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Combining the Tait equation 
with the phonon theory allows 
predicting the density of liquids 
up to the Gigapascal range
Eugene B. Postnikov 1*, Roman N. Belenkov 1 & Mirosław Chora̧żewski 2*

Predicting the density of liquids at ultrahigh pressures in the case when only the data measured 
at ambient pressure are available is a long-standing challenge for thermodynamic research. In 
this work, we archived this goal for molecular liquids by applying the half-sum of the Tait equation 
and the Murnagnan equation in the form coordinated with Tait’s at low pressure for predicting the 
density of molecular liquids up to the pressures more than 1 GPa with uncertainty comparable with 
the experimental one. It is shown that the control parameter, which is needed in addition to the 
initial density and the isothermal compressibility can be found using the speed of sound and the 
density at ambient pressure and has a clear physical interpretation in terms of the characteristic 
frequency of intermolecular oscillation mimicking the limiting frequency of Debye’s theory of heat 
conductivity of solids. This fact is discussed as arguing in favour of the modern phonon theory of 
liquid thermodynamics and expands it range of applicability to the volumetric properties of liquids at 
temperatures far below the critical one. The validity of the model is illustrated with the case study of 
classic Bridgman’s dataset as well as with some examples of ultrahigh-pressure data obtained by the 
diamond anvil cell and shock wave compression methods.

Knowledge of thermodynamic properties at high-pressure conditions is of permanent research interest not only 
from the point of view of studying fundamental aspects of molecular properties and intermolecular interactions 
but also due to prime importance for all chemistry and chemical engineering areas. Therefore, it is not surprising 
that the experimental determination and modelling of their behaviour have been paramount. For modern physics 
and chemistry, high pressure, correlated with temperature, is a vital research parameter to understand the ther-
modynamic, physico-chemical, mechanical, and structural properties of substances under extreme  conditions1. 
On the other hand, high pressures applied in materials engineering make it possible to obtain new materials 
often endowed with distinctive  properties2–4.

In science and technology, it has become accepted to establish certain numerical ranges of pressure values. 
The limits of these ranges are conventional and result mainly from established constructional, technological, and 
testing criteria. The division of pressure into low, medium, high, and ultra-high pressure ranges depends on the 
state of the substance being investigated. This division varies between fields such as physics, chemistry, biology, 
and geochemistry and even within one research field. In research on the thermophysical properties of gas, these 
ranges will be completely different from liquid or solid phase studies. In other words, a pressure considered high 
in gas phase studies will be called low in liquid or solid phase studies. This is because, in condensed phases like 
liquids and solids, the pressure depends both on the elastic repulsion forces of the atoms and on changes in the 
thermal vibrational energy of the atoms that depend on volume changes. In gases, on the other hand, pressure 
is related to the transfer of momentum by molecules in thermal motion. Nevertheless, from the point of view 
of molecular physics and physical chemistry of liquid  state5, the natural limit between high and extremely high 
pressures can be defined by the value of 1 GPa as close to the maximum possible to a classical thermodynamic 
system existing in a liquid state before freezing and achievable technically with a piston-cylinder system.

The central development of the technique of generating and measuring high pressures with such technique 
owes much to the American physicist Percy Williams Bridgman. Given his extraordinary contribution to the 
development of high-pressure technology, the period of pressure research is often historically divided into the 

OPEN

1Department of Theoretical Physics, Kursk State University, Radishcheva st., 33, Kursk 305000, Russia. 2Institute of 
Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland. *email: postnikov@kursksu.ru; 
miroslaw.chorazewski@us.edu.pl

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-30917-0&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2023) 13:3766  | https://doi.org/10.1038/s41598-023-30917-0

www.nature.com/scientificreports/

pre-Bridgman, Bridgman years, and post-Bridgman years. He invented the unique system of self-sealing seals 
based on an uncompensated surface, applying so-called piston-cylinder pressure multipliers with variable diam-
eters to gas–liquid and liquid–liquid compression, and finally, the design of anvil apparatuses resulting from the 
development of solutions for pressures above 10  GPa6. Despite the further development of other tools for creat-
ing extreme high-pressures such as diamond anvil cells, shock wave compression, etc., Bridgman’s data remain 
a gold standard in the field of high-pressure thermodynamics  research7 since they are obtained for macroscopic 
samples compressed via the true thermodynamic (reversible) route and widely used as the reference data to 
testing developed equations of state.

The most common method of representing the thermodynamic properties of liquids is to describe these 
properties using an appropriate equation of state (EoS). The main roles of EoS are predicting accurate funda-
mental thermodynamics properties used in the rational design of efficient chemical processes and providing a 
conceptual molecular-level understanding of thermodynamics properties. However, in contrast to the liquids at 
thermodynamic states close to the saturation curve, the equations of state reproducing density at high pressures 
mostly have a phenomenological character with a number of coefficients fitted to reproduce actual high-pressure 
experimental  data8 due to complexity of required molecular information, such as intermolecular potential param-
eters and structural ordering, which prevents the usage of statistical thermodynamics approach. Even sophis-
ticated semi-statistical approaches such as the statistical association fluid theory (SAFT) and its modifications 
require adjustment to a high-pressure reference state to get reliable predictions up to 1 GPa range of  pressures9.

On the other hand, the practice of thermodynamic research and industrial applications conventionally 
operates with the rather simple Tait  equation10–12, which however requires two data-fitted parameters for each 
isotherm. Note also that its  modification13 leads also to the Murnaghan equation initially derived for highly 
compressive isotropic solids. Recently, there were some attempts to address Tait’s parameters from general ther-
modynamic points of view considering the ultra-high pressure  range14 and its interpolating to the low-pressure 
limiting  state15 as well as from the theory thermodynamic  fluctuations16 that allows building the Tait-like shaped 
Fluctuations Theory-based Equation of State (FT-EOS), which extrapolates data obtained at ambient pressure 
to the elevated one up to some hundred Megapascals for a wide range of liquid’s classes, including polar, and 
ionic liquids and liquid  mixtures17–19. However, the latter fails when the pressure tends to GPa range; this has 
been argued as the transition of liquid’s bulk modulus to the behaviour typical for isotropic solids (Murnaghan’s 
equation)20.

Note that the bulk modulus is recently considered one of the most promising thermodynamic characteristics 
of low-compressible media since its relative change can be treated as a small  parameter21,22. In addition, this 
quantity directly relates to the behaviour of the liquid’s structure  factor23, entropy and isochoric heat  capacity24, 
and the Grüneisen  parameter25 treated at extreme pressures by analogy to the solid state physics. Simultaneously, 
this analogy at saturation conditions and in the supercritical region led to the development of the phonon theory 
of liquid  thermodynamics26–28.

Thus, the main problem stated in the present work is building a predictive procedure valid up to the Gigapas-
cal range, which uses the Tait equation (in concert with the Murnaghan equation considered as an approximation 
of Tait’s equation at a certain range of pressures) with parameters, which require for their defining only the data 
measured at ambient pressure. The ingredients, which assure such a possibility is sequential considering the 
pressure dependence of the density and the reduced bulk modulus at varying pressure within the liner response 
theory combined with the ideas of the response of the medium’s oscillatory modes to the volume change.

Results
The procedure developed. It is demonstrated that the density of molecular liquids known for the 
extremely high range of elevated pressures, up to the Gigapascal range, can be predicted by the combination of 
two classic functional forms conventionally used only for the regression of high-pressure data. The first equation 
is the Tait equation

The second one is Murnagnan’s equation

The predictive combination is the simple averaging

where ρTait
pred and ρMurnaghan

pred  are values of the density given by Eqs. (1) and (2), respectively, in which only 
the parameters determined at normal ambient pressure P0 are used: the density ρ0 = ρ(P0) , the isothermal 
compressibility

where C0
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Simultaneously, Tait’ and Murnagnan’s equations themselves could serve as the estimators for the upper and 
lower bounds denoting possible uncertainty of the density predictions at elevated presures.

Finally, the key ingredient, which provides the predictive capacity of Eq. (3) originated from an interpreta-
tion of this parameter from the point of view of the phonon theory of liquids, is the coefficient k′ , which has the 
meaning of the nonlinearity parameter determining the response of the reduced isothermal bulk modulus to 
the isothermal compression

It can be found as the tangent (slope) coefficient in the linear fit of the combination of the speed of sound and 
the density at ambient pressure P0 in logarithmic coordinates

with two possible realisations. The first one is direct k′ = k which gives fractional numbers. The second one 
applies the rounding as follows: if k does not differ from the nearest integer more than 0.1 (i.e. comparable 
with an estimated expectation of uncertainty of well-processed reference data at the ambient pressure) then 
k′ = round(k) , i.e. rounding to the nearest integer; otherwise, k′ = ceil(2k)/2 , i.e. rounding to the nearest integer 
of half-integer toward positive infinity.

Physically, Eq. (6) has a clear meaning within the frame of the phonon theory of liquids in the isotropic 
quasi-harmonic approximation. Namely, considering the high-temperature limit of Debye’s isotropic model, the 
characteristic frequency of the highest phonon mode at high temperatures (the range, which is considered in 
our work) is given by νmax ∼ c/L , where L is the characteristic intermolecular distance, which can be estimated 
via the reciprocal cubic root of the density. Thus, Eq. (6) can be rewritten as

where Ŵ is the microscopic (not thermodynamic) Grüneisen’s parameter. Within this context, the rounding 
procedure mentioned above has an interpretation in terms of the so-called Rao’s rule, which is known as an 
effective regularity having a certain background in the character of oscillatory molecular motions (see the section 
“Discussion” for details). At the same time, this interpretation defines the limit of applicability of the proposed 
model: it is valid when one can neglect by the strong effects of anharmonicity and molecular diffusion in liquid 
state. In general, the upper bound is determined by the normal boiling temperature but in practice it is advisable 
to check the accuracy of the liner fit given by Eq. (6). The illustrating examples for the latter are given below and 
in Supplementary Material.

Test results. To test the proposed method, we applied it to the classic set of high-pressure volumetric meas-
urements by  Bridgman29, which represents a variety of compounds belonging to different classes of molecular 
liquids. To calculate the nonlinearity parameter, the temperatures from T = 263.15 K , which is below the lower 
temperature of Bridgman’s measurements, to the normal boiling point of each liquid was chosen. This allows not 
distinguish practically between the data along the saturation curve and at the ambient pressure. Table 1 reports 
results of deviations between the experimental and the predicted data for both variants of k′ , the raw slope of the 
fitting straight line and its rounded version (this variant is indicated with the subsript “r”). Other parameters, the 
density and the isothermal compressibility at P0 were taken for each Brigman’s temperature either from reference 
regressions of the  REFPROP30 or by fitting experimental data presented in the the NIST ThermoData Engine 
(TDE)31 with the processing via Eq. (4). Since some of isotherms correspond to temperature above the normal 
boiling point, P0 , ρ0 and κ0T were taken at saturation conditions. These two cases are specially denoted in Table 1 
and Fig. 1.

From Table. 1 and Fig. 1A, one can see that the proposed model allows predicting the density up to the Giga-
pascal range with uncertainty comparable with its expected value for these significantly high-pressure volumetric 
measurements. For the full set shown in this figure, the coefficient of determination R2 = 0.996 , for individual 
substances it varies from 0.996 to more than 0.999 (this highest R2 is found for 11 and 16 from 20 total liquids in 
the cases of fractional and rounded k′ , respectively). Moreover, for the majority of substances studied, the devia-
tions are located mainly within a narrow stripe ±1% for the whole range of pressures, see Fig. 1B. To the number 
of most valuable exceptions in Table 1 belong methyl and isopropyl alcohols and, to the less extent, n-pentane 
and n-butyl alcohol (those sequences of markers, which tend to 4% deviations).

The case of methanol in Table 1 originates not from invalidity of the method itself but from the chosen 
range of data fitting common for all substances in this table. Methanol has low triple ( T = 175.5 K ) and normal 
boiling ( T = 337.8 K ) points. Thus, more correct determination of k′ requires a lower temperature region. This 
is confirmed with the test results reported below (and this also leads to k′r = 9 closer to other alcohols). The 
same is true for n-pentane, which exist in the liquid state at low temperatures (see the illustrated and discussed 
calculations in the section “Methods”).

An additional analysis of the choice of the fitting intervals is also provided in Supplementary Materials.
As for isopropyl alcohol, its thermodynamic parameters are not standardised due to scarcity and scatter-

ing of known experimental data, and the deviation reported in Table 1 may originate from a large uncertainty 
experimental data themselves. As an additional confirmation, see Fig 1B, where there are large deviations even 
at the reference pressure P0 . The case of n-butanol is similar.
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Apart from Bridgman’s, the data on the density of liquids under extremely high pressures (especially in the 
thermodynamic equilibrium state, i.e. not under shock wave compression) are extremely scarce. It is worth 
noting the data obtained in a diamond anvil  cell32 for two simple alcohols, methanol and ethanol, which are 
important prototypic examples of liquids with significant hydrogen bonding. They are shown in comparison 
to the isotherms obtained by the proposed method in Fig. 2. Since, as it is discussed above, methanol has a low 
freezing temperature, therefore its region of solid-like molecular oscillations is shifted to lower temperatures 
comparing with the region used for all substances in Table 1. Thus, here we applied the linear regression accord-
ing to Eq. (6) from the melting to the boiling points with the subsequent rounding of the slope that resulted in 
the value k′ = 9.5 coinciding now with the value for other alcohols.

One can see that the respective curves quite accurately reproduce the raw experimental data shown as mark-
ers in Fig. 2. Overall AADs for the whole isotherm are 0.47% and 1.15% for methanol and ethanol, respectively. 
They are within the estimated standard uncertainty of the experimental data. The maximal relative deviations 
are equal to 1.5% and 3.1%. Note that deviations of this range are visible for pressures of several Gigapascals for 
methanol, which was liquid in this experiment but this liquids state is metastable for P > 3.58 GPa ; for ethanol, 
the maximal relative deviation is detected in the point adjacent to the high-pressure freezing ( P = 3.19 GPa . 
For lower pressures, as seen in the inset in Fig. 2, the model perfectly reproduces Bridgman’s data (AADs are 
0.38% and 0.43% for isotherms T = 293.15 K and T = 353.15 K ) which are well-coordinated with the data  from32 
within their overlapping pressure range. As one additional demonstration, one can see that the predicted curve 
for methanol goes through markers (asterisks) denoting the methanol’s density values reported by the NIST 
 REFPROP30 for the range (200–800) MPA , AAD = 0.41% in this case. Respectively, Bridgeman’s isotherms for 
T = 293.15 K , T = 303.15 K , and T = 353.15 K are with AADs equal to 0.38%, 0.47%, and 1.2% thereby cor-
recting the values given in Table 1.

Another variant of obtaining densities of liquids at extremely high pressures is an application of shock wave 
compression. This process is not slow thermodynamically equilibrated and allows reaching the pressure range 

Table 1.  The summary table of comparisons between Bridgeman’s experimental  data29 and the densities 
predicted by Eqs. (3)–(2), which indicates the average (AAD) and maximal ( max(RD) ) absolute relative 
deviations. The parameters at ambient pressure used for the predictive calculation for liquid, which names are 
supplied with asterisks, the correlations for the evaluated available experimental data by the NIST ThermoData 
Engine (TDE)31 were used; otherwise, the data generated by the NIST  REFPRPOP30 were used.

Liquid Pmax , MPa k
′

k
′

r AAD, % AADr, % max(RD), % max(RDr ), %

n-Pentane, T < Tb
981 9.82 10

1.2 1.44 1.84 2.25

n-Pentane, T > Tb 0.74 1.15 1.56 2.08

Isopentane, T < Tb
883 9.97 10

0.19 0.19 0.32 0.38

Isopentane, T > Tb 0.71 0.65 2.22 2.22

n-Hexane, T < Tb
1079 9.68 10

0.98 0.51 1.38 0.85

n-Hexane, T > Tb 1.39 0.56 1.74 0.86

2-Methylpentane, T < Tb
1177 10 10

0.11 0.11 0.29 0.3

2-Methylpentane, T > Tb 0.43 0.43 0.61 0.61

3-Methylpentane, T < Tb
1177 9.85 10

0.51 0.72 1.53 1.86

3-Methylpentane, T > Tb 0.09 0.4 0.3 0.87

2,2-Dimethylbutane, T < Tb
981 10.28 10.5

0.8 0.66 1.27 1.02

2,2-Dimethylbutane, T > Tb 1.28 0.86 1.99 1.21

2,3-Dimethylbutane, T < Tb
1079 9.82 10

0.14 0.22 0.44 0.93

2,3-Simethylbutane, T > Tb 0.63 0.24 0.76 0.48

n-Heptane, T < Tb 1079 9.93 10 0.23 0.3 0.71 0.87

n-Octane, T < Tb 981 9.98 10 0.54 0.51 0.95 0.92

n-Decane, T < Tb 785 10.06 10 0.19 0.19 0.34 0.41

Bromobenzene*, T < Tb 883 9.24 9.5 0.38 0.23 0.82 0.41

Chlorobenzene*, T < Tb 1079 10.05 10 0.71 0.75 1.61 1.72

Methyl alcohol, T < Tb
1177 8.36 8.5

2.44 2.21 4.13 3.65

Methyl alcohol, T > Tb 2.81 2.54 4.51 3.97

Ethyl alcohol, T < Tb
1177 9.32 9.5

0.45 0.38 0.88 0.87

Ethyl alcohol, T > Tb 0.65 0.44 0.91 0.77

Propyl alcohol*, T < Tb 1177 9.21 9.5 1.46 1.11 3.13 2.31

Isopropyl alcohol*, T < Tb
1177 8.95 9

1.96 1.9 3.46 3.31

Isopropyl alcohol*, T > Tb 2.69 2.58 3.83 3.64

n-Butyl alcohol*, T < Tb 1177 9.24 9.5 1.36 1.06 2.23 1.5

Isobutyl alcohol*, T < Tb 1177 9.46 9.5 0.39 0.34 0.98 0.87

n-Pentyl alcohol*, T < Tb 1177 9.31 9.5 0.3 0.13 0.87 0.4

n-Hexyl alcohol*, T < Tb 687 9.67 10 0.83 0.63 1.71 1.15
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of up to several dozen Gigapascals without solidification. At the same time, the shock wave compression under 
such extremaly high pressures breaks the isothermality of the process (for example, see Ref.33, the wave heats 
n-hexane up to 5100 K at 20 GPa).

At the same time, the proposed model operates with the isothermal equation of state obtained from a general 
Taylor series-based expression for the pressure and the density, it should not depend on the speed of compression 
at moderate pressures. Moreover, the adiabatic bulk modulus characterising the sound wave and the isothermal 
bulk modulus are related to each other as follows from Eq. (4):

At high pressures, the change of the density and the isobaric heat capacity is not drastically huge but the isother-
mal compressibility diminishes extremely fast as a function of the elevated  pressure34,35 that is also captured by 

BS = BT +
α2
PT

ρCP
.

Figure 1.  Experimental vs. predicted densities of liquids listed in Table 1 for the case of rounded isothermal 
nonlinearity parameters (A) and their relative deviations as a function of the pressure (B). Different colours 
correspond to different liquids; circles and crosses denote data for isotherms located below and above the 
normal boiling point.

Figure 2.  Experimental32 densities at T = 298.15 K for liquid methanol up to 6.82 GPa (black circles) and 
ethanol up to 3.19 GPa (blue diamonds) in comparison to the predicted density isotherms (black dashed 
and blue solid curves, respectively). To fill the gap in the region of maximal curvature of the isotherm, the 
data generated by the NIST REFPROP  Database30 from 200 MPa to 800 MPa with the step 100 MPa are 
shown as black asterisks. Inset: Bridgman’s  data29 for ethanol’s isotherms T = 293.15 K (blue diamonds) and 
T = 353.15 K (magenta squares) and the predicted isotherms shown as solid curves of the corresponding 
colours. Thin green (for methanol) and gray (for ethanol) lines highlight over- and under-estimation of data by 
the Tait and Murnaghan equations, respectively.
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the FT-EoS (see Methods below) at relatively low  pressures36, where this equation approximates both Tait’s and 
Murnaghan’s. Whence, at pressures higher than 1 GPa (it corresponds to the high-pressure freezing at 298.15 K
37 where the active shock-wave heating occurs, the compression route gradually changes from the isothermal to 
adiabatic path but the predictive parameters are expected to remain the same.

To test this, we used the experimental data on the density of shock wave-compressed up to 37 GPa n-hexane33 
shown in Fig. 3. Note that the author argued the existence of some kind of liquid-liquid transition at about 20 GPa 
as the explanation for a jump in the data. For this reason, markers in the second part of the density range are 
coloured differently. One can see from Fig. 3 that the curve calculated with Eq. (3) up to this transition using 
the saturated data only for determining parameters follows the course of markers with high accuracy, which is 
comparable with the scattering of experimental values around a smooth curve ( AAD = 1.6% ). The inset sup-
plies the picture with the illustration of reproducing the density at lower pressures, which are below the shock 
wave-originated. They are Bridgman’s data characterised in Table 1. Thus, the complete coverage of the pressure 
range can be stated.

Certainly, the model can not reproduce the existence of a liquid–liquid transition and the density’s jump. This 
explains the deviation of the course of the model predicted curve and the data points for P > GPa . However, 
AAD = 1.9% even in this case of (20–37) GPa argues in favour of the utility of the proposed model for the density 
prediction even for such extremal high pressures.

Discussion
The phonon theory of liquid  thermodynamics26–28 is a modern approach quantitatively addressing the idea put 
forward by  Frenkel38 that sufficiently dense liquids have certain properties, which make them closer rather to 
solids than to gases. First of all, it is about short-time (time intervals shorter than some characteristic relaxation 
time) instant oscillations of a liquid’s molecules, which resemble a disordered solid while the molecular motion 
during times longer than the characteristic relaxation time exhibits molecular rearrangement via diffusion-like 
jumps. This picture allowed the authors of the cited work to explain a number of effects related to the isochoric 
heat capacity of simple liquids, in particular, the transition from its value practically resembling the Dulong-Petit 
solids’ law at the temperatures close to the melting down to 1.5 times less value toward to high temperatures.

On the contrary, in this work, we are focused not on the energy/relaxation specificity but on the “geometric” 
features leading to the pressure dependence of the isothermal compressibility. Certainly, the compressibility (or 
the bulk modulus) of liquids and solids behaves differently as measures of the linear response to the pressure’s 
elevation, especially in the vicinity of the liquid-vapour coexistence line (or the ambient pressure). However, the 
nonlinear response of the liquid’s density changes specified by the isothermal nonlinearity coefficient (5) is found 
acting as the nonlinearity of compressed isotropic solids determined by their spectral characteristics defined by 
the microscopic Grüneisen parameter, Eqs. (6)–(7).

This parameter  introduced39 as a measure of the response of the crystal’s lattice oscillation modes with fre-
quencies νj to the change of crystal’s volume V

reduces to a single value (the right-hand side of Eq. (7) at the limit of high temperatures as observed for the 
high-temperature limit (leading to the Dulong–Petit law) of Debye’s theory of heat conductivity, and can be 
related to the compressibility (not specified respectively to the iso-property) that was first mentioned at the 
semi-quantitative level by Debye  himself40 and explored in more details by  Slater41 who discussed the response 

Ŵj = −
∂ ln νj

∂ lnV

Figure 3.  An examples of a density isotherms T = 298.15 K for n-hexane obtained via the shock wave 
 compression33. Circles marking experimental values are coloured as blue for P < 20 GPa and red for 
P > 20 GPa ; between this pressures, an existence of the density jump related to a structure transition was 
argued  in33. The solid line represents the model prediction based on the the half-sum of Tait’s and Murnagnan’s 
equations. Inset: Bridgman’s  data29 for n-hexan’s isotherms T = 273.15 K , T = 323.15 K , and T = 368.15 K 
(circles) and the predicted isotherms shown as solid curves of the corresponding colours.
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of νmax , as defined by the isothermal compressibility, to the volume’s change within the frames of Debye’s theory 
A review of these issues can be found in the  work42.

Translating this approach to liquids, the expression connecting the change of a single vibrational frequency 
on the characteristic intermolecular separation was considered by Moelwyn–Hughes for the simplified model 
of point-wise particles oscillating in the Mie  potential43 that resulted also in the connection of the potential’s 
parameters and parameters of the Murnaghan  equation44.

In the present work, we show that specifying a particular model of intermolecular interactions is not required, 
and the respective isothermal nonlinearity coefficient can be practically obtained by processing the macroscopic 
thermodynamic parameters, the speed of sound and the density, Eq. (5).

It is worth noting that Eq. (6) can be related to another well-known empiric dependence, the so-called Rao’s 
rule, which reads at the ambient pressure  as45,46

where M is the molar mass and RR is a substance-specific constant known as the molecular speed of sound or the 
Rao constant. Actually, taking 9th power of both sides of Eq. (8) and logarithm, it reduces the form

the same as Eq. (6) but with the fixed coefficient k = 10 . However, as one can see from Table 1, rounding k to 
this integer gives improvements in accuracy for the majority of non-associated liquids. Simultaneously, associ-
ated liquids require a lower value of the constant that agrees with earlier phenomenological discussions of Rao’s 
rule  validity47–49.

The relation of the speed of sound to the characteristic vibrations of molecules (their frequency and energy) 
in a liquid as a possible origin of Eq. (8) was noted even in one of early Rao’s  works45,47 however without any 
connections to isothermal compressibility changes. Later, an analogy between Rao’s rule in liquids and the 
Debye–Slater’s change of the isothermal compressibility connected to the microscopic Grüneisen parameter was 
proposed by  Swamy50. But the cited work’s author was more focused on the value of Rao’s constant and the usage 
of thermodynamic Grn̈eisen parameter (pseudo-Grüneisen parameter), which is well-applicable to isotropic 
solids and liquid metals but fails for molecular liquids.

On the contrary, the results of our work demonstrate that accurate predictive results can be achieved if to 
operate with the microscopic Grüneisen parameter directly the same as for solids. Therefore, this argues in 
favour of the phonon theory of liquid thermodynamics applicable when a liquid has a reactively close-packed 
structure (below and about the normal boiling point considering the saturation curve). In addition, it should be 
noted that the proposed method does not require calculating Rao’s constant because Eq. (6) operates only with 
the slope of the fitting straight line but not with its shift’s constant.

Finally, let us shortly discuss the combining rule given by Eq. (3). In addition to practical operability, it 
removes a long-discussed up to date contradiction between the applicability of Tait’s and Murnaghan’s 
 equations12,13,51,52.

As shown in the  work20, the qualitative character of the isothermal bulk modulus response to the pressure 
changes along an isotherm significantly depends on the molecular packing; it is better reproduced by the Murna-
ghan equation only for states with closely packed molecules; otherwise, the linearity of the reduced bulk modulus 
(see Eq. (5), leading to the FT-EoS, fulfils better. The Tait equation, taken as an interpolating phenomenological 
formula, balances its parameters between these two cases that may lead to deviation depending on which part 
of an isotherm affects the fitting procedure more.

Here we show (the detailed derivation is provided below in the Section “Methods”) that all three equations can 
be reduced to the same form resembling the FT-EoS with the parameter k′ determined at the ambient pressure 
(and valid for low elevated pressures) from the linear response theory. But the nonlinearity coefficient’s value of 
Tait’s and Murnaghan’s equations, exactly derived from their forms valid at the extra high-pressure limit, differs 
from the low-pressure limit in such a way that one equation “undershoots” and another “overshoots” the liner 
response-based value. Thus, their equally weighted average is required to get an accurate value.

Methods
Linear response theory. Due to low compressibility of liquids, one can operate with some first terms in 
the expansion of the pressure function P(X), where X denotes either the density ρ or the specific volume v = ρ−1 
into the Taylor series represented in the form

along an isotherm. Note that it is more convenient to use the pressure as a response to the relative density/volume 
changes because the latter varies weakly assuring the series’ truncation mentioned above. For further processing, 
it is more convenient to rewrite Eq. (10) in the form, which highlights explicitly the linear and high-order terms 
with respect to the relative compression:
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where the factor in the linear term in the right-hand side is exactly the absolute value of the isothermal bulk 
modulus at the pressure P = P0.

Correspondingly, one can also define the response function in terms of the same series as

It is the reduced bulk modulus K̃T = (ρκT )
−1 = −(vκT )

−1 when X = ρ or X = v , respectively, and can be 
represented as the sum of this quantity at the ambient pressure, the linear, and the high-order terms

For low-compressible media like liquids, their elasticity changes weakly even in the response to high pressures. 
Thus, we can be limited by the second term in Eq. (13) and need to rewrite it as an explicit expression of the 
applied pressure. For this purpose, we express the second term in Eq. (13), linear with the relative change of X, 
as the linear function of the pressure expressed from Eq. (11) also keeping the linear term only and neglecting 
by the contribution of high-order terms. This results in the expression

which can be rewritten in terms of the isothermal compressibility κ0T at P = P0 as

where the signs “ + ” and “−” correspond to X = ρ and X = v , respectively.
In the latter case, Eq. (14) looks explicitly as

and its integrating leads to the classic Tait’s (or, more precisely, Tait–Tammann’s) equation

where

is a dimensionless non-linearity parameter defined in terms of isothermal reduced volume’s change, i.e. Eq. (17) 
provides the physical meaning of this factor in Eq. (1) in contrast to its conventional discussion as a purely 
phenomenological parameter. Note also that is resembles combination of volumes derivatives, which emerged 
in Slater’s estimations of the Grúneisen parameter of  solids41.

On the other hand, the usage X = ρ in Eq. (14) leads to

integration of which results in the Fluctuation Theory-based Equation of State (FT-EOS)

with

Note that Eqs. (16) and (19) behave closely to each other for small pressures when the logarithmic term is small 
if to assume k′ = k̃′ (within the weakly non-linear responses at pressures infinitesimally close to P0 ) and take 
into account that (1− x)−1 ≈ 1+ x, x << 1 [compare their forms (1) and (19)]. On the other hand, they have 
their own drawbacks at significantly large pressures.
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First of all, the Tait equation (16) leads to zero and negative volumes after reaching some high pressure. 
Although such pressures are over reasonable experimental possibilities, such a non-physical behaviour is the prin-
cipal physical complication. Thus, one can expect that this equation with predictive parameters, derived within 
the linear response theory is not well-balanced respectively to the whole possible pressure range. On the other 
hand, the nonlinearity parameter defined by Eq. (20) is more physically relevant because the pressure is defined 
as a function of growing density (Eq. (10) with X = ρ ) is monotonously growing without sign-alternating coef-
ficients. At the same time neglecting high-order terms within the linear response theory results in two effects: (i) 
the systematic underestimation of the density at extra-high pressure and (ii) the constancy of the internal pressure

along isotherms, while in reality, it diminished from P0i = Pi(0) down to some minimal value and then starts 
to grow even overcoming the value P0i  for high pressures. Averaging over the range of pressure, where these 
deviations around P0i  are relatively balanced in magnitude explain the exceptional predictive properties of the 
FT-EoS for not extra high pressure.

However, now we need to operate with extra high pressures, where the FT-EoS is not applicable. At the same 
time, it is known that the experimental density at extra high pressures is almost universally well-reproduced 
with the Murnaghan equation, which reads as

Its origin also can be considered as originated from some kind of the linear response theory but applied not the 
density/volume but directly to the bulk modulus considering is linear perturbation directly with respect to the 
pressure

characterized by the constant parameter

Equivalence of three isothermal equations at low elevated pressures. Note however that all three 
discussed equations can be approximated by the same functional expressions at not very high elevated pressures. 
In particular, Eq. (21) can be logarithmed

and rewritten as

For (ρ − ρ0)/ρ0 << 1 , since ln(1+ x) ≈ x for small x,

that gives

i.e. the form of the FT-EoS (19) with k̃′ = kM.
Simultaneously, Eq. (21) written also in terms of specific volumes as

and using the same approximation of logarithm for (v − v0)/v0 << 1 , we get, following Ref.13,

i.e. the Tait equation (16) with k′ = kM , which in turn, coincides with Eq. (19) within the same order of 
approximation.
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Isothermal nonlinearity parameter expressed from high-pressure data. However, it should be 
stressed that the equivalence of parameters k′ , kM , and k̃′ within the applicability of the linear response theory 
near the saturation curve does not fulfil in a general case.

For Murnagnan’s equation, the direct usage of the product’s derivative formula and Eq. (18) leads to

for P = P0 . This means that kM obtained as an empiric coefficient of the curve fitting experimental data at very 
high pressure should be larger than the coefficient obtained from the linear response theory at low pressure and 
these two values do not coincide. Thus, the substitution of the value k′ = k̃′ required by the linear response theory 
will lead to the underestimation of the density at very high pressures.

A similar conclusion can be done for the Tait equation. It is possible to express explicitly the pressure as a 
function of the density using the form (1),

and differentiate it twice. As a result, at the ambient pressure P = P0 , when ρ = ρ0 , the ratio of the derivatives 
represented by Eq. (17) gives

Thus, in this case, the high-pressure-fitted parameter is also larger than the linear response-based one. But, since 
the Tait equation is written respectively to the specific volume, the usage of k′ = k̃′ instead of the empirically 
fitted k′ will result in the underestimation of the specific volume and, respectively, overestimating the density.

Thus, the effects of Murnaghan’s and Tait’s equations are opposite as highlighted in Fig. 2. However, since at 
low pressures both these equations should have the same course, as it is discussed above, we can simply consider 
their equally-weighted sum (3). Such a sum exactly reproduces the FT-EoS, which is the strict consequence of 
the linear response theory for the density at relatively low pressures and leads to compensating effects of high-
order terms required for taking into account high compression at very high pressures, where the linear response 
theory is not valid.

Correspondence between isothermal parameters calculated from the fundamental equation 
of state and from the saturated data. Figure 4A illustrates the comparison of the isothermal nonlinear-
ity parameter k′ for some examples of molecular liquids belonging to different chemical classes: n-alkanes, i.e. 
linear hydrocarbons with different chain lengths, a highly branched isomer (2,3-dimethylbutane), typical aro-
matic and polar compounds (toluene and ethanol, respectively). The reference for the majority of curves is taken 
from the triple point to the normal boiling point along the saturation curve (that is, in principle, does not differ 
from values determined to the ambient pressure condition for thermodynamic parameters of the bulk liquid) are 
calculated directly from the definition given by Eq. (20).

The only exception is 2,3-dimethylbutane, for which the lower temperature limit is chosen at T = 263.15 K 
as was used for Table 1. This is connected with the properties of this branched compound, which exhibits a more 
complex behaviour in the region of low temperatures. The branched structure leads to specific oscillatory modes 
and this substance may exhibit metastability and glassy states after  freezing53 that is also reflected in the properties 
of a cooled liquid. Thus, we are limited by the temperature range, which is closer to room temperatures when 

kM = k̃′ + 1,

P =
(

k′κ0T
)−1

exp

(

k′
[
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ρ

])

−
(

k′κ0T
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+ P0,
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Figure 4.  (A) Examples of the isothermal nonlinearity parameter from the triple point to the normal melting 
point for saturated molecular liquids of different classes, where solid lines are point-wise thermodynamic values 
calculated explicitly with derivatives of the fundamental equations of state included in the NIST  REFPROP30, 
and the dashed lines are the average values defined as slopes of the linear fits of lines shown in (B). Liquids are 
marked by the same colours in both subpanels.
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such anomalies are absent. Similar behaviour is noted for other branched hydrocarbons, e.g. for 3-methylpentane 
as additionally illustrated in Supplementary Material.

Another feature worth discussing is the isothermal nonlinearity coefficient for n-pentane, which is equal (in 
the rounded variant) to k′r = 9.5 in Fig. 4A in contrast to k′r = 10 in Table 1. For this lower value, AADr = 0.75% , 
max(RDr) = 1.12% ( T < Tb) and AADr = 0.43% , max(RDr) = 0.86% ( T > Tb) for Bridgman’s isotherms that 
is significantly better than results listed in Table 1 and confirms the statement formulated above that one needs 
to consider temperatures closer to the triple point for liquids with low melting/boiling temperatures to assure 
validity of the solid-like molecular oscillations properties required by the phonon theory.

The corresponding partial derivatives and density included in Eq. (20) for these substances are substituted as 
provided by the NIST  REFPROP30 reference software from the fundamental equation of state. The values for the 
same source are also used to plot the dependencies (6) shown in Fig. 4B, which are sufficiently linear. The slopes 
of the linear fit lines of the latter are denoted in Fig. 4A as dashed straight lines and their roundings to either 
integer or half-integer values are dash-dotted straight lines. One can see that the latter are closer to the direct 
derivative-based curves, especially in the vicinity of the temperature range, for which the high-pressure density 
measurements are available. This supports the conclusion that such rounding having a physical background in 
the origin of Rao’s rule from the phonon theory of liquid thermodynamics in the quasi-harmonic approxima-
tion is plausible. In addition, such a check of linearity of the fit provides a criterion for the possibility to neglect 
by effects of anharmonicity and molecular diffusion, which may affect the isothermal nonlinearity parameter. 
Notably that the linearity in the double-logarithmic coordinates, i.e. the power-law dependence between the 
speed of sound and the density distinguishes liquids as more compressible substance from solids, for with such 
linearity fulfils between these quantities directly (Birch’s law).

It should be stressed also that the thermodynamic route of calculating k′ from the fundamental equation of 
state itself has the uncertainty about 5–7% taking into account the uncertainty of the derivative quantities (note 
that the same is true also for the thermodynamic route of estimating the adiabatic nonlinearity parameter, see, 
for example, the discussion in Ref.54); thus, the difference between solid curved and straight dash-dotted lines 
bounded within this range in Fig. 4A does not principally affect this conclusion.

Software implementations. It should be pointed out that the proposed methods, which operate with 
very simple predictive equations (1)–(3) and linear regression of the reference data, Eq. (6) can be easily realised 
with a variety of common computational tools, even with trivial spreadsheets that makes its usage available for 
practical engineers.

The calculations leading to results reported in this work were done with the home-written code, which can 
be run with both MATLAB (any version since it uses the basic operations only) and free software GNU Octave. 
As of the Supporting Materials, we provide a code example (.m-file and data for 3-methylpentane) illustrating 
such calculations.

In addition, taking into account the growing popularity among the research community of the new free 
programming language Julia, we also supply in Supplementary Materials the version of code for this language 
as a Jupyter notebook. Its content provides an additional discussion of the procedure and its interpretation 
from the point of view of the temperature dependence of solid-like oscillational features affecting the isother-
mal nonlinearity parameter. To make this discussion available for those members of the research community 
who do not work with Julia–Jupyter, we also provide this notebook exported as a .pdf file containing detailed 
comments and illustrations.

Conclusion
To summarise the presented results from the point of view of practical thermodynamics of liquids, let us note that 
utilising Bridgman’s  data29 alongside data points and a description of the experimental procedure and possible 
apparatus errors, the overall uncertainty of the density determination in the experimental dataset was estimated 
at the level of 1%. The analysis of data from Table 1 and insets in Figs. 2, 3 shows that in the pressure range 
up to 1 GPa, the average (AAD) absolute relative deviations range from 0.5 to 1%. In addition, in the pressure 
range of up to 1 GPa, there are no liquid phase density data in the literature, apart from the data obtained by P. 
W. Bridgman. For lower pressures in the range up to 0.2 GPa, the uncertainty of the density obtained by direct 
and indirect experimental methods and their standardised systematisation for organic liquids is in the range of 
0.1–0.5%55, which allows us to propose the usefulness of the derived equation of state model for the construction 
and validation of future measuring instruments for measuring density at pressures up to 1 GPa. Thus, it could 
be expected that the recommended model, which does not require preliminary high-pressure measurements to 
get its coefficients, could be reliably applied to validate the measured density of a number of other compressed 
classical liquids in broad ranges of temperatures and pressures up to 1 GPa.

On the other hand, the model’s construction, which addresses the characteristic frequency of intermolecu-
lar oscillation mimicking the limiting frequency of Debye’s theory of heat conductivity of solids, shed light on 
another possible application of the phonon theory of liquids distinct from purely energetic/heat capacity issues 
studied before. Moreover, this route based on the linear response theory being combined with thermodynamic 
equalities may open new perspectives for the predictive modelling of another thermodynamic functions in the 
single phase region of liquids under high pressures as well.

Data availibility
Testing the proposed model was carried out with the already published data, sources of which are referenced in 
captions to Table 1 and figures. The computational code implementing the model is provided as Supplementary 
Material.



12

Vol:.(1234567890)

Scientific Reports |         (2023) 13:3766  | https://doi.org/10.1038/s41598-023-30917-0

www.nature.com/scientificreports/

Received: 31 January 2023; Accepted: 3 March 2023

References
 1. Mao, H.-K., Chen, X.-J., Ding, Y., Li, B. & Wang, L. Solids, liquids, and gases under high pressure. Rev. Mod. Phys. 90, 015007. 

https:// doi. org/ 10. 1103/ RevMo dPhys. 90. 015007 (2018).
 2. Eggers, R. (ed.) Industrial High Pressure Applications: Processes, Equipment, and Safety (Wiley, Weinheim***, 2012).
 3. Recio, J. M., Menéndez, J. M. & De la Roza, A. O. An Introduction to High-Pressure Science and Technology (CRC Press, Boca 

Raton***, 2016).
 4. Eswarappa Prameela, S. et al. Materials for extreme environments. Nat. Rev. Mater.https:// doi. org/ 10. 1038/ s41578- 022- 00496-z 

(2022).
 5. Proctor, J. E. The Liquid and Supercritical Fluid States of Matter (CRC Press, Boca Raton***, 2020).
 6. Bridgman, P. W. The Physics of High Pressure (G. Bell and Sons, London***, 1949).
 7. McMillan, P. F. Pressing on: the legacy of Percy W. Bridgman. Nat. Mater. 4, 715–718. https:// doi. org/ 10. 1038/ nmat1 488 (2005).
 8. Wilhelm, E. & Letcher, T. (eds) Volume properties, solutions and vapours (Royal Society of Chemistry, Liquids, Cambridge***, 

2015).
 9. Polishuk, I. Till which pressures the fluid phase EOS models might stay reliable?. J. Supercrit. Fluids 58, 204–215. https:// doi. org/ 

10. 1016/j. supflu. 2011. 05. 014 (2011).
 10. Dymond, J. H. & Malhotra, R. The Tait equation: 100 years on. Int. J. Thermophys. 9, 941–951. https:// doi. org/ 10. 1007/ BF011 33262 

(1988).
 11. Poling, B. E., Prausnitz, J. M. & O’Connell, J. P. The Properties of Gases and Liquids (McGraw-Hill Education, New York, 2001).
 12. Aitken, F. & Foulc, J.-N. From deep sea to laboratory 3: From Tait’s work on the compressibility of seawater to equations-of-state for 

liquids (Wiley, Hoboken***, 2019).
 13. Macdonald, J. R. Some simple isothermal equations of state. Rev. Mod. Phys. 38, 669–679. https:// doi. org/ 10. 1103/ RevMo dPhys. 

38. 669 (1966).
 14. Xue, T.-W. & Guo, Z.-Y. A general equation of state for high density matter from thermodynamic symmetry. J. Appl. Phys. 131, 

044902. https:// doi. org/ 10. 1063/5. 00777 07 (2022).
 15. Xue, T.-W. & Guo, Z.-Y. A global equation-of-state model from mathematical interpolation between low-and high-density limits. 

Sci. Rep. 12, 12533. https:// doi. org/ 10. 1038/ s41598- 022- 16016-6 (2022).
 16. Postnikov, E. B., Goncharov, A. L. & Melent’ev, V. V. Tait equation revisited from the entropic and fluctuational points of view. Int. 

J. Thermophys. 35, 2115–2123. https:// doi. org/ 10. 1007/ s10765- 014- 1747-5 (2014).
 17. Postnikov, E. B., Goncharov, A. L., Cohen, N. & Polishuk, I. Estimating the liquid properties of 1-alkanols from C5 to C12 by FT-

EoS and CP-PC-SAFT: Simplicity versus complexity. J. Supercrit. Fluids 104, 193–203. https:// doi. org/ 10. 1016/j. supflu. 2015. 06. 
007 (2015).

 18. Chora ̧żewski, M., Postnikov, E. B., Jasiok, B., Nedyalkov, Y. V. & Jacquemin, J. A Fluctuation equation of state for prediction of 
high-pressure densities of ionic liquids. Sci. Rep. 7, 5563. https:// doi. org/ 10. 1038/ s41598- 017- 06225-9 (2017).

 19. Postnikov, E. B. et al. Prediction of high pressure properties of complex mixtures without knowledge of their composition as a 
problem of thermodynamic linear analysis. J. Mol. Liq. 310, 113016. https:// doi. org/ 10. 1016/j. molliq. 2020. 113016 (2020).

 20. Jasiok, B., Postnikov, E. B. & Chora ̧żewski, M. The prediction of high-pressure volumetric properties of compressed liquids using 
the two states model. Phys. Chem. Chem. Phys. 21, 15966–15973. https:// doi. org/ 10. 1039/ C9CP0 2448D (2019).

 21. Stacey, F. D. High pressure equations of state and planetary interiors. Rep. Prog. Phys. 68, 341–383. https:// doi. org/ 10. 1088/ 0034- 
4885/ 68/2/ R03 (2005).

 22. Gholizadeh, H., Burton, R. & Schoenau, G. Fluid bulk modulus: A literature survey. Int. J. Fluid Power 12, 5–15. https:// doi. org/ 
10. 1080/ 14399 776. 2011. 10781 033 (2011).

 23. Drewitt, J. W. E. Liquid structure under extreme conditions: High-pressure X-ray diffraction studies. J. Phys. Condens. Matter 33, 
503004. https:// doi. org/ 10. 1088/ 1361- 648X/ ac2865 (2021).

 24. Fokin, L. R., Kulyamina, E. Y. & Zitserman, V. Y. Connection between entropy and thermal expansion during the extreme com-
pression of a substance. Russ. J. Phys. Chem. A 94, 254–260. https:// doi. org/ 10. 1134/ S0036 02442 00201 07 (2020).

 25. Stacey, F. D. & Hodgkinson, J. H. Thermodynamics with the Grüneisen parameter: Fundamentals and applications to high pressure 
physics and geophysics. Phys. Earth Planet. Inter. 286, 42–68. https:// doi. org/ 10. 1016/j. pepi. 2018. 10. 006 (2019).

 26. Bolmatov, D., Brazhkin, V. V. & Trachenko, K. The phonon theory of liquid thermodynamics. Sci. Rep. 2, 421. https:// doi. org/ 10. 
1038/ srep0 0421 (2012).

 27. Trachenko, K. & Brazhkin, V. V. Collective modes and thermodynamics of the liquid state. Rep. Prog. Phys. 79, 016502. https:// 
doi. org/ 10. 1088/ 0034- 4885/ 79/1/ 016502 (2015).

 28. Bolmatov, D. The phonon theory of liquids and biological fluids: Developments and applications. J. Phys. Chem. Lett. 13, 7121–7129. 
https:// doi. org/ 10. 1021/ acs. jpcle tt. 2c017 79 (2022).

 29. Bridgman, P. W. The volume of eighteen liquids as a function of pressure and temperature. Proc. Am. Acad. Arts Sci. 66, 185–233. 
https:// doi. org/ 10. 2307/ 20026 332 (1931).

 30. Huber, M. L., Lemmon, E. W., Bell, I. H. & McLinden, M. O. The NIST REFPROP database for highly accurate properties of 
industrially important fluids. Ind. Eng. Chem. Res. 61, 15449–15472. https:// doi. org/ 10. 1021/ acs. iecr. 2c014 27 (2022).

 31. Frenkel, M. et al. ThermoData Engine (TDE): Software implementation of the dynamic data evaluation concept. J. Chem. Inf. 
Model. 45, 816–838. https:// doi. org/ 10. 1021/ ci050 067b (2005).

 32. Brown, J. M., Slutsky, L. J., Nelson, K. A. & Cheng, L.-T. Velocity of sound and equations of state for methanol and ethanol in a 
diamond-anvil cell. Science 241, 65–67. https:// doi. org/ 10. 1126/ scien ce. 241. 4861. 65 (1988).

 33. Dick, R. D. Shock compression data for liquids. I. Six hydrocarbon compounds. J. Chem. Phys. 71, 3203–3212. https:// doi. org/ 10. 
1063/1. 438767 (1979).

 34. Pruzan, P. Pressure dependence of expansivity in the liquid hexane as a model for liquids. J. Phys. Lett. 45, 273–278. https:// doi. 
org/ 10. 1051/ jphys let: 01984 00450 60273 00 (1984).

 35. Randzio, S. L. et al. n-Hexane as a model for compressed simple liquids. Int. J. Thermophys. 15, 415–441. https:// doi. org/ 10. 1007/ 
BF015 63706 (1994).

 36. Chora̧żewski, M. & Postnikov, E. B.,. Thermal properties of compressed liquids: Experimental determination via an indirect 
acoustic technique and modeling using the volume fluctuations approach. Int. J. Therm. Sci. 90, 62–69. https:// doi. org/ 10. 1016/j. 
ijthe rmals ci. 2014. 11. 028 (2015).

 37. Qiao, E. & Zheng, H. An experimental investigation of n-hexane at high temperature and pressure. Spectrochim. Acta Part A Mol. 
Biomol. Spectrosc. 203, 210–213. https:// doi. org/ 10. 1016/j. saa. 2018. 05. 093 (2018).

 38. Frenkel, J. Kinetic Theory of Liquids (Clarendon Press, Oxford***, 1946).
 39. Grüneisen, E. Theorie des festen Zustandes einatomiger elemente. Ann. Phys. 344, 257–306. https:// doi. org/ 10. 1002/ andp. 19123 

441202 (1912).
 40. Debye, P. Zustandsgleichung und Quantenhypothese mit einem Anhang über Wärmeleitung. In Vorträge über die kinetische 

Theorie der Materie und der Elektrizität, 19–60 B.G. Teubner, Leipzig (1914).

https://doi.org/10.1103/RevModPhys.90.015007
https://doi.org/10.1038/s41578-022-00496-z
https://doi.org/10.1038/nmat1488
https://doi.org/10.1016/j.supflu.2011.05.014
https://doi.org/10.1016/j.supflu.2011.05.014
https://doi.org/10.1007/BF01133262
https://doi.org/10.1103/RevModPhys.38.669
https://doi.org/10.1103/RevModPhys.38.669
https://doi.org/10.1063/5.0077707
https://doi.org/10.1038/s41598-022-16016-6
https://doi.org/10.1007/s10765-014-1747-5
https://doi.org/10.1016/j.supflu.2015.06.007
https://doi.org/10.1016/j.supflu.2015.06.007
https://doi.org/10.1038/s41598-017-06225-9
https://doi.org/10.1016/j.molliq.2020.113016
https://doi.org/10.1039/C9CP02448D
https://doi.org/10.1088/0034-4885/68/2/R03
https://doi.org/10.1088/0034-4885/68/2/R03
https://doi.org/10.1080/14399776.2011.10781033
https://doi.org/10.1080/14399776.2011.10781033
https://doi.org/10.1088/1361-648X/ac2865
https://doi.org/10.1134/S0036024420020107
https://doi.org/10.1016/j.pepi.2018.10.006
https://doi.org/10.1038/srep00421
https://doi.org/10.1038/srep00421
https://doi.org/10.1088/0034-4885/79/1/016502
https://doi.org/10.1088/0034-4885/79/1/016502
https://doi.org/10.1021/acs.jpclett.2c01779
https://doi.org/10.2307/20026332
https://doi.org/10.1021/acs.iecr.2c01427
https://doi.org/10.1021/ci050067b
https://doi.org/10.1126/science.241.4861.65
https://doi.org/10.1063/1.438767
https://doi.org/10.1063/1.438767
https://doi.org/10.1051/jphyslet:01984004506027300
https://doi.org/10.1051/jphyslet:01984004506027300
https://doi.org/10.1007/BF01563706
https://doi.org/10.1007/BF01563706
https://doi.org/10.1016/j.ijthermalsci.2014.11.028
https://doi.org/10.1016/j.ijthermalsci.2014.11.028
https://doi.org/10.1016/j.saa.2018.05.093
https://doi.org/10.1002/andp.19123441202
https://doi.org/10.1002/andp.19123441202


13

Vol.:(0123456789)

Scientific Reports |         (2023) 13:3766  | https://doi.org/10.1038/s41598-023-30917-0

www.nature.com/scientificreports/

 41. Slater, J. C. Introduction to Chemical Physics (McGraw Hill Book Company Inc, New York***, 1939).
 42. Daniels, W. B. The pressure derivatives of elastic constants: microscopic Grüneisen parameters. In Lattice Dynamics (ed. Wallis, 

R. F.) 273–280. https:// doi. org/ 10. 1016/ B978-1- 4831- 9838-5. 50045-5 (Pergamon Press Oxford, 1965).
 43. Moelwyn-Hughes, E. A. The determination of intermolecular energy constants from common physicochemical properties of 

liquids. J. Phys. Chem. 55, 1246–1254. https:// doi. org/ 10. 1021/ j1504 90a015 (1951).
 44. Moelwyn-Hughes, E. A. Physics Chemistry (Pergamon Press, London***, 1961).
 45. Rao, M. R. A relation between velocity of sound in liquids and molecular volume. Indian J. Phys. 14, 109–116 (1940).
 46. Rao, M. R. Velocity of sound in liquids and chemical constitution. J. Chem. Phys. 9, 682–685. https:// doi. org/ 10. 1063/1. 17509 76 

(1941).
 47. Rao, M. R. Temperature dependence of adiabatic compressibility. Nature 147, 268–269. https:// doi. org/ 10. 1038/ 14726 8b0 (1941).
 48. Kudryavtsev, B. B. & Samgina, G. A. Use of ultrasonic measurements in the study of molecular interactions in liquids. Sov. Phys. 

J. 9, 5–8. https:// doi. org/ 10. 1007/ BF008 18478 (1966).
 49. Marks, G. W. Acoustic velocity with relation to chemical constitution in alcohols. J. Acoust. Soc. Am. 41, 103–117. https:// doi. org/ 

10. 1121/1. 19103 04 (1967).
 50. Swamy, K. M. Study of Rao’s constant. Acustica 29, 179–182 (1973).
 51. Macdonald, J. R. Review of some experimental and analytical equations of state. Rev. Mod. Phys. 41, 316–349. https:// doi. org/ 10. 

1103/ RevMo dPhys. 41. 316 (1969).
 52. Grzybowski, A. & Paluch, M. Universality of density scaling. In The Scaling of Relaxation Processes (eds. Kremer, F. & Loidl, A.) 

77–119. https:// doi. org/ 10. 1007/ 978-3- 319- 72706-6_4 (Springer, 2018).
 53. Adachi, K., Suga, H. & Seki, S. Calorimetric study of the glassy state VI Phase changes in crystalline and glassy-crystalline 2, 

3-dimethylbutane. Bull. Chem. Soc. Jpn. 44, 78–89. https:// doi. org/ 10. 1246/ bcsj. 44. 78 (1971).
 54. Panfilova, A., van Sloun, R. J. G., Wijkstra, H., Sapozhnikov, O. A. & Mischi, M. A review on B/A measurement methods with a 

clinical perspective. J. Acoust. Soc. Am. 149, 2200–2237. https:// doi. org/ 10. 1121/ 10. 00036 27 (2021).
 55. Span, R. Multiparameter Equations of State. An Accurate Source of Thermodynamic Property Data (Springer, Berlin***, 2000).

Author contributions
E.B.P.: conceptualization, developing the model, software, model evaluation, writing manuscript; R.N.B.: soft-
ware, data processing, model evaluation and analysis; M.C.: conceptualization, analysis of data and the model’s 
outputs, writing manuscript, funding acquisition. All authors reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 023- 30917-0.

Correspondence and requests for materials should be addressed to E.B.P. or M.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.1016/B978-1-4831-9838-5.50045-5
https://doi.org/10.1021/j150490a015
https://doi.org/10.1063/1.1750976
https://doi.org/10.1038/147268b0
https://doi.org/10.1007/BF00818478
https://doi.org/10.1121/1.1910304
https://doi.org/10.1121/1.1910304
https://doi.org/10.1103/RevModPhys.41.316
https://doi.org/10.1103/RevModPhys.41.316
https://doi.org/10.1007/978-3-319-72706-6_4
https://doi.org/10.1246/bcsj.44.78
https://doi.org/10.1121/10.0003627
https://doi.org/10.1038/s41598-023-30917-0
https://doi.org/10.1038/s41598-023-30917-0
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Combining the Tait equation with the phonon theory allows predicting the density of liquids up to the Gigapascal range
	Results
	The procedure developed. 
	Test results. 

	Discussion
	Methods
	Linear response theory. 
	Equivalence of three isothermal equations at low elevated pressures. 
	Isothermal nonlinearity parameter expressed from high-pressure data. 
	Correspondence between isothermal parameters calculated from the fundamental equation of state and from the saturated data. 
	Software implementations. 

	Conclusion
	References


