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Fractal dimension based 
geographical clustering 
of COVID‑19 time series data
Yessika Adelwin Natalia 1*, Christel Faes 1, Thomas Neyens 1,2, Pieter Chys 3, 
Naïma Hammami 3 & Geert Molenberghs 1,2

Understanding the local dynamics of COVID‑19 transmission calls for an approach that characterizes 
the incidence curve in a small geographical unit. Given that incidence curves exhibit considerable 
day‑to‑day variation, the fractal structure of the time series dynamics is investigated for the Flanders 
and Brussels Regions of Belgium. For each statistical sector, the smallest administrative geographical 
entity in Belgium, fractal dimensions of COVID‑19 incidence rates, based on rolling time spans of 7, 
14, and 21 days were estimated using four different estimators: box‑count, Hall‑Wood, variogram, 
and madogram. We found varying patterns of fractal dimensions across time and location. The 
fractal dimension is further summarized by its mean, variance, and autocorrelation over time. These 
summary statistics are then used to cluster regions with different incidence rate patterns using 
k‑means clustering. Fractal dimension analysis of COVID‑19 incidence thus offers important insight 
into the past, current, and arguably future evolution of an infectious disease outbreak.

More than three years after the first outbreak of coronavirus disease 2019 (COVID-19) in Wuhan,  China1, the 
world is still on high alert due to this pandemic. The ongoing transmission has been a major concern in most 
countries, including Belgium, which was hit by multiple waves of COVID-19 cases. As reported by Sciensano, 
the Belgian institute for public health, the first wave particularly hit the elderly population in March-April  20202. 
The second wave hit harder in the younger population from September 2020 until January 2021, with the second 
wave generally more severe, against the background of the very limited testing capacity in the Spring of 2020. 
Over the period January–June 2020, only 61,984 infections were test confirmed, with 588,056 infections test 
confirmed over the period July–December 2020. Over the same periods, COVID-19 related hospitalisations were 
18,071 and 31,400, respectively. Peak ICU occupancy was 1286 on 8 April 2020 and 1474 on 9 November 2020, 
respectively. COVID-19 mortality was 9736 in the first half and 10,110 in the second half of 2020.

Multiple variants have been reported globally, some of them declared to be variants of concern (VOC) by 
the World Health Organization (WHO). The Alpha variant started circulating in December 2020, while Beta 
and Gamma followed early in 2021. The Delta variant circulated from May 2021 to early 2022, and the Omicron 
variant took off in late November  20213. Rapidly changing dynamics of COVID-19 transmission urged research-
ers to model the epidemic curve and predict the pattern of this disease. Mathematical compartmental models 
to describe and predict these  changes4–6 have frequently been used, while other studies use statistical models to 
assess trends in the disease, e.g., time series  analysis7,8 or spatio-temporal  modeling9–12.

Daily or weekly incidence data is often subject to considerable heterogeneity, particularly in the field of infec-
tious diseases. In a relatively stable period, we would see little changes in the incidences. However, during an 
epidemic period, we could observe different patterns of incidences. On top of this, the amount of heterogeneity 
increases as the study region becomes smaller. Since geographical scaling comes into play, it is sensible to con-
sider the incidence curve as a fractal structure. A fractal is a self-similar structure at different  scales13. The basic 
theory of fractal structures was first introduced by Mandelbrot and offers an elegant mathematical paradigm to 
describe a variety of complex real-world  objects14. An important aspect of fractal theory is the fractal dimension 
of an  object15. It can be used to characterize the geometric complexity of an object. In the past, the concept of 
fractal dimension was mainly used in geography, mathematics, or  engineering16–19. Recently, however, the use 
of fractal dimension has been expanded to diverse scientific fields, such as economy and  medicine20–22. Based on 
the notion that very noisy information can also carry a signal, we can examine the fractal dimension to evaluate 
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the epidemic curve. A study from Păcurar and Necula showed that a fractal point of view can be useful to find 
new information of different outbreaks or  predictions23.

A time-series curve is an object of which the complexity could be described by fractal dimension. Therefore, 
we aimed to evaluate the patterns of COVID-19 cases in multiple areas in Belgium from a fractal-dimension 
perspective. We hypothesize that areas with complex incidence patterns will have higher fractal dimension esti-
mates and vice versa. Based on the statistical characteristics depicted by fractal dimension estimation, we could 
then cluster areas with similar epidemic patterns.

Methods
Simulation data. To obtain extra background information on our proposed statistical analysis, we con-
ducted first a simulation study. We simulated possible daily COVID-19 incidence case data at a very fine geo-
graphical level using a time series model. For simplicity, we used white noise from an autoregressive integrated 
moving average (ARIMA) model, defined as:

where yt is the number of cases at a certain time point, µ is a constant, and error term ωt ∼ Po(�) . Different 
values of the � parameter in the Poisson distribution were used to increase the complexity of the daily incidence 
rate curve.

Note that the � parameter is used to model the error term in the white noise model and is a fixed value. The 
error term is indeed time-dependent but the � value is constant. We assume that we will observe more cases 
in a day within a certain period as the transmission increases and the incidence curve will appear to be more 
complex than in other periods.

Real world data. Individual data of daily COVID-19 confirmed cases at the level of statistical sector were 
retrieved via ZorgAtlas platform managed by the Agency for Care and Health (https:// www. zorg- en- gezon dheid. 
be/). Belgium is divided into 3 geographical Regions: Flanders, Brussels, and Walloon. The agency is responsible 
to collect data in the Flanders Region, but also integrates data from the Brussels Region. Consequently, our work 
focuses on these two geographical entities.

Each region is subdivided into provinces, which in turn consist of multiple municipalities. Each municipality 
is further subdivided into statistical sectors, based on structural characteristics of social, economic, urban plan-
ning, and/or morphological  nature24. In 2020, Belgium consisted of 19,794 statistical sectors: 9194 were located 
in the Flanders region, 724 in the Brussels region (Fig. 1a). The statistical sectors map is made available online by 

(1)yt = µ+ ωt ,

Figure 1.  Statistical sectors in Flanders and Brussels Region. The location of selected study areas is marked 
by red line in a). Daily incidence rates per 100,000 inhabitants of these two areas are shown in b). The map is 
adapted from https:// statb el. fgov. be/ en/ open- data/ stati stical- secto rs- 2020 using R 4.2.1 (https:// CRAN.R- proje 
ct. org/).

https://www.zorg-en-gezondheid.be/
https://www.zorg-en-gezondheid.be/
https://statbel.fgov.be/en/open-data/statistical-sectors-2020
https://CRAN.R-project.org/
https://CRAN.R-project.org/
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Statbel, the Belgian national statistics  institute25. The population data were also made available by this institute. 
In 2020, Belgium had a population of 11,492,641 inhabitants with 6,626,475 inhabitants in Flanders Region and 
1,215,012 inhabitants in Brussels Region.

Due to the large number of statistical sectors in our data, we confine our attention to the Antwerp munici-
pality (Fig. 1a, red line on the top) as well as the Brussels Region (Fig. 1a, red line on the bottom). Antwerp is 
located in the north of Flanders and consists of 299 statistical sectors, while Brussels is located in the center of 
Belgium and consists of 724 statistical sectors. In 2020, Antwerp had a population of 529,247 inhabitants and 
Brussels had a population of 1,215,012 inhabitants. These two areas represent a typical urban area in Belgium 
with middle socioeconomic status and dense population with different nationalities and cultural  backgrounds26,27.

Statistical analysis. The fractal dimension can be estimated using a range of techniques. Some methods 
have been compared and described in detail by Gneiting et al.28. Based on this study, we decided to use four basic 
methods to estimate the fractal dimension: the box-count, Hall-Wood, variogram, and madogram estimators. 
The basic characteristics of each method are summarized in Table 1.

Daily COVID-19 incidence rates were calculated for each statistical sector, based upon which we estimated 
the local fractal dimension that captures information about the evolution in daily incidence rate within a certain 
period. Fractal dimension estimation of a curve typically ranges from 1 to 2 with value 1 corresponding to a 
structure that is similar to a straight line and values close to 2 representing a more ‘space filling’ structure. Thus, 
a higher fractal dimension value indicates a higher complexity of the daily COVID-19 incidence curve. Due 
to possible short-term fluctuations in reporting efforts we defined sliding windows of width 7, 14, and 21 days 
for which the fractal dimensions were estimated. Their values were plotted to obtain a fractal dimension curve. 
Note for a given point in time, the depicted fractal dimension estimate is based on the sliding window period 
that ends on that particular date. The mean, variance, and autocorrelation of the fractal dimension curve were 
calculated per statistical sector and displayed by means of choropleth maps.

Qualitative combinations of mean, variance, and autocorrelation values can be used to characterize statistical 
sectors. However, Gneiting et al. reported that different methods lead to different fractal dimension  estimates28.
Different fractal dimension values would eventually impact the mean, variance, and autocorrelation values. 
Therefore, we opt for clustering the local fractal dimension statistics using k-means clustering because it is the 
simplest type of finite mixture models and computationally  fast33. The optimal number of clusters was first deter-
mined using the elbow method, which is heuristic but simple to implement. This method optimizes the number 
of clusters based on the sum of squares of the Euclidean distances between each point and its corresponding 
centroid. The relationship between the sum of the square and the possible number of clusters k is plotted in a 
curve. The curve will be flattened out when the value of k increases and the optimal number of clusters lies in the 
highest curvature of elbow; i.e., adding another cluster will not give additional benefit to classifying the  data34. The 
value of each centroid cluster was obtained and compared with the mean of local fractal dimension statistics. For 
each of these, the label ‘low’ indicates that the centroid values are lower than the mean of the respective statistic 
and the label ‘high’ indicates that the centroid values are higher than that.

The results in this paper were obtained using R 4.2.1 available from the Comprehensive R Archive Network 
(CRAN) at https:// CRAN.R- proje ct. org/. The fractal dimension was calculated using package fractaldim28.

Ethics declaration. This study has been approved by the Agency for Care and Health (GE0-1GDF2IA-
WT/1GD305/20073674). It was conducted in accordance with international ethical standards (Declaration of 
Helsinki 1964). It was conducted in accordance with the General Data Protection Regulation (GDPR) and a data 
processing agreement between the Agency for Care and Health and Hasselt University was concluded. Partici-
pant information was coded and held securely. De-identification was performed on data content to comply with 
the Data Protection Regulation scope.

Table 1.  Characteristics of fractal dimension estimators. N = number of boxes; δ = boxwidth; Â = total 
area of of boxes; n = number of observations; V̂ = moments estimator; p = order (2 for variogram, 1 for 
madogram)

Estimator General description Calculation formula Advantages Disadvantages

Box-count
Number of boxes at a certain scale 
required to cover the time series 
data at increasingly fine scales.

D̂ BC = limδ→0
log Nδ

− log δ
Simple and intuitive  formulation29.

Lower estimation, increasing mean 
squared errors and asymptotic bias 
with increasing number of points in 
the  regression30–32.

Hall-Wood
Modification of box-count estimator. 
The total area of boxes that cover the 
time series data is used instead of 
the number of boxes.

D̂ HW = 2−
log Â(2/n)−log Â(1/n)

log 2

Better accuracy compared to the 
box-count  estimator28.

It can only be applied to a station-
ary Gaussian process with equally 
spaced  points32.

Variogram & madogram Quantification of variability between 
data points as a function of distance. D̂ V;p = 2− 1

p

log V̂p(2/n)−log V̂p(1/n)

log 2

More efficient than the Hall-Wood 
estimator. The madogram estimator 
is more robust against  outliers28.

It can fail easily under some non-
Gaussian processes, in particular for 
the variogram  estimator28.

https://CRAN.R-project.org/
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Results
Simulation study. An example of the simulated curves and their fractal dimension are shown in Sup-
plementary Figs. S1–S4 online. The daily incidence rate curve with a small � ∈ [0.01; 0.11] mimics a mild to 
heavy sporadic transmission, while a curve with � ∈ [0.13; 0.23] mimics mild community transmission. Higher 
� values mimic heavy community transmission. The fractal dimension curves calculated via each method were 
shown in the top part of each panel. We observe that different methods lead to different fractal dimension 
estimates, with the box-count estimator typically giving the lowest estimate. As expected, the fractal dimension 
curve of the 7-day sliding window showed more fluctuations as compared to sliding windows of 14 and 21 days. 
We then calculated the mean, variance, and autocorrelation values of these curves.

Supplementary Fig. S5–S6 show boxplots of the local fractal dimension statistics for each estimator and slid-
ing window after 1,000 replications. We observe an increase in the mean fractal dimension value (top panels) 
with increasing � values. This indicates that a higher mean value represents higher complexity of the daily inci-
dence rate curve, i.e., community transmission. The variance of the fractal dimension curves (middle panels) 
with � ∈ [0.01; 0.23] is higher than those with higher � values. Low variance indicates little change in the local 
fractal dimension. The boxplots in the bottom panels show a high autocorrelation value for each � value for the 
variogram and madogram estimators, which suggests a high temporal correlation when the fractal dimension 
is calculated using these methods.

We further calculated the optimal number of clusters using the elbow method. For each estimator and sliding 
window, the highest curvature of the elbow lies at value k = 4 . The curvature does not change much beyond this 
value, therefore we concluded that the optimal number of clusters was four. We then used this value to further 
classify each data point using k-means clustering. Supplementary Figs. S7–S10 give an example of the clusters 
detected for each estimator using different sliding windows. We could see a contrast between clusters of lower 
and higher � values. We compared the centroid values to the mean of local fractal dimension statistics as noted 
in the legends. To ease the interpretation, we summarized this classification as shown in Table 2.

For comparison’s sake, we also analyzed our simulation data using another known method. Based on the 
simplicity and the availability of R packages for this context, we opted to use so-called dynamic time warping, 
via its implementation in the package dtwclust. This method utilizes the dynamic time warping distance as 
a dissimilarity measure to find the optimum warping path between two series under certain  constraints35. The 
results showed that our method can detect clusters with similar features as dynamic time warping, i.e., incidence 
rate curves with similar shapes are clustered together. The time required to complete an analysis is relatively short 
for both methods (2.7 seconds for local fractal dimension and 1.3 seconds for k-means dynamic time warping). 
An advantage of our method is that we can retrieve the characteristics of each cluster via the mean, variance, and 
autocorrelation values classification to directly compare different curves. An analog to this feature is not readily 
available for dynamic time warping, given that we have to manually compare each centroid curve to retrieve the 
characteristics of each cluster.

Real world data analysis. COVID‑19 incidence. We retrieved the daily COVID-19 cases from 1 July 
2020 until 31 July 2021. There were 492,514 cases reported with known residential statistical sectors. The num-
ber of daily reported cases in Antwerp increased considerably in October 2020 and reached the highest peak in 
November 2020 (Fig. 1b). The numbers declined in December 2020 but remained relatively high until June 2021 
when they declined slightly. The cases exhibited again an increasing trend in July 2021. A similar but somewhat 
less pronounced trend was observed in Brussels.

Local fractal dimension. To illustrate the local fractal dimension, we selected two statistical sectors as shown in 
Figs. 2 and 3. Figure 2 shows results for De Peperbus, in which COVID-19 cases have been continually reported 
since the beginning of July 2020 and with higher daily incidence rates in July and October 2020. In contrast to 
this sector, Prinshoeveland, had a lower incidence rate with a longer period of no reported cases (Fig. 3). A lower 
and less chaotic fractal dimension curve could be observed in Prinshoeveland. This suggests a lower complexity 
of the COVID-19 daily incidence curve in this sector. The incidence curve is presented by the black line at the 
bottom of each panel. The left, middle, and right panels correspond to analyses with moving windows of 7, 14, 

Table 2.  Proposed classification of local fractal dimension based on mean, variance, and autocorrelation 
value.

Mean Variance Autocorrelation Possible transmission type

Low Low Low Mild sporadic

Low Low High Mild sporadic

Low High Low Heavy sporadic

Low High High Heavy sporadic

High High Low Mild community

High High High Mild community

High Low Low Heavy community

High Low High Heavy community
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and 21 days, respectively. The colored lines in the rows correspond to, respectively, the box-count, Hall-Wood, 
variogram, and madogram methods.

One observes a large difference in case counts when comparing Figs. 2 and  3. While caution is needed when 
interpreting the results, thanks to the definition of scale-invariant fractal dimension, a comparison is still pos-
sible. That said, small case numbers will impact the statistical uncertainty with which fractal dimensions are 
investigated. Also, the different methods lead to different fractal dimensions, with the box-count estimator often 
yielding the lowest estimate. The local fractal dimension curve based on a 7-day sliding window showed more 
fluctuations as compared to sliding windows of 14 and 21 days. For the purpose of comparison, we smoothed 
the local fractal dimension curve using locally weighted regression (LOESS). Evidently, findings should always 
be scrutinized further and, as such, the proposed methodology can help characterize a statistical sector, but 
human interpretation, perhaps bringing in sector-specific but important background knowledge, will arguably 
always be needed.

Transmission classification. For each statistical sector, we calculated the mean, variance, and autocorrelation 
of the fractal dimension curve. The raw values per statistical sector are shown in Supplementary Figs. S11–S18. 
These results were then compiled into choropleth maps based on the classification presented in Table 2. The clas-
sification based on box-count and variogram estimator is depicted in Fig. 4. The results based on other estima-
tors are shown in Supplementary Fig. S19.

We found that the box-count estimator with a sliding window of 21 days could differentiate a similar number 
of clusters as the variogram estimator with a sliding window of 7 days. Similar results could be observed using 
the Hall-Wood and madogram estimators. Despite some differences, based on these results we could detect a 
cluster of mild to heavy community transmission around the city center and to some extent, the northern part 

Figure 2.  Local fractal dimension of COVID-19 incidence rate in De Peperbus, Antwerp. The raw fractal 
dimension value is depicted by the dashed line. Dark blue solid lines correspond to LOESS regression of the 
local fractal dimension.
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of the Antwerp municipality. In the Brussels Region, the cluster of mild to heavy community transmission is 
distributed all over the region.

Discussion
Our analyses have illustrated that structural elements of the fractal dimension curve derived from a statistical 
sector’s COVID-19 incidence curve can be used to characterize how the epidemic behaves in a given sector.

We retrieved COVID-19 data at the statistical sector level from July 2020 onward. However, data in some 
areas were not available until November 2020, particularly in the Brussels Region, which was included in the 
project later. This will increase the heterogeneity of the available time-series data. Fractal dimension analysis 
is particularly useful to simplify a dependency structure by using a few indices when we consider time series 
data as a fractal  structure36. Castillo and Melin reported that the complex behavior of time series data could be 
measured and compared among different periods and countries to forecast the evolution and decide on possible 
non-pharmaceutical interventions based on the current  situation37.

Different estimators yielded different estimates of the fractal dimension. In this study, the box-count estimator 
showed the lowest fractal dimension among all methods. Gneiting et al. compared different fractal dimension 
estimators and their study reported that the box-count estimator generally shows a downward  bias28. They also 
reported that the variogram estimator has the lowest mean square error among other estimators and that the 
madogram estimator is more robust against outliers. We did not choose a specific estimator a priori. Based on 
the results of our study, we are inclined to prefer the variogram or madogram estimators.

Different statistical sectors have different patterns of their local fractal dimension. In the case of De Peper‑
bus, most of the time we observed stable high signals, i.e., a high fractal dimension. This could be explained by 
the relatively chaotic pattern of COVID-19 daily incidence rate curves, which suggests continuous community 

Figure 3.  Local fractal dimension of COVID-19 incidence rate in Prinshoeveland, Antwerp. The raw fractal 
dimension value is depicted by the dashed line. Dark blue solid lines correspond to LOESS regression of the 
local fractal dimension.
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transmission in this area. Some studies reported that urban areas with a middle to low socioeconomic status 
are associated with higher numbers of COVID-19 cases and  deaths38–40. An interesting signal is observed at the 
beginning of July 2021 in Prinshoeveland (Fig. 3). There is a considerable decrease followed by an increase in the 
local fractal dimension even though the corresponding incidence rate was low, particularly with sliding windows 
of 7 and 14 days. We assume that this increase might be useful as an early warning of increasing COVID-19 
incidence in the coming period. Further analysis of this finding is required.

Based on the results from choropleth maps, some statistical sectors had similar, high fractal dimension esti-
mates, despite having different incidence rate curves. This suggests that the complexity of COVID-19 incidence 
rates in these locations is relatively high and homogeneous. Studies in other fields also reported similar relation-
ships between the fractal dimension and the complexity of the time series  data41–43. However, we also need to 
take into account that the length of time series data plays an important role in calculating fractal dimensions. We 
could observe this effect since different lengths of the sliding window gave different fractal dimension estimates 
and thus different fractal dimension curves. The box-count estimator is particularly sensitive to the length of the 
data window and small amounts of data can have detrimental effects on its estimation, particularly when trends 
are  presented29,36. This will eventually impact the ability to differentiate the clusters. Based on our simulation 
and real-world data, we recommend using the madogram or variogram estimators with shorter sliding windows, 
e.g., 7 or 14 days, in case of shorter time series data. With longer time series data, we could use the box-count or 
Hall-Wood estimator, but with longer sliding windows, e.g., 21 days, as well.

To our knowledge, the use of the fractal dimension combined with cluster detection is novel. The mean, vari-
ance, and autocorrelation values give a comprehensive summary of the COVID-19 daily incidence rate without 
having to explicitly examine individual daily incidence curves per statistical sector. This will be a major advantage 
when time is of the essence and one needs to evaluate multiple areas simultaneously. Again, we need to take 

Figure 4.  Classification of statistical sectors in Antwerp municipality (left panels) and Brussels Region (right 
panels) calculated by box-count and variogram estimator. The color green, blue, pink, and red correspond to 
mild sporadic, heavy sporadic, mild community, and heavy community, respectively. White color represents 
no reported cases. The map is adapted from https:// statb el. fgov. be/ en/ open- data/ stati stical- secto rs- 2020 using 
R 4.2.1 (https:// CRAN.R- proje ct. org/).

https://statbel.fgov.be/en/open-data/statistical-sectors-2020
https://CRAN.R-project.org/


8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:4322  | https://doi.org/10.1038/s41598-023-30948-7

www.nature.com/scientificreports/

into account that different fractal dimension estimators will give different results as shown in Web Figs. 11–18. 
In our example, since the box-count estimator gave a lower value of fractal dimension, it became difficult to 
classify areas into colors. The autocorrelation value given by the Hall-Wood estimator was very low to almost 
0 while other methods gave relatively high values. Thus it is indeed important to compare different methods to 
obtain the best interpretation of the map. The simplified classification based on local fractal dimension could be 
useful to detect vulnerable areas. Local authorities could use this classification in their decision-making process 
related to targeted preventive measures.

Note that our proposed method has a different goal from scan-statistics tools, e.g. SaTScan, or model-based 
disease mapping methods. In essence, these methods investigate whether events of interest occur randomly. 
When this is not the case, they aim to find clusters based on anomalies in space and/or time. In contrast, our 
proposed method aims at capturing the complexity of a multivariate set of outcomes through time. We then clas-
sify these outcomes based on a set of characteristics of its complexity. In doing so, we explicitly avoid imposing 
a spatial mechanism as the data-generating process, since we want to obtain insight in (dis-)similarities in the 
complexity, regardless of their geographical location.

Some limitations have to be mentioned. First, we used retrospective data from specific locations and periods. 
This means that the findings are difficult to generalize to other settings. However, this specificity might help 
local authorities to describe the situation and make decisions related to mitigation strategies. Second, we did 
not set a threshold to flag the local fractal dimension, that is, when it is high enough to warrant a warning or 
flagging. Based on multidisciplinary input, this would be needed when the fractal dimension would be used as 
a component of an early warning system.

Conclusion
In conclusion, the fractal perspective of time series analysis offers useful insight into the evolution of an epidemic 
curve. The choice of the fractal dimension estimator and related parameters should be considered carefully when 
selecting the appropriate method to use. Fractal dimension analysis may also provide further insight into the 
wide heterogeneity in the transmission of the virus due to large differences between individuals in infectiousness, 
susceptibility, and contact behavior.

Data availability
R code for simulation study is available from https:// github. com/ yessi kanat alia/ fract dim_ sim. git. The daily 
COVID-19 data that support the findings of this study are available from the Agency for Care and Health but 
restrictions apply to the availability of these data, which were used under license for the current study, and so are 
not publicly available. Data are however available from author N.H. upon reasonable request and with permis-
sion of the Agency for Care and Health.
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