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Assessment of experimental 
OpenCV tracking algorithms 
for ultrasound videos
A. A. Levin 1*, D. D. Klimov 1, A. A. Nechunaev 1, L. S. Prokhorenko 1, D. S. Mishchenkov 1, 
A. G. Nosova 1, D. A. Astakhov 1, Y. V. Poduraev 2 & D. N. Panchenkov 1

This study aims to compare the tracking algorithms provided by the OpenCV library to use on 
ultrasound video. Despite the widespread application of this computer vision library, few works 
describe the attempts to use it to track the movement of liver tumors on ultrasound video. Movements 
of the neoplasms caused by the patient`s breath interfere with the positioning of the instruments 
during the process of biopsy and radio-frequency ablation. The main hypothesis of the experiment 
was that tracking neoplasms and correcting the position of the manipulator in case of using robotic-
assisted surgery will allow positioning the instruments more precisely. Another goal of the experiment 
was to check if it is possible to ensure real-time tracking with at least 25 processed frames per second 
for standard definition video. OpenCV version 4.5.0 was used with 7 tracking algorithms from the 
extra modules package. They are: Boosting, CSRT, KCF, MedianFlow, MIL, MOSSE, TLD. More than 
5600 frames of standard definition were processed during the experiment. Analysis of the results 
shows that two algorithms—CSRT and KCF—could solve the problem of tumor tracking. They lead the 
test with 70% and more of Intersection over Union and more than 85% successful searches. They could 
also be used in real-time processing with an average processing speed of up to frames per second 
in CSRT and 100 + frames per second for KCF. Tracking results reach the average deviation between 
centers of neoplasms to 2 mm and maximum deviation less than 5 mm. This experiment also shows 
that no frames made CSRT and KCF algorithms fail simultaneously. So, the hypothesis for future work 
is combining these algorithms to work together, with one of them—CSRT—as support for the KCF 
tracker on the rarely failed frames.

Neoplasms detected in the human liver are quite diverse. They can be parasitic invasions—echinococcus or 
alveococcus, non-parasitic cysts—both solitary and multiple, including those caused by polycystic disease, 
liver abscesses and inflammatory pseudotumors, liver  tumors1. Tumors can be benign or malignant. Malignant 
tumors, in turn, can be primary—hepatocellular or cholangiocellular cancer and metastatic—colorectal metas-
tases, metastases of pancreatic cancer, lung cancer, breast cancer, stomach  cancer2.

A liver adenoma is a benign liver tumor that occurs in 1 case in a million cases. An incidence increase was 
noted in women receiving oral  contraceptives3. Measuring less than 5 cm, liver adenomas, for the most part, do 
not have specific symptoms. Focal nodular hyperplasia refers to hamartomas and is associated with congenital or 
acquired vascular malformations leading to hepatocyte hyperplasia. It has an asymptomatic course with a size of 
less than 5 cm. Iso- or hypoechoic formation during Doppler scanning, which makes it possible to find a central 
supply vessel, diverging in the form of a spoked wheel to the  periphery3. Diagnosis of simple liver cysts is not so 
difficult. They usually occur in women 50 + years and are fluid formations that are well detected by ultrasound, 
CT, or  MRI1. Biliary cystadenomas are similar in their histological structure to mucinous adenomas of the pan-
creas and differ from simple liver cysts by the presence of septa, layering, papillary protrusions, and calcification. 
The most common liver formations are hemangiomas, up to 20% of the total population. Hemangiomas have a 
specific ultrasound or CT-MRI structure with a characteristic accumulation of  contrast4.

Abscesses are secondary cystic lesions of the liver. As a rule, they are associated with biliary infections accom-
panying obstruction of the biliary tract or manipulation of the bile ducts or parasite  infestations5.

Primary liver cancer ranks 5th in the incidence of malignant neoplasms in the United States with a 5-year 
survival rate of 20%; colorectal cancer ranks 3rd, while mortality from it is also in 3rd place in the structure of 

OPEN

1Moscow State University of Medicine and Dentistry Named After A.I. Evdokimov, 20/1 Delegatskaya ul., Moscow, 
Russian Federation 127473. 2Moscow State University of Technology “STANKIN”, 1 Vadkovsky per., Moscow, 
Russian Federation 127055. *email: alex.levin@internet.ru

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-30930-3&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6765  | https://doi.org/10.1038/s41598-023-30930-3

www.nature.com/scientificreports/

malignant  neoplasms6. This can be explained by the fact that 20% of initially diagnosed cases are determined 
already at the 4th stage with liver  metastases7. In gastric cancer, the diagnosis of the disease at the 4th stage is 
noted in one third of all  cases8, while liver metastases in these patients were noted in 41.30%9. It is also significant 
that the frequency of metastasis of various malignant neoplasms depends on age. The most common source of 
liver metastases is breast cancer for women aged 20–50 and colorectal cancer for men. As patients get older, a 
more heterogeneous group of cancers with liver metastases emerges, including cancers of the esophagus, stomach, 
small intestine, melanoma, bladder cancer, in addition to a significant proportion of lung and pancreatic cancers. 
The 1-year survival rate of all patients with liver metastases is 15.1% compared to 24.0% in patients with non-
liver metastases. Regression analysis showed that the presence of liver metastases causes a decrease in survival, 
especially in patients with cancer of the testicles, prostate, breast, and anus, as well as in patients with  melanoma10.

In recent years, minimally invasive surgery has become the standard in cancer  treatment11. It reduces the 
period of hospitalization and postoperative recovery. Modern minimally invasive surgery also implies the wide-
spread use of technological advances such as robotic  manipulators12, computer vision  systems13, and artificial 
 intelligence14. Modern research spot, that using robotic systems for carrying out minimally invasive surgical 
procedures significantly increases their quality and  efficiency15. In particular, this is due to the fact that modern 
robotic systems can achieve higher accuracy parameters than allowed by natural human systems.

Minimally invasive ultrasound-guided interventions can be divided into diagnostic, therapeutic-diagnostic, 
and therapeutic groups. Diagnostic ones include biopsies of liver tumors, taking fluid from the cavities of the cysts 
to clarify the diagnosis. Treatment and diagnostic include manipulations when the diagnostic stage immediately 
precedes the treatment. Therapeutic measures include various manipulations aimed at cure process—drainage 
of abscesses, bile ducts if they are obstructed, methods of local destruction of liver tumors, such as radiofre-
quency ablation (RFA), cryoablation, microwave ablation (MVA), irreversible electroporation of tumors. These 
interventions require high precision during the operation phase. Firstly, due to the determination of safe access 
to the dilated duct, tumor, or cyst and to the fact that therapeutic effects on liver tumors may be accompanied 
by thermal damage. This requires precision installation of the working parts of the electrodes, avoiding close 
contact with the vascular and secretory structures of the  liver16.

Some studies use state-of-the-art technologies for ultrasound image analysis. For example, distinguishing 
hepatocellular carcinoma with contrast-enhanced ultrasound describes excellent performance sonographic 
 method17. There is also a Feature Fusion method for diagnosing atypical hepatocellular carcinoma in contrast- 
enhanced  ultrasound18. Another study describes multi-view patterns for diagnosing hepatocellular  carcinoma19.

Computer-aided diagnosis (CAD) technology based on Deep Learning and toolkits like  VTK20 and  ITK21 
help vertebra  modeling22, and these toolkits could be used for ultrasound diagnosis.

Movements and deformations of the abdominal organs caused by breathing and other processes lead to a 
deviation of the neoplasm’s target position from the preliminary plan of the operation based on CT or MRI 
data. Thus, in the case of using robotic systems in minimally invasive surgery, there is a need for intraoperative 
navigation, which can provide real-time data of the target’s position for automated control of the medical instru-
ment. There is also a study on developing a deep-learning model for respiratory motion estimation in ultrasound 
sequences with a deviation of less than 1  mm23.

One of the simplest and most common methods of intraoperative visualization of the abdominal organs is 
ultrasound diagnostic. Its main advantage over intraoperative computed tomography and magnetic resonance 
imaging is greater availability due to a lower price. For example, the cost of an intraoperative MRI device from 
leading European manufacturers exceeds a million € while ultrasound devices, which by their characteristics 
allow solving such problems, have ten times less cost. Also, in comparison with computed tomography, it does not 
adversely affect the patient and operating personnel. This can be very important in cases of long-term operations. 
However, it should be noted that ultrasound images are often inferior in quality of computed tomography due 
to the deterioration or lack of clear visualization of tissues caused by ultrasound artifacts which can negatively 
impact the interpretation of the results. The detection and dynamics of neoplasms using ultrasound are not an 
easy task for medical practitioners. Applying modern computer vision technologies could reduce the labor costs 
of medical personnel and possibly increase the accuracy of determining the center of neoplasms needed for real-
time navigation of robotic manipulators for such operations as biopsy and radiofrequency ablation.

Technical background
The main goal of this work was to test publicly available algorithms for tracking objects within an ultrasounds 
video. They are under heavy development and are presented in experimental branch of OpenCV modules. Both 
quality and performance were investigated.

The OpenCV library is the standard for developing computer vision applications. This project was launched 
in 1999 by the research division of Intel Corporation. For more than 20 years of development, the library has 
been replenished with many modules that find their application in such areas as face and gesture recognition, 
robotics, objects detection and segmentation in an image, augmented reality, and many others. This library is 
open-source software licensed under the Apache 2.0 License. Another reason for choosing OpenCV was the 
support for a tracking module with a wide variety of different algorithms, high-quality documentation, and a 
large user community.

Since the OpenCV library is widely used in many areas, the community created certain photo and video data 
sets to analyze the quality and speed of included  algorithms24. In particular, there are data sets for testing track-
ing  algorithms25. Usually, these sets include various objects of the real world (people, animals, objects) captured 
on video with variable quality (presence of noise, insufficient illumination etc.). However, most researchers and 
programmers widely use such sets that do not contain specific data like ultrasound video images.
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Despite there being many Deep Learning based software for tracking objects like MDNET, ROLO, SiamFC 
etc., this study aims to compare trackers supported with OpenCV Tracker Interface for two reasons. Firstly, any 
Deep Learning-based tracker needs a large, manually marked dataset to train the network. Secondly, all those 
trackers require additional steps to integrate with the OpenCV application. Testing different Deep Learning 
algorithms for tracking ultrasound video is another challenging task.

Design and methods
OpenCV library version 4.5.026 was used for the experiment. It was compiled from source code with additional 
modules  support27, including the tracking module. The following algorithms of this module were tested:

• Boosting—based on AdaBoost algorithm with HAAR cascade detector. The main idea of online boosting is 
the introduction of the so-called selectors. They are randomly initialized, and each of them holds a separate 
feature pool of weak classifiers. When a new training sample arrives, the weak classifiers of each selector are 
updated. The best weak classifier (having the lowest error) is selected, where the error of the weak classifier 
is estimated from samples seen so  far28.

• MIL—a tracker that is similar to Boosting but also uses a small area around the tracker’s current  location29.
• KCF—a modified tracker—since the positive samples used in the MIL tracker have large overlapping regions. 

Processing these regions allows to simultaneously increase the speed and accuracy of  tracking30.
• CSRT—Correlation Filter with Channel and Spatial Reliability. The spatial reliability map adapts the filter 

support to the object suitable for tracking, which overcomes both the problems of circular shift enabling an 
arbitrary search range and the limitations related to the rectangular shape assumption. The spatial reliability 
map is estimated using the output of a graph labeling problem solved efficiently in each  frame31.

• MOSSE is a tracker based upon the Minimum Output Sum of Squared Error filter, robust to variations in 
lighting, scale, and deformations. It can pause and resume when the object is left off and appears  again32.

• MedianFlow—the main idea is tracking points inside a bounding box by Lucas-Kanade tracker, which gener-
ates a sparse motion flow between Image N and Image N + 1. The quality of the point predictions is estimated, 
and each point is assigned an error. The worst 50% of the predictions are filtered out, while the remaining 
predictions are used to estimate the displacement of the whole bounding  box33.

• TLD—Tracking-Learning-Detection—a framework designed for long-term tracking of an unknown object in 
a video stream. Tracker estimates the object’s motion between consecutive frames under the assumption that 
the frame-to-frame motion is limited, and the object is visible. The tracker is likely to fail and never recover 
if the object moves out of the camera view. The detector treats every frame as independent and performs full 
scanning of the image to localize all appearances that have been observed and learned in the past. Learning 
monitors the performance of both tracker and detector, estimates detector errors, and generates training 
examples to avoid these errors in the  future34.

Despite attempts to apply supervised machine learning methods to solve this  problem35, such experiments 
require many video files with reference labeling. This is one of the further works for applying artificial intel-
ligence algorithms for ultrasound video processing. This work considers only the built-in algorithms of the 
OpenCV library.

In addition, the problem of real-time tracking is often solved by reducing the image fed to the tracking func-
tions with the subsequent restoration of the original  size36, which is primarily caused by low performance, espe-
cially when processing HD images. This technology is not used for the experiment—the frames of the original 
size frames are examined since a hypothesis is put forward for testing the possibility of analyzing SD images by 
modern computing systems in real-time. The main idea is to evaluate the performance of algorithms on images 
of actual size, excluding the reasons that may lead to a loss of tracking accuracy.

For the experiment, 17 anonymized video files were recorded from various ultrasound systems during radi-
ofrequency ablation procedures—9 men and 8 women aged 45–66 years. The following ultrasound systems 
were used:

1. GE Healthcare LOGIQ e
2. Philips iu22
3. Philips Affiniti 50
4. BK Medical flexFocus 400

The duration of the files ranged from 20 to 30 s with a frame rate of 10–15 frames per second. So, in each file 
there were from 260 to 430 SD-resolution frames. All video files were clipped so every frame contains the tumor, 
then every frame was saved to lossless Poratable Network Graphic format to eliminate compression artefacts. 
At last, all the frames were cropped, not resized, to the same resolution of 700 * 600 pixels so only ultrasound 
picture remains with no additional information provided by video file, like date, time, patient name, transducer 
parameters etc. Video parameters are shown in the Table 1.

The experiment was planned as follows:

1. Preparation of anonymous video recordings.
2. Ground truth labeling.
3. Testing tracker algorithms for video recordings.
4. Analysis of the results.
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A small software toolkit was created for the convenience of data processing with several utilities such as:

1. Video frames counter (experiments showed that the OpenCV library incorrectly determines the number of 
frames of an ASF-stream in a WMV container).

2. A module for saving a sequence of video frames to PNG image format (a format that allows storing video 
frames without further loss of quality).

3. A module for manual labeling reference areas and saving their coordinates.

The video preparation consisted of taking time-lapse images with the subsequent labeling of the zones to 
search for. Video frames with manually labeled search areas were taken as the reference coordinates of the neo-
plasms. Qualified oncologist surgeons have labeled them. Subsequently, these images were analyzed, and the 
area’s coordinates were saved to a log file for the convenient analysis of the tracker’s experiment results.

Since the program for measuring the speed and quality of tracking processed frames works sequentially 
according to the “frame reading—tracking—data output” scheme. The number of frames per second in the 
internal representation of the video file did not correlate with the measured indicators since the new frame was 
processed only after the processing of the previous one had been completed.

Also, since the files were encoded using various codecs (Lagarith, Windows Media Video, etc.), only the time 
spent by the tracking procedure was considered.

The testing methodology included both quantitative (tracking time) and qualitative criteria of tracking 
algorithms:

1. Intersection over Union—the main qualitative characteristic—is the ratio of the intersection of the found 
zone and the ground truth zone to their  union37. In the case of the ideal operation of the algorithm, these 
areas will coincide. It is possible to estimate how much the search accuracy varies in percentage in other 
cases. The resulting value is in the segment [0; 1], which is from 0 to 100%, and the higher the value, the 
better it shows how much of the ground truth zone is covered by the tracking algorithm.

2. False Positive Percentage (FPP)—the ratio of the found area located outside the ground truth to the whole 
found area. Allows to find out the percentage of false-positive information.

3. RMSE of Centroids (CD)—the distance in pixels between the center of the found zone and the center of the 
reference zone. A low value is better as it would precisely position the robotic arm.

Figure 1 shows the visual definition of each criterion. In addition, if the best algorithm fails on specific frames, 
the possibility of re-tracking this frame using another tracking algorithm was checked  out38.

Every tracker was initialized with the region containing the tumor and all subsequent frames also contained 
this tumor. Initializing region size varied from 74 * 58 to 198 * 169 pixels. It should allow comparing tracking for 
frames with different tumor sizes while the whole frame size is the same.

Measuring in pixels in the case of ultrasound videos is more useful to check the quality of trackers as the 
algorithms know nothing about the tracked object. It is also useful because of different scales in videos, and dif-
ferent resolutions mm per pixel. But in the case of the application for real medical purposes, it is also important 
to convert pixels to millimeters using the scale of every video.

All software was written in C++ in the Microsoft Visual Studio 2019 development environment.

Table 1.  Video files specifications.

File name US system Duration (s) FPS Frames Original resolution (px) Transducer cm/px scale

1.avi

GE Healthcare LOGIQ e

22

15

334

684 * 528 GE 4C-RS 0.023

2.avi 20 304

3.avi 22 336

4.avi 24 364

5.avi 25 375

6.avi

Philips iu22

28

10

281

800 * 600

Philips C5-1 0.0327.avi 27 274

8.avi 28 281

9.avi 29 294
Philips C5-2 0.036

10.avi 26 264

11.avi
Philips Affiniti 50

20
15

305
1024 * 768 Philips C5-1 0.032

12.avi 22 338

13.avi

BK Medical flexFocus 400

21

15

318

1020 * 818 BK 8815 0.118

14.avi 24 362

15.avi 26 395

16.avi 25 376

17.avi 28 423
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Experiment
The experiment was carried out with the following hardware: CPU Intel Core i5-1035G1, RAM 20 GB. Operating 
system—Ubuntu GNU/Linux 20.04 LTS 64-bits.

The results of the testing program are presented in the Table 2. A total of 5613 video frames were processed.

Results and discussions
A visual inspection of the trackers’ work during the testing process made it possible to determine potential 
favorites and possible outsiders. These ideas were confirmed due to the analysis of the obtained values.

Figure 2 shows the results of the algorithms processing the file 4.avi. The first frame of the video is on the left 
pane, frame #100—in the middle, last frame #364—on the right pane. All the algorithms started to work close 
to each other. However, after 100 frames, the TLD algorithm lost the reference zone, and its error increased by 
the end of the video series. In addition, the behavior of the CSRT algorithm is indicative—it is the one that man-
aged to process all the frames of the experiment correctly. It tends to increase the search zone area, sometimes 
capturing excess. Still, at the same time, the centers of the reference and found zones do not diverge so much, 
which is essential when transferring data to the navigation system of a medical robot. The results of the other 
algorithms are very similar to each other.

The Intersection over Union results are shown in Fig. 3. Boosting, CSRT, KCF and MIL trackers are the leaders 
in this rating, however the results of False Positive Percentage criterion for Boosting and MIL trackers are very 
poor—up to 50% of founded zone is a false image with no tumor inside for MIL tracker and many outliers for 
Boosting tracker with poor values. So KCF and CSRT give best results for trackers quality test with FPP rating 
less than 15%.

Figure 1.  Criteria visual representation.

Table 2.  Results of trackers testing.

Tracker Min time (ms) Avg time (ms) Max time (ms) Success/Fails IoU (%) FPP (%)
Average deviation of the 
centroids (px)

Boosting 13 25 64 5613/0 74.36 25.15 12

CSRT 14 22 39 5613/0 68.67 15.41 16

KCF 3 7 15 5512/101 76.93 11.35 11

MIL 1 1 2 2965/2648 67.68 31.57 16

MOSSE 27 31 69 5613/0 48.02 46.65 37

MedianFlow 1 1 1 3516/2097 11.09 47.45 109

TLD 21 38 74 5613/0 43.05 55.13 52

Figure 2.  Example of trackers testing.
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Boosting—although this algorithm has never reported a negative tracking result, its final results aren’t impres-
sive. In contrast, it has a significant area that is not related to the reference zone. Similar results are shown by the 
MOSSE and TLD algorithms—the coverage of the ground truth zone is on an average up to 60%, and the area 
of the incorrectly defined tumor zone is comparable in size. At the same time, these two algorithms, similarly, 
to Boosting, always report a successful search result. Besides, they are slower than Boosting on average. It can 
definitely be concluded that these algorithms are not suitable for solving the problem: both because of the low 
quality of the results and because of the constant result interpretation as successful.

MedianFlow algorithm generally showed similar results. In about 50% of cases, it reported the search failed—
which the algorithms described above did not do. However, even in case of success, the area of correct IoU is 
about 10% of ground truth area with a great area of false-positive data. It is interesting to note the extremely 
high performance of these two algorithms—the average frame processing time was about 2 ms. This potentially 
makes it possible to achieve a video analysis speed exceeding several hundred frames per second in case of 
processing more suitable video.

The problem of some trackers is a constant reporting of «Success Result» while in many cases IoU is equal 
to zero, so despite the succeeded search no adequate values are founded. For example, it is hard to use Boosting 
tracker on practice relying only on the tracker messages. Also it is impossible to check the results because of 
absence of ground truth data for real-time ultrasound images.

KCF and CSRT lead this test, with an average IoU 70% and more and false-positive results less than 15%.
Some of the frames that failed to process by the KCF algorithm are shown in Fig. 4. CSRT processed all the 

frames correctly.
The second criterion—Root Mean Square Deviation of Centroids—shows how far the center of the reference 

zone and the center of the zone found by the algorithms are apart from each other. The closer these centers are 

Figure 3.  Intersection over Union results.

Figure 4.  Several frames failed by KCF (Ground truth zone is green).
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located, the more accurately the tracking is made and makes it possible to transmit coordinates for the robotic 
arm more precisely. The previous two leaders have retained their positions.

False Positive Percentage (Table 2) shows the ratio of the zone outside the reference to the total area of the 
zone found by the algorithm. It displays the percentage of false information that can lead to a loss of positioning 
accuracy and should ideally tend to zero. The same leaders remained—KCF and CSRT.

Measuring distances between centers of ground truth and founded zones in pixels makes a sense while 
developing an application for tracking ultrasound patterns, because all the trackers’ algorithms potentially can 
track any object in any video. Zooming the ultrasound video will change the size of the pattern on screen, dif-
ferent video will have patterns of different size, but the final result should be presented in measurement system 
understandable by anybody. Converting pixels to millimeters is a separate process for every video because of 
different scale. Table 3 shows the root mean square deviation between centers in millimeters.

The diagram in Fig. 5 shows that KCF is the only the leader in quality testing; it has excellent speed results. 
It could make KCF the best choice for tracking lesions on ultrasound video, with the exception of some failed 
frames.

We have also re-run tests for the assessment leaders—CSRT and KCF algorithms, trying to improve the 
tracking results. Tuned CSRT initialization parameters are presented below:

• psr_threshold
• padding
• scale_step
• use_gray

KCF parameters that we tuned are presented below:

Table 3.  Deviation between centers of ground truth and founded zones.

Average centers deviation (mm) Maximum deviation (mm)

Boosting 2.59 6.63

CSRT 2.92 7.00

KCF 2.08 5.00

MedianFlow 10.53 24.45

MIL 3.06 7.35

MOSSE 8.49 18.90

TLD 10.98 34.16

Figure 5.  Average frame processing time.
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• detect_thresh
• lambda
• max_patch_size
• sigma

None of them improved the tracking quality, but the quality degradation in many cases during the tuning 
was perceptible. It means that the developers selected default initialization parameters very carefully. It also 
should be noted that tracking grayscale or RGB image with CSRT requires the same time to process the frame.

Conclusions
The CSRT and KCF algorithms are the leaders in this ranking. They always cover the target area at least 70%, and 
the average result is 75% or more. This result is comparable with Deep Learning methods of tracking ultrasound 
patterns—SiamFC neural network reaches 83% IoU while tracking carotid  artery39. False-positive data does not 
exceed 15% for CSRT and 10% for KCF. The speed of the CSRT algorithm allows it to reach 30 frames per second 
and KCF—up to 100 frames per second which makes them suitable for real-time processing. The failure rate for 
the KCF algorithm is less than 2%. With CSRT—all attempts were successful.

The reason for the failures of the other algorithms can be a whole complex of features of the ultrasound 
image, such as:

• Noisy image,
• The absence of clearly defined contours of objects,
• Gray-scale representation.

The obtained results led to the idea of cooperative use of algorithms: to build a reliable tracking system, it is 
proposed to use Kernelized Correlation Filters as the main algorithm and in rare cases of its failure to call the 
Channel Spatial Reliability algorithm, which, despite the lower operation speed, will eliminate dropped frames. 
The workflow might look like this:

1. Sequential processing of video frames using the KCF tracker.
2. If the KCF tracker fails, the CSRT algorithm is reinitialized with the last successful processed frame and 

repeats the search on the frame that caused the failure.
3. If step 2 is repeated several (supposedly 3-5 frames) times, the main KCF algorithm is reinitialized with the 

data received from the backup CSRT tracker.
4. Probably, it makes sense to go to step 2 in case of failure and when the arithmetic means of the distance 

according to CD criterion exceeds a certain predetermined threshold and/or the value of Intersection over 
Union criterion exceeds the value of FPP criterion.

The prototype of this application is on heavy development and group of authors hope to publish the result 
as soon as possible.

Thus, the conclusion of the work suggests that real-time neoplasm tracking is possible using a combination of 
the two algorithms. This will allow the system to reliably track target areas at frame rates in excess of 50 frames 
per second. Such development will be future work for this group of authors.

Data availability
The datasets analyzed during the current study and results are available via link https:// bit. ly/ 3Trsl Ot.
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