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Parameter adaptive sliding mode 
trajectory tracking strategy 
with initial value identification 
for the swing in a hydraulic 
construction robot
Jing‑Wei Hou 1, Tao Ni 2* & Zhu‑Xin Zhang 2

A novel trajectory tracking strategy is developed for a double actuated swing in a hydraulic 
construction robot. Specifically, a nonlinear hydraulic dynamics model of a double actuated swing 
is established, and a parameter adaptive sliding mode control strategy is designed to enhance the 
trajectory tracking performance. When an object is grabbed and unloaded, the moment of inertia 
of a swing considerably changes, and the performance of the estimation algorithm is generally 
inadequate. Thus, it is necessary to establish an algorithm to identify the initial value of the 
moment of inertia of the object. To this end, this paper proposes a novel initial value identification 
algorithm based on a two‑DOF robot gravity force identification method combined with stereo 
vision information. The performance of the identification algorithm is enhanced. Simulations and 
experiments are performed to verify the effect of the novel control scheme.

Due to the risks associated with the presence of operating errors and dynamic changes in the environment, the 
development of fully automated systems for robotic construction machines or construction robots is limited, 
although automatic control can help achieve a high precision and efficiency for many kinds of  machines1,2. 
To promote the operation of robotic construction machines, it is necessary to enhance the environmental 
perception and implement intelligent assistance with automatic control for novice  operators3–5. By optimizing 
the proportional integral derivative (PID) controller, Feng et al.6 proposed an improved ant colony optimization 
algorithm (IACO) to increase the tracking accuracy of hydraulic systems.  Moreover7, a robust controller was 
designed using the µ-synthesis method to ensure the stability and performance of a hydraulic excavator.

Zhao et al. developed a construction robot system with physical human–robot interaction (PHRI), which 
could perform tasks in earthquake disaster  sites8,9. In such systems, as the end effector operation may be 
dangerous to the operator, a novel force strategy associated with a master–slave control schematic is usually 
adopted.

Most engineering robot systems are actuated through hydraulic servo systems that suffer from disturbances 
and uncertainties. To attain high-performance trajectory tracking control in uncertain nonlinear systems, the 
robust adaptive control  method10 has been widely used because of its flexibility and robustness. For  example11, 
a fuzzy logic controller was designed to track the trajectory of an industrial robot with 2 degrees of freedom. 
Three particle swarm optimization algorithms with different cost functions were used to optimize the controller 
parameters. The fuzzy logic in the algorithm decreased the complexity of mathematical modelling, which is 
commonly a complex and time-consuming process. However, owing to the lack of comprehensive analyses, the 
algorithm lacked generality in multiple situations, even though satisfactory results were obtained in the specific 
experiments. Among such strategies, adaptive sliding mode control is a valuable control  method12–14.

Adaptive sliding mode control is a new control strategy for nonlinear systems. This method combines the 
advantages of adaptive control and sliding mode control by introducing adaptive estimation into the sliding 
mode controller. According to the information uncertainty determined using the adaptive controller, the sliding 
mode controller can be adjusted to decrease the system uncertainty and conservativeness of the sliding mode 
control. In this manner, the system can maintain the robustness of sliding mode control to external disturbances 
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and unmodelled dynamics, and the adaptive control strategy can help overcome the limitations of sliding mode 
 control15–18. To suppress the motion disturbance of the actuator, a nonlinear robust dual-loop control scheme 
was  proposed19. In addition to considering the motion disturbance of the actuator, the nonlinear characteristics 
and friction problems of the EHLS were considered. Furthermore, a continuous control set model predictive 
speed control (CCS-MPSC) based on the fast terminal cost index (FTCI) was  proposed20 to enhance the system 
tracking performance.

Although sliding mode control is highly robust, it is based on the precise mathematical model of the 
 object21–24. The “rough” mathematical model of the system must be predicted before the system sliding mode 
surface parameters and controller parameters can be determined. For nonlinear systems, the dynamics of the 
nonlinear function of the system must be identified before designing the sliding mode controller. The method 
of robot parameter identification to obtain accurate model parameters is of significance in the design of robot 
controllers including sliding mode controllers. To address the uncertain load disturbances of a hydraulic Stewart 
manipulator, sliding mode control based on the discontinuous projection adaptive law was developed to enhance 
the tracking  performance25–27. Cao et al. used neural networks to adjust the switching gain online and realize 
system identification and parameter prediction. Moreover, the authors designed a neural network sliding mode 
controller for hybrid electric  vehicles28. Using the Szász–Mirakyan operator as the basic function and by adjusting 
the polynomial coefficients through the adaptive law determined through stability analyses, a robust adaptive 
controller was designed to enhance the impedance control of a robot  manipulator29. Other common methods 
to enhance the estimation performance include the use of neuro-fuzzy model auxiliary filters and time-varying 
 parameters30–34.

The aim of this article is about a novel method to identificate the moment of inertia for a robot with stereo 
vision and robot dynamic and its application for the adaptive sliding mode control strategy of a construction 
robot. A satisfactory trajectory tracking controller must ensure that a robot can perform precise trajectory 
tracking. To this end, the dynamic characteristics of the robot must be  considered35–38. To design the controller 
for a swing when a robot carries an object and increase the trajectory tracking accuracy, it is necessary to design 
a robust adaptive controller to address the uncertainty of the parameters. For a hydraulic cylinder system, the 
load equivalent mass is the most important element in controller design. However, for a swing, because the 
load mass is large and changes in real time according to the working conditions, the equivalent mass cannot be 
accurately obtained. Nevertheless, it can be assumed that the load does not change during the carrying process. 
Based on the inverse dynamic analysis of the robot arm and boom cylinders, the initial value of the equivalent 
mass can be obtained through system  identification39. Subsequently, relatively accurate initial values of the 
controller parameters can be obtained, and the convergence and trajectory tracking accuracy of the controller 
can be enhanced.

According to the former issues, the following work was complemented: A novel nonlinear hydraulic dynamics 
model is established for the double actuated hydraulic cylinder system of the swing in a hydraulic robot and a 
sliding mode control strategy with parameter adaptive estimation is designed to improve the trajectory tracking 
performance. A method for estimating the initial value of the moment of inertia based on stereo vision and robot 
dynamics is proposed in this manuscript. The estimated initial value of the moment of inertia is used in the robust 
adaptive control strategy to improve the trajectory tracking performance which contributes a novel strategy 
SMI (sliding mode control with initial value). The main contribution of the paper includes: A method obtaining 
the inertial moment parameters of the robot by using stereo vision and robot dynamics is proposed. Through 
the discussion of the initial value of the nonlinear adaptive algorithm of swing of a new type of engineering 
robot, the effect of this method in improving the trajectory tracking accuracy during the robot grasping and 
releasing process is proved. Some specific problems in the use of this method are discussed, such as the effect 
of the combination of the moment of inertia parameter acquisition method and PD controller, the parameter 
convergence characteristics of the parameter adaptive method, and the advantages of this method compared 
with the results obtained by the robot dynamics method only and stereo vision only.

The paper is organized as follows: The background and related research are described in "Introduction" 
section. "System and Problem Description" section presents the system overview of the teleoperation system and 
problem description. "Sliding adaptive robust controller for the swing" section describes the sliding mode adaptive 
robust controller for the swing. The method to identify the system initial value is described in "Identification 
of the moment of inertia" section. The simulation experiment is described in "Simulation experiment" section. 
"Experiment" section describes the experiment performed to compare the performance of three controllers 
carrying objects between two points.

System and problem description
System description. The proposed teleoperation system consists of two parts: a pair of hydraulic PHRIs as 
the master and an engineering robot reconstructed from a hydraulic excavator as the slave, as shown in Fig. 1. 
Moreover, the system includes a control PC for each part.

The four asymmetric hydraulic cylinders are driven by servo valves. The working pressure can be measured 
using pressure sensors installed in the rod and rod-less cavities of the hydraulic cylinder. The displacement of 
the working device can be determined using a displacement sensor installed outside the hydraulic cylinder.

The system uses cameras for monitoring. However, considering the limitations of the camera viewing angle 
and resolution, a 3D camera is used to construct a virtual scene and the work object. The general shape of the 
object can be determined through the 3D camera, although the volume and shape cannot be accurately identified 
due to the low camera resolution.

Figure 2 shows the actuation system of the swing. The double-cylinder actuated swing occupies a small space 
and does not need to drive the heavy chassis. The production cost of the structure increases because of the use of 
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the double cylinders. However, because multi-point transmission and effective force transmission can be realized 
by the hydraulic system, this design exhibits a low energy consumption and compact structure.

Problem description. The moment of inertia parameter of the swing varies considerably when the work 
object is carried and unloaded. However, the parameter has a constant value during one procedure. This article 
designs a sliding adaptive robust trajectory tracking controller for the swing of a hydraulic construction robot. 
However, the strategy suffers from a low convergence speed when the moment of inertia parameter varies. 
Therefore, a moment of inertia identification algorithm is used.

The main problem can be divided into the following subproblems.

1. According to the dynamic characteristics of the robot, the gravity compensation algorithm is used to 
determine the weight of the object according to the information provided by the arm and boom force 
sensors. The shape and size information of the working object is obtained through computer vision. These 
data points are combined with the weight information to determine the inertia of the object relative to the 
swing.

2. To effectively suppress the uncertainties and disturbances, a sliding mode adaptive controller is designed 
for the hydraulic servo system of the swing. By combining the control strategy and initial value obtained by 
determining the moment of inertia, the parameter convergence and trajectory tracking performance can be 
enhanced.

Sliding adaptive robust controller for the swing
Mathematical model of the swing. The dynamic model for the hydraulic system shown in Fig. 2 is

where m is the mass of the cylinder rod, I is the equivalent mass of the robotic arm and the cylinders,  F1 and  F2 
denote the load forces of the cylinders, and C is the damping coefficient for swing.

In this case,

(1)F1l1 sin θ1 + F2l2 sin θ2 = ml̈1 + I θ̈ +ml̈2 + Cθ̇

Figure 1.  Teleoperation system.

Figure 2.  Swing DOF in the construction robot.
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where  A1 and  A2 are the areas of the two sides of the piston, and  P1 and  P2 denote the pressures in the two 
chambers of the cylinder.

As is shown in Fig. 3, ignoring manufacturing tolerances, when θ= 0 , ∠A1OB1=∠A2OB2=θ0 . Suppose that 
∠A1OB1=θ1 , ∠A2OB2=θ2 ,during the rotating process, the length of the hydraulic cylinder can be obtained by 
the law of cosines

where θ1 = θ0 − θ , θ2 = θ0+θ.
The result calculated using the MATLAB program is shown in Fig. 4. The lengths  l1 and  l2 are small and exhibit 

similar amplitudes when the swing DOF varies from the centre position θ = 0°to the θ = 60° position.

(2)
(P1A1 − P2A2)l1 sin θ1 + (P1A2 − P2A1)l2 sin θ2

= ml̈1 + I θ̈ +ml̈2 + Cθ̇

(3)l1 =
√

l2a1 + l2a0 − 2la1la0 cos θ1

(4)l2 =
√

l2a1 + l2a0 − 2la1la0 cos θ2

(5)A1l1 sin θ1 + A2l2 sin θ2 ≈ A2l1 sin θ1 + A1l2 sin θ2 ≈ As

Figure 3.  The swing schematic.
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Figure 4.  l1 and  l2 when the swing rotates. (Kinematics model of the double actuated swing).
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and

Subsequently, (2) can be written as

Considering leakage and compressibility, the dynamics of the cylinder oil flow can be expressed  as17

where  Ct is the internal leakage coefficient,  V1 and  V2 denote the total fluid volumes of the hydraulic cylinders, 
βe is the bulk modulus of the fluid, and  Q1 and  Q2 are the fluid flow rates of the cylinders. The displacement of 
the spool valve xv is

where  kq is the flow gain coefficient of the servo valve.
The dynamics of servo valve have been incorporated in the controller design. Here, the valve dynamics are 

neglected and the servo valve opening xv is proportional to the control input, since a high-response servo valve 
is used.

where  ka is the servo amplifier gain and u is the servo valve control input signal.
The state variables are defined as

According to (7–10), the dynamics are expressed in a state-space form as

where B is the damping coefficient for cylinder,  V0 is the total fluid volume of the two cylinders  V0 =  V1 =  V2, and 
 As is the total area of the cylinders.

M is the equivalent load mass obtained from the three terms at the right side of Eq. (7). M can be acquired 
by the Ml̈1 = I θ̈  and the second order differential of (3) or (4). As M does not vary greatly when |θ | < 60◦ , for 
simplify reason, M is set as a constant in the simulation experiment.

The time derivative of the second expression in (12) is

In (8), the difference in the third and fourth terms is

Thus,

Controller design. The following unknown parameter set is defined:

(6)�l1 ≈ �l2 ≈ y,

(7)(P1 − P2)As = 2mÿ + I θ̈ + Cθ̇

(8)

V1Ṗ1

βe
= −Asẋl + Q1 − Ct(P1 − P2)

V2Ṗ2

βe
= Asẋl − Q2 + Ct(P1 − P2)

(9)
Q1=kqxv

√

�P1

Q2=kqxv
√

�P2

(10)xv = kau

(11)x =
[

x1 x2 x3 x4
]

=
[

y ẏ P1 P2
]

(12)

ẋ1 = x2

ẋ2 =
1

M
[(x3 − x4)As − Bx2 − d]

ẋ3 =
βe

V0

(

−Asx2 + kqka
√

�P1u− Ct(x3 − x4)
)

ẋ4 =
βe

V0

(

Asx2−kqka
√

�P2u+Ct(x3 − x4)
)

(13)
...
y = 1

M

[

(ẋ3 − ẋ4)As − Bẋ2 − ḋ
]

(14)
ẋ3 − ẋ4 =

βe

V0
[(−2Asx2 + kqka(

√

�P1 +
√

�P2)u

− 2Ct(x3 − x4)]

(15)

...
y = −2βeA

2
s x2

MV0
− 2βeAs

MV0
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B

M
ẋ2 −

ḋ

M
+

βe

MV0
kqka(
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�P1 +
√

�P2)u
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The state-space Eq. (15) is linearly parameterized  as40

Function f can be expressed as f = f̂ +�f  , where f̂  is the nominal part, and Δf is the uncertain part, 
bounded as

where F is a known function.
The control gain g is confined to a certain constant range.

The estimated value of g is

The control objective is to ensure that y asymptotically tracks the desired trajectory yd.
The tracking error is defined as

The sliding mode surface is defined as

Differentiating s with respect to t yields

The Lyapunov function candidate is defined as

Thus,

The control input u is

where f is the boundary layer, k is the control gain, and sat(Δ) is the saturation function, defined as

To obtain the adaptation parameters, the following Lyapunov function is defined:

where σ̂i is the estimated value of σi.

σ1=− 2βeA
2
s

MV0
, σ2=− 2βeAsCt

MV0
, σ3 = − B

M
, σ4=− 1

M
, σ5 =

βe

MV0
kqka

(16)
f = σ1x2 + σ2(x3 − x4)+σ3ẋ2 + σ4ḋ

g = σ5(
√

�P1 +
√

�P2)

(17)
∣

∣�f (x, t)
∣

∣ ≤ F(x, t)

(18)f̂ = σ̂1x2 + σ̂2(x3 − x4)+σ̂3ẋ2 + σ̂4ḋ

(19)0 < βmin < g < βmax

(20)ĝ = σ̂5(
√

�P1 +
√

�P2)

(21)ỹ = y − yd

(22)s =
(

d

dt
+ �

)2
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2ỹ

(23)
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(26)

u = 1

ĝ
(û− v)
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The estimation error is

The time derivative of  V1 is

To ensure that V̇1 < 0 , the adaptation laws are set as

Function Proj() is a discontinuous projection, defined as

For any adaptation function, the projection mapping ensures that

Controller (26) and adaptation laws (31) ensure that the tracking errors asymptotically converge to zero, i.e., 
x̃(t) → 0 as time t → ∞.

Identification of the moment of inertia
Volume and shape identification by stereo vision. To get the moment of inertia of the object, the 
volume and shape is needed. For the experiment in the paper, a simple method by corner and depth for a 
rectangle stone object is used.

(29)σ̃i=σi − σ̂i

(30)

V̇1 =sṡ+
5

∑

i=1

γiσ̂i
˙̂σi = −σ̂1

[

sσ1x2−γ1
˙̂σ1
]

+ σ̂2

[

s(x3 − x4)− γ2
˙̂σ2
]

+ σ̂3(ẋ2 − γ3
˙̂σ3)

+σ̂4(s
˙̂
d + γ4

˙̂σ4)
[

σ5(
√

�P1 +
√

�P2)u− γ5
˙̂σ5
]

− ksat

(

s

φ

)

s + σ4
˙̂
ds

(31)

˙̂σ1 = Pr ojσ̂1

(

− sσ1x2

γ1

)

˙̂σ2 = Pr ojσ̂2

(

− s(x3 − x4)

γ2

)

˙̂σ3 = Pr ojσ̂3

(

σ̂3ẋ2

γ3

)

˙̂σ4=Pr ojσ̂4

(

− s
˙̂
d

γ4

)

˙̂σ5 = Pr ojσ̂5

(

σ5(
√
�P1 +

√
�P2)us

γ5

)

(32)Pr ojσ̂i (•) =

{

0 if σ̂i = σimax&• > 0,

0 if σ̂i = σimin&• < 0,

• otherwise

(33)σ̂i ∈
{

σ̂i : σimin ≤ σ̂i ≤ σimax

}

(34)σ̂i

[

γiprojσ̂i (γ
−1
i �i)−�i

]

≤ 0

Figure 5.  The corner extracting.
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Figure 5 shows an image from a scenario that the stereo camera is placed at the top of the object, a stone 
covered by write papers as the work object is placed at the floor with black background.

Erode algorithm is applied to to remove the interference of small targets other than the targets. For example, 
small spots in the red circle of the left image may bring disturbance in the following process. Binarize for the 
eroded image is used for the 2-D grayscale image by thresholding, thus ROI (range of interest) is obtained.

Harris algorithm is applied to the corner extracting process. The result is shown as the red points in the right 
image. According to the four points in the green circles, the length, width and position of the object are obtained.

Zhang’s calibration algorithm is used for Stereo calibration. After rectifying the pair of stereo images from 
the two cameras, BlockMatching disparity algorithm is used the get the depth of  ROI41. Then the height of the 
object is obtained. Then the volume and shape of the object can be obtained.

Figure 6 shows the procedure of the image process. Similar methods can be used for cylindrical objects to 
obtain the diameter and length of the object through the corners.

The moment of inertia to swing. The swing DOF when an object is being carried pertains to a robot 
arm system with constant parameters that cannot be identified offline. As described in "Sliding adaptive robust 
controller for the swing" section, the main parameters in (10) are dependent on the equivalent mass M. The 
equivalent mass M is composed of the mass of the swing hydraulic cylinder push rod and moment of inertia I. 
Therefore, I is

where  Ia is the moment of inertia of the arm and folk glove, and  Ib is the moment of inertia of the linkage system 
with the swing and boom.  Ia and  Ib can be accurately obtained through offline identification.  Io is the moment 
of inertia of the object being carried, which varies in a large range and cannot be accurately calculated offline. 
A new method is proposed that combines the stereo vision system and hydraulic cylinder information of the 
boom and arm to obtain  Io.

The density ρ and approximate volume V of the working object can be derived as

However, the shape and volume obtained by the vision system are considerably different from those of 
the work object, and thus, the direct use of these parameters may lead to a low estimation accuracy. The force 
obtained by the force sensor is highly accurate. If the mass of the work object can be obtained considering the 
force of the arm and boom, the moment of inertia can be corrected to obtain more accurate moment of inertia 
parameters.

The dynamic model for a system composed of booms, arms and folkgloves  is29

where τa and τb denote the torques of the arm and boom, respectively, as shown in Fig. 7.
Cb = cosϕb ,  Ca = cosϕa ,  Sb = sin ϕb ,  Sa = sin ϕa ,  Cθb = cos θb ,  Cθba = cos(θb − θa) ,  Sθb = sin θb

,Sθba = sin(θb − θa).
The boom angle θb is

(35)I = Ia + Ib + Io

(36)Io=
∫

ρV

(37)

[

τb

τa

]

=
[

mblgbCb +malb malgaCa

0 malgaCa

][

Cθb
Cθba

]

g

−
[

mblgbSb malgaSa
0 malgaSa

][

Sθb
Sθba

]

g

(38)θb = xb − αb1 − αb2

Figure 6.  Image processing in computer vision.
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The arm angle θa is

The boom push force is

The arm push force is

When the robot carries an object, the torques can be formulated as,

Thus, the following equations can be used to obtain  mo

where  Lgo is the distance from the centre of the object to the swing, determined using the Digiclops system.

Although  mo can be obtained using Eqs. (45) and (46), the two equations are slightly different. Equation (45) 
is relatively simple and must be used when possible. However, when the arm is vertical to the ground, singularity 
appears, and τa becomes extremely small. In this case, it is difficult to obtain the force. Therefore, the following 
formula is used to define  mo

(39)θa = xa − π + αa1 + αa2

(40)fb =
τb

cb sin x
′
b

(41)fa =
τa

ca sin
(

xa + x′a
)

(42)

[

τb

τa

]

=
[

mblgbCb +malb+molo
0

(malga +molo)Ca

(malga +molo)Ca

][

Cθb
Cθba

]

g

−
[

mblgbSb
0

(malga +molo)Sa
(malga +molo)Sa

][

Sθb
Sθba

]

g

(43)
τa=(malga +molgo)CaCθbag

− (malga +molgo)SaSθbag

(44)
τb =

(

mblgbCb +malb +molo
)

Cθbg

−mblgbSbSθbg −
(

malga +molo
)

SabSθbag

(45)mo =
τa −malgag(CaCθba − SaSθba)

lgog(CaCθba − SaSθba)
=mo1

(46)
mo =

τb −
(

mblgbCb +malb
)

Cθbg+
log(Cθb − SabSθba)

mblgbSbSθbg +malgaSabSθbag = mo2

Figure 7.  Boom and arm parameter.
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Using  mo, a rough initial value of the moment of in can be obtained through the following equation:

where  lomin and  lomax denote the minimum and maximum distances of the object from the swing, respectively. 
The mass of the object is assumed to be evenly distributed, and volume  V1 is determined through the vision 
information.  Io1 can be used as the initial value of the parameter identification.

Notice The most remarkable feature of this paper is that the combination of gravity estimation algorithm and 
stereo vision algorithm can provide more accurate estimation of moment of inertia than the method based on 
robot dynamics alone.

Discussion about the identification method combining with PD controller. The current robot 
joint control mostly adopts PD control because of its simple structure and excellent dynamic performance. 
Because of its phase advance ability, the dynamic response performance exceeds that of nonlinear control 
including sliding mode control in case of large deviation. But it also has many weaknesses, such as the large 
initial input, being sensitive to the friction force and to parameter uncertainty. PD nonlinear control algorithm 
which combines PD controller and nonlinear controller was proposed in many  literatures27,40.

It is very easy to prove the effect of this method on PD controller. Figure 8 shows the closed loop step response 
of a common open-loop plant with transfer function

A PD controller is designed with the design goal of phase margin less than 15%. PD5 represents the closed-
loop step response of a PD controller with the transfer function shown in (49).The close loop of the PD controller 
has a closed loop response of 55° phase margin and an overshoot of 13.6%.

Under the same target, with the accuracy of the mass parameter as 80% and 60% respectively, two PD 
controllers are designed with the following transfer functions.

and

These PD controllers are denoted PD4 and PD3, respectively.The phase margin of PD4 is 50.1°and the 
overshoot is 17.9%. The phase margin of PD3 is 44.5°and the overshoot is 23.8%. This is because the actual mass 
parameters are larger than those designed by the controller, so the overshoot and phase angle margin are both 
unfavourable.

(47)mo =
{

mo1 |θab| < 20◦

mo2 else

(48)Io1 = ρ

∫ lomax

lomin

V1dl

(49)G = 1

0.5s2 + s

(50)G = 1

0.4s2 + s

(51)G = 1

0.3s2 + s
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Figure 8.  Effect of mass parameter on PD controller.
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During the process of grasping and placing, the change of its moment of inertia is often more than twice that 
of the robot arm. It is difficult to set the moment of inertia of the identification close to the true value. At this 
time, the identification algorithm combining vision and gravity has more important significance.

Simulation experiment
Sine trajectory tracking simulation. To verify the effect of the proposed scheme, the following 
simulation experiments are performed over the MATLAB Simulink platform. Three methods compound PID 
control (CPID), common sliding mode control (SM) and the proposed strategy, namely, sliding mode control 
with initial value (SMI), as shown in Figs. 9, 10 and 11, are used in the comparison experiments.

The CPID controller represents a practical controller in a linear system (Fig. 9). The zero and pole points are 
optimized through the feedforward and feedback PID controller, and the PID parameters can be adjusted in 
conjunction with the Routh stability criterion.

The sliding mode controller is shown in Fig. 10. The sliding mode controller with initial value identification 
is shown in Fig. 11.

The input modules on the desired trajectory output, such as the position, velocity and acceleration. The 
trajectory is y = sin(πt).

The plant built by SimMechanics in Fig. 12 is applied in the simulation program. The load features can be 
adjusted by setting the mass and gravity centre in the arm of the plant. Considering the work scenario, the load 
parameter is a constant value after it is determined. The commonly used friction force based on the LuGre model 
is introduced.

where z is the average deformation of the bristles, υ0 is the bristle stiffness coefficient, υ1 is the micro damping 
coefficient, and υ2 is the viscous coefficient. Random force disturbance ranges from ± 25N is added in the plant.

(52)D = υ0z + υ1
dz

dt
+ υ2θ̇

Figure 9.  Compound PID controller (CPID).

Figure 10.  Sliding mode controller (SM).

Figure 11.  Sliding mode controller with initial value identification (SMI).
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In order to obtain the guidelines for experimentation, the realistic model of the hydraulic parallel robot 
manipulator has been used. The system parameters are selected based upon their actual values and are given in 
Table 1.

In the simulation program, the real value of  mo is 2681 kg  m2, and the calculated values of the parameters are.

The initial parameter value is input to the adaptive parameter identification module by setting the parameters 
in the S function. To validate the performance of the initial value identification, the initial values of M and σ are 
set. In SM, the initial value of  mo is set as the unloading moment of inertia, 723 kg  m2; thus, the initial values 
of σ are

In SMI, the initial value of  mo is set as 2469 kg  m2; thus, the initial values of σ are

The reference trajectory is θd = 60 × sinπt (°).
According to the simulation experiment results shown in Fig. 13, the CPID method performs better at the 

beginning. But as the CPID does not have the parameter estimation function, the initial and final tracking errors 
are similar. Many shortcomings of PD controllers have been discussed in "Discussion about the identification 
method combining with PD controller" section, similar situation will happen to PID or CPID in this paper.

The trajectory tracking error of the SM controller is considerably smaller than the steady-state error of the 
CPID and near to that of SMI. The controller can be considered to be very effective only in terms of trajectory 
tracking function. However, due to parameter  coupling14, the parameters of the SM method cannot approach 
the target parameters, and thus, the performance of the controller is limited especially the initial performance. 
As is shown in Fig. 14.

The SMI trajectory tracking results in the later stage are the best among the three methods because of the 
superior parameter estimation, which was achieved with the proposed initial value estimation method. However, 
the parameter identification results are slightly different from the true values because of the accuracy limitations 
of the estimation algorithm.

Carrying experiment simulation. The effect of the new parameter identification on PD controller has 
been described in "Discussion about the identification method combining with PD controller" section. Since 
PD controller and nonlinear controller can be designed and independently and the coupling of control can be 
realized by decoupling, to discuss the influence of initial value of SMI is enough. The step position response is 
used to simulate the object carrying process.

To validate the effect of initial moment of inertia on the proposed trajectory tracking control scheme during 
an object carrying task, a simulation in which a square wave represents the desired trajectory is performed.

(53)σ =
[

−4547,−0.0113, 0.2984, 3.73× 10−4, 14.48
]

(54)σ= [ − 16861,− 0.0417,1.1065,0.0014, 53.68]

(55)σ= [ − 4937.4,− 0.0122,0.3240, 4.05× 10−4, 15.718]

Figure 12.  SimMechanics plant.

Table 1.  Parameters in the simulation program.

Parameter Description Value Unit

As Area of the piston 6.08 ×  103 m2

βe Bulk modulus of the fluid 690 MPa

w Servo valve area gradient 0.008 m

Ps Supply pressure 2 MPa

V0 Total fluid volume 9.05 ×  10–4 m3

Ct Discharge coefficient of the cylinder 7 ×  10–9 m5/(N s)

kq Pressure gain 5.09 ×  105 m4s/kg

ka Amplification gain 1.0 mA/V
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Figure 13.  Trajectory tracking result.
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Figure 14.  Parameter identification result.
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Considering that the accuracy of the visual identification algorithm is affected by many factors, such as the 
grab position, the orientation of the target object, the uncertainty of the object’s density and even the degree of 
illumination, to cover all the different situation is as impossible. This experiment only discussed the effect of 
identification accuracy, the following controller with different parameters are discussed.

1. SMI with the calculate value is described in "Moment of inertia identification experiment" section which 
represents the real value of the inertia parameter as SMI10.

2. A value of which the parameter is well identified as 0.8 times the mass, representing a smaller inertia 
parameter as SMI8.

3. For the identification result under bad conditions, the moment of inertia is 0.6 times of the calculated value 
as SMI6.

With the upper controllers, the carrying process with square wave as desired trajectory are simulated. the 
friction force and disturbance are the same as "Sine Trajectory tracking simulation" section.

From the result of Figs. 15 and 16, we can conclude that: The trajectory tracking performances of each 
controller are different at the first ten second. The accuracy mainly depends on the distance between the initial 
value and the true value. But after a certain period of time, each controller performs at almost the same accuracy. 
The influence of initial value is very small, especially after the step process. However, there is an error in the 
desired value due to imperfections in the identification algorithm that cannot be completely eliminated. The 
error is small, approximately 1% of the desired trajectory. Considering that the nonlinear algorithm mainly aims 
at the steady state situation, parameter changes and uncertainties, the effectiveness of the identification method 
in a sliding mode algorithm is proved.
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Figure 15.  Position tracking result.
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During the processes of picking up and unloading objects of the carrying task, the mass parameters often 
change dramatically. At least two processes, carry and unload, are included and repeated. The initial value 
identification method can effectively improve the accuracy of the initial stage. The practical significance of the 
initial value identification method in this paper is proved. SMI is a practical method for the situation where the 
object changes frequently, but it has little impact on the situation that one constant load mass repeats many times.

The experimental results demonstrate the importance of the initial value identification method for all control 
strategies parameter identification. In addition to trajectory tracking, this method can be used in other fields, 
such as energy-saving control.

Experiment
This section describes the moment of inertia identification experiment. The system setup and implementation 
issues are in "Experiment setup and implementation issues" section. The process and result of the identification 
experiment are in "Moment of inertia identification experiment" section.

Experiment setup and implementation issues. The experimental setup consists of the following 
hardware components.

1. Construction robot reconstruction for the 10 T LiuGong excavator.
2. Pointgrey Research Colour Digiclops, with three Sony 1/3" progressive scan CCD cameras.
3. Rexroth Huade 4 WRE16-10 servo valve.
4. Druck PTX1400 pressure transmitters with an operating pressure range of 25 MPa.
5. Miran LVDT20 rod-type displacement sensor.
6. ADVANTECH PCI-1710UL Data acquisition card (DAQ) with 12-bit data acquisition and 100 kHz sampling 

rate.

The hardware of the control system consists of two PC-compatible computers that communicate through a 
local area network. All analogue measurement signals (cylinder position, chamber pressure, supply pressure and 
load force) are fed back to the slave PC through four plug-in DAQ cards.

Moment of inertia identification experiment. To test the effect of the vision information combined 
with the gravity recognition algorithm of moment of inertia, as described in "Controller design" section, a three-
dimensional vision and gravity compensation method was applied to grasp stone.

In the experiments with a 1.0 m long stone object, the object was grabbed in the middle position (0.5 m, 
denoted M) or edge position (0.9 m, denoted E), and the results are compared with the torque obtained using 
the robot dynamics method only and the vision method only.

The moment of inertia result is  Isum. According to Table 2. The identification experiment results are shown 
in Table 2.

In Table 2, the calculated value column shows the manually measured results, which has the highest accuracy. 
The identified value column shows the result with the method in this paper combined with stereo vision in 
"The moment of inertia to swing" section and robot dynamics in "The moment of inertia to swing" section. The 
dynamics only column shows the results calculated with only the robot dynamics method, and the vision only 
column shows the results calculated with only the stereo vision information. The volume is calculated according 
to the parameters from computer vision.

From Table 2 and Fig. 17, we can conclude that:
In this experiment, the moment of inertia of the load is three times that of the mechanical arm. The 

significance of identification algorithm of moment of inertia is validated.
Identified value with the method combined with stereo vision robot dynamic performs best of the three 

algorithms. This shows the superiority of the identification method of moment of inertia combined with vision 
that proposed in this paper.

Regarding the target object as a mass point, a moment of inertia can also be identified with the robot dynamic 
algorithm as Dynamic only. Dynamic only performs better than Vision only because the accuracy of force sensor 
is better than vision. But in the experiment, when the folkglove grasps the middle position and edge position of 
the stone, the results are the same. The robot dynamics algorithm cannot show the change of the grasp position.

Although the precision is low, Vision only is a very effective method. Considering the high price and complex 
structure of the force sensor and vision will be widely used in intelligent control, the method is still an effective 
method in the future.

Due to the influence of many factors on the visual algorithm, the relationship between its accuracy and the 
object needs to be further studied.

Table 2.  Results of identification experiments.

Calculated value Identified value Dynamic only Vision only

M 2681 2668 2670 2348

E 2918 2867 2670 2557
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Conclusion
This study focuses on a novel moment of inertia identification algorithm combined with stereo vision and robot 
dynamic and the adaptive robust sliding mode control scheme with the identified initial value for trajectory 
tracking of swing in a construction robot.

A novel control scheme that obtains the initial value of the moment of inertia of swing through the robot 
gravity identification algorithm and stereo vision information is proposed. The scheme can be used to overcome 
the limitations associated with the low convergence speed of the parameter identification algorithm and large 
change in the inertia caused by the change in the work object.

Simulation and online experiments are performed to validate the effect of the novel scheme. The sine 
trajectory tracking simulation experiment demonstrates the superiority of the SM algorithm over the CPID 
algorithm and necessity of obtaining the initial value for the sliding mode algorithm in SMI. Carrying simulation 
experiments involving the different accuracy validate the effectiveness of the identification method in a sliding 
mode algorithm. Moment of inertia identification experiment validated the feasibility and necessity of the new 
identification method. Many issues about the application of the identification method are discussed.

The method of identifying the moment of inertia based on the combination of stereo vision and robot 
dynamics proposed in this paper is applicable to all control strategies including mass parameter identification.

Data availability
The datasets supporting the conclusions of this article are included within the article.
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