The open Zenodo dataset including the TPFM image stacks considered in the validation of the fiber orientation 
analysis pipeline can be accessed at: https:// doi. org/ 10. 5281/ zenodo. 71819 45.
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