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Quantum deep learning 
by sampling neural nets 
with a quantum annealer
Catherine F. Higham 1* & Adrian Bedford 2

We demonstrate the feasibility of framing a classically learned deep neural network as an energy 
based model that can be processed on a one-step quantum annealer in order to exploit fast sampling 
times. We propose approaches to overcome two hurdles for high resolution image classification on a 
quantum processing unit (QPU): the required number and the binary nature of the model states. With 
this novel method we successfully transfer a pretrained convolutional neural network to the QPU. 
By taking advantage of the strengths of quantum annealing, we show the potential for classification 
speedup of at least one order of magnitude.

Deep learning approaches are being applied and refined for classification tasks across many data types (images, 
video and audio) with high levels of success1–3. There are many applications where classically trained convolu-
tional neural networks (CNNs) perform effectively, sometimes better than human experts4–6. However in some 
circumstances, including security, defence and automated transport, safety-critical benefits would arise if clas-
sifications can be computed more quickly and classification models checked more thoroughly. We give a proof 
of principle demonstration that quantum annealing (QA) has the potential to address this issue.

Background and related work
Quantum annealing technology.  The current D-Wave Advantage System 4.1 contains around 5,000 
qubits and 35,000 couplers7. These qubits can be physically coupled to form networks with real-valued coef-
ficients denoting coupling strength and individual on/off biases. Connectivity per qubit is limited to 15 couplers 
and a Pegasus graph architecture but can be extended by forming chains of qubits. These coefficients define 
and constrain relationships between qubits and form a quadratic binary model capable of expressing a range of 
behaviours. The parameter coefficients of a given model are embedded on the D-Wave network and by posing 
the problem as energy minimisation, quantum annealing is used to find the low energy states (on/off) of the 
qubits and hence the most likely formations. The ability to rapidly sample from many states and hence charac-
terise the shape of the energy landscape is a key benefit of this technology.

Underlying quantum physics: the Hamiltonian.  A classical Hamiltonian gives a mathematical 
description of some physical system in terms of its energies. For most non-convex Hamiltonians, finding the 
minimum energy state is an NP-hard problem that classical computers cannot solve efficiently. In quantum 
annealing, the system begins in the lowest-energy state of an initial Hamiltonian, A, and as it anneals introduces 
the problem Hamiltonian, B. To do this, a time-like parameter s and annealing functions A(s) and B(s) are intro-
duced such that A(0) ≫ B(0) and B(1) ≫ A(1) . Hence, as the system is annealed, A(s) decreases, B(s) increases 
and we approach the desired solution states. This approach has the potential for significant benefits in terms of 
both speed and accuracy, compared with classical computing technology.

For the D-Wave system7, the Hamiltonian is expressed as follows
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where σ̂ (i)
x,z

 are Pauli matrices operating on a qubit qi , and hi and Ji,j are the qubit local field values or biases and 
coupling strengths or weights, respectively. In the final state, the qubits take values of either 0 or 1. Hence this 
provides a classical solution for the problem Hamiltonian B defined by the biases, hi , and the coupling weights, Ji,j.

Machine learning models: Boltzmann machines.  Boltzmann machines8 are probabilistic models with 
an energy-based distribution that define a probability for each of the N discrete states in a binary vector given by

 
  Here E(x; θ) is an energy function parameterised by θ , and Z =

∑

x exp(−E(x; θ)) is the normalizing coef-
ficient, also known as the partition function, which ensures that p(x) sums to 1 over all the possible states of x. 
The energy function can be represented via a quadratic form xTQx in which the upper-triangular matrix Q = Qθ 
encapsulates the parameters of the quadratic energy function defined by

where qi,i and qi,j are the biases and correlation weights respectively. This expression makes clear the connec-
tion between Boltzmann machines, quadratic binary models, and the final Hamiltonian in the second part of 
Eq. (1). This suggests that Boltzmann machines are good candidates for training and evaluation on the D-Wave 
quantum annealer as the problem can be framed in such a way that the solution to the final Hamiltonian is the 
low energy state of the problem. In this work we are interested in transferring classically learned weights to a 
quantum system for speed up and hence we focus on the evaluation task.

Restricted Boltzmann machines.  A restricted Boltzmann machine (RBM) is a special type of Boltzmann 
machine with a symmetrical bipartite structure9. The set of binary variables is divided into visible (input), v, and 
hidden, h, variables. We will show, we believe in the context of quantum annealing for the first time, that activa-
tion of the hidden nodes within a RBM is equivalent to activation of the hidden nodes by a sigmoid layer, with 
fully connected or convolutional filters, within a neural network. The hidden variables allow for more complex 
dependencies among visible variables and are used to learn a stochastic generative model over a set of inputs. 
All visible variables connect to all hidden variables, but no variables in the same layer are linked. In the classical 
setting this limited connectivity makes inference and therefore learning easier because analytical expressions can 
be found for the conditional probabilities.

Related work.  In their survey paper, Nath et al.10 review the application domains where a physical quantum 
annealer has been used to train machine learning classifiers and discuss the advantages and problems of quan-
tum over classical. The image recognition applications include training with RBMs. In another application area, 
remote sensing imagery, Boyda et al.11 train a classifier based on boosting, the tactic of building a strong classifier 
as an optimally weighted combination of weak classifiers. This classifier is an optimal voting subset of weak clas-
sifiers and is adapted for the QPU. Several authors have explored the connection between RBMs and quantum 
annealers. Adachi and Henderson12 investigated estimating the model expectations of RBMs using samples on 
a 512-qubit D-Wave machine and successfully trained a model with up to 32 visible nodes and 32 hidden nodes 
per RBM layer. In their tests, they found that this approach achieves comparable or better accuracy with sig-
nificantly fewer iterations of generative training than conventional contrastive divergence based training13 on 
a coarse-grained version of the MNIST data set14. Sleeman et al.15 also investigated the feasibility of using the 
D-Wave as a sampler for machine learning. Their work described a hybrid system that combined a classical deep 
neural network autoencoder with a quantum annealing RBM. Their method overcame two key limitations in the 
2000-qubit D-Wave processor, namely the limited number of qubits available to accommodate typical problem 
sizes for fully connected quantum objective functions and the restriction to samples that are binary pixel repre-
sentations. Their hybrid autoencoder approach indicated advantage for quantum annealing relative to the use 
of a classical computer implementation for image-based machine learning and hinted at even more promising 
results for the next generation D-Wave quantum system.

In16, the model expectation of gradient learning for RBM was calculated using a quantum annealer (D-Wave 
2000Q), giving much faster results than Markov chain Monte Carlo used in contrastive divergence. Most Boltz-
mann machines use restricted topologies that exclude looping connectivity, to avoid complex distributions that 
are difficult to sample. The work in17 used an open-system quantum annealer to sample from complex distribu-
tions and implemented Boltzmann machines with looping connectivity.

Caldeira et al. compress galaxy images using principal component analysis to obtain 64-bit images and 
develop and train an RBM classifier to distinguish between two classes (spiral/rounded smooth galaxies). They 
compare their results using quantum annealing to a range of methods (MCMC, gibbs sampling, simulated 
annealing and gradient boosted trees). They impose a regulated quadratic training objective to select an optimal 
voting subset. The votes of the subset define the classification.

In this work our starting point is a classically trained CNN that maps real valued features to a classification 
label. Unlike12,15,16,18 we do not train on the QPU but investigate transferring the CNN problem to the QPU in 
order to obtain solutions. Hereby exploiting the strengths of the QPU in the classification task. However we 
encounter similar issues: qubit number, binary nature and connectivity. Our work looks at how these challenges 

(2)p(x) =
1

Z
exp(−E(x; θ)).

(3)E(x; θ) = xTQx =

N
∑

i

qi,ixi +

N
∑

i<j

qi,jxixj ,



3

Vol.:(0123456789)

Scientific Reports |         (2023) 13:3939  | https://doi.org/10.1038/s41598-023-30910-7

www.nature.com/scientificreports/

can be addressed on the recent D-Wave Advantage in the context of deep learning transfer with a view to clas-
sification speedup.

Contributions.  The main contribution of this work is to show that a trained artificial neural network can 
be transferred to a quantum computing setting, giving a potential increase in classification speed. To do this we 
use the framework of energy minimisation involving an appropriate quadratic form, where quantum annealing 
provides samples from the low energy, most likely model states. Results, obtainable in microseconds rather than 
milliseconds, can be used to estimate a predictive class score. We show how to design a quadratic binary model, 
the engine of quantum annealing, to behave like a neural network, combining deep learned parameters and 
layer structures from a classically trained neural network with quadratic binary model parameters. Constraint 
parameters are adapted so that designated class units act together as a softmax classification unit. We then test 
this approach on digit image data by finding an appropriate embedding on the D-Wave QPU and transferring 
the coupling and bias parameters from the classical model to the qubits. Key barriers to scaling up to high resolu-
tion image/video processing are the binary nature of the variables, the number of qubits that could be assigned to 
visible units and the limited number of couplers per qubit. We address these issues by showing how real-valued 
features can be introduced into the system. Another novel aspect of our work is that we revisit RBMs and use 
them to extract binary features from real valued data so that the images can be processed on the QPU. Others 
have used RBMs in this way for training. We make use of classical algorithms (contrastive divergence and back-
propagation) to increase the size of the features that can be loaded on to the QPU and to achieve classification 
with 10 classes.

Methods: framing classification as quadratic unconstrained binary optimisation 
(QUBO)
A classification problem with K classes can be addressed using a neural network composed of sequential functions 
to map each data point x ∈ R

N to K real valued numbers. We focus on a neural network classifier, fθ (x) , that is 
defined using two mapping functions: feature extraction,

where W is a weight matrix and b is a bias vector and σ(x) is a nonlinear activation function, and classification,

where Wc is a weight matrix and bc is a bias vector. The neural network classifier can then be written

   
The parameters θ = {W , b,Wc , bc} are optimised through training and fθ (x) is used as part of a softmax 

activation to determine a class probability score:

    
The form of the nonlinear activation function, σ , can be chosen to suit the problem. We choose to work with 

a sigmoid activation layer

as this type of activation can be reproduced on the QPU, as shown below.
Adopting the notation where v denotes N input or visible binary nodes and h denotes M feature nodes or 

hidden nodes, and for W ∈ R
M×N and b ∈ R

M , the nonlinear map, f 1(v) , maps v ∈ B
M to a feature h ∈ R

M . 
Similarly for Wc ∈ R

K×M and bc ∈ R
K , f 2(h) , maps h to a class feature hc ∈ R

M . The class feature is turned into 
a score following Eq. (7). To transfer the feature extraction and classification task to the QPU the network nodes 
are each assigned to a qubit, the programmable qubit local field and between qubit coupling values are set and 
the network is embedded on the quantum machine.

The quantum annealer will be used in two different scenarios. First, we will consider feature extraction and use 
Eq. (4) with x, b and W as the qubits, local field and coupling strengths respectively to obtain samples from the 
quantum annealing. The frequency with which a qubit is observed to take value 1 is interpreted as the activation 
output σ(Wx) in Eq. (4). Second, when σ(W(x)) is available, we use this as x in Eq. (5) along with bc and Wc as 
input to the quantum annealer to provide the classification status. The final state of a qubit in any sample can be 
interpreted as an indication of whether the corresponding neuron in the model has fired.

Feature extraction.  Consider a network comprising two groups of nodes, v and h, with connections 
between each member of v and each member of h and no connections within v or h. The energy of this restricted 
Boltzmann machine model is

(4)f 1 : x → σ(Wx + b),

(5)f 2 : x → Wcx + bc ,

(6)fθ (x) = f 2(f 1(x)).

(7)pθ (class = i|x) =
exp(fθ (x)i)

∑

j exp(fθ (x)j)
.

(8)σ(x) = 1/(1+ exp(−x)),
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and the joint probability is given by

    
The resulting bipartite structure gives rise to analytic expressions for the conditional probabilities: the 

probability that h is on given v and the probability that v is on given h. Consequently, the conditional distribution 
p(h|v) is simple to compute, see for example16 for the derivation of the expression

for σ defined in Eq. (8).
As the first step in transfer of f 1 to the QPU, we assign N qubits as input nodes v and M qubits as output 

nodes h. For annealing, the known values of v will be realised by setting the strength of the local field biases, 
bv , so that the v are effectively clamped on or off as appropriate. The local field biases of h are set to b and the 
coupling strengths between v and h are set to W with coefficients wij , from Eq. (4). Mapping these nodes ( vi , hj ) 
and coefficients ( bi , cj , wij ) to the QPU, and using quantum annealing to obtain samples, is equivalent to sampling 
a Bernouilli random variable from a suitably defined sigmoid distribution. In summary we use this equivalence 
to transfer weights from either a classically trained sigmoid activation layer within a neural network or a RBM 
to the appropriate number of qubits and associated parameter values. We then run quantum annealing and take 
samples. These samples correspond to low energy solutions.

As outlined above the classical samples come from Eq. (4). However the quantum samples arise from a 
probability distribution modified by a temperature coefficient to be estimated from the data19. We address this 
issue by introducing a parameter S and evaluate its sensitivity on the results. The purpose of this parameter is to 
align the classical and quantum Boltzmann distribution according to

   
The classical neural network is then trained by using an adapted sigmoid layer with activation σ(Sv) and 

adjusting the weights that are transferred to the QPU to SW.

Classification.  To use the QPU for classification, we transfer the classification map, f 2 , to the QPU by 
assigning M qubits as feature nodes, h, and K qubits as output nodes hc . In the case where the values of h are 
known, we set the local biases, bh , so that h are clamped. The local biases of hc are set to bc and the coupling 
strengths between h and hc are set to Wc with coefficients wc

ij from Eq. (6). In this network, the energy is

   
Quantum annealing will provide samples from p(h, hc) . However, unlike the feature extraction setting, the on/

off status of hc reflects the strength of hjwc
jk + bcj  on node hck and represents a count for each class. To encourage 

the entry of hc with the highest probability to be the only node on, we introduce a parameter � ≥ 0 and alter the 
energy function to

    
The effect of � will depend on the values of the other parameters. For a classification with 10 classes, as in the 

experiments below, we found that � = 8 where k  = l and � = 0 when k = l worked well.

Quadratic unconstrained binary model.  We now explain how the quantum annealer will be used. As 
mentioned above, a quadratic binary model defines an energy-based network of binary random variables with 
real-valued parameters for biases and correlation weights. Energy minimisation involves finding the binary val-
ues of the model states that result in the lowest energy levels. This minimisation problem is also referred to as 
quadratic unconstrained binary optimisation, or QUBO.

Feature extraction.  For feature extraction the energy of the network, connecting visible nodes v and feature or 
hidden nodes h with weights, W, biases, bv and b, respectively, as in Eq. (9), can be expressed using vector and 
matrix notation

(9)E(v, h) = −
∑

i

bvi vi −
∑

j

bjhj −
∑

i,j

viwijhj

(10)p(v, h) =
exp(−E(v, h))

∑

v

∑

h exp(−E(v, h))
.

(11)p(hj = 1|v) = σ(bj + (vTW)j)

(12)f1(v) = σ(S(Wv + b)).
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Classification.  For classification purposes the energy of the network, connecting feature nodes h and class 
nodes hc with weights, Wc , biases, bh and bc , and parameter, � , as in Eq. (14), can be expressed as

Convolutional filters.  Feature extraction using convolutional filtering is interesting for two reasons. First, 
it can lead to spatially invariant solutions. Second, by sharing a small number of weights, convolutional filters 
introduce sparsity into the connections between layers and nodes. To exploit the quantum annealing framework, 
we express the convolutional operation as Wx, where W is a sparse matrix of dimension N × FP . Here FP is the 
resulting number of features after P small 2D filters have been passed over the image. The value of FP will depend 
on the size of the input image, including any padding, and the stride with which the filter passes over the input 
image. The matrix W is formed by tiling the filters, {W1,W2, . . . ,WP} , in such a way that each member of each 
filter is coupled with the appropriate input nodes. This formation can be transferred to the QPU. This differs 
from the classical representation which uses tensor sum and multiplication to compute features.

How these weights form part of the energy system Q and replace W in Eq. (9) is illustrated below

   
A limiting factor as to the size of a neural net that can be transferred to the QPU is the number of nodes and 

couplers. Compared with a fully connected filter, a convolutional filter has fewer weights reducing the number of 
edges in the network and the coupling requirement. This increases the number of features that can be obtained 
from the QPU. For example, a convolutional layer input size 15× 15 and 8 convolutional filters size 5× 5 gives 
a W with dimensions 225× 288 and can be transferred to the QPU. A fully connected layer with the same input 
size is limited to W with dimensions 225× 36.

Transfer to QPU.  The weights and biases are physically transferred to the QPU in the sparse matrix format 
shown in Eqs. (15) and (16). Before the quantum annealing process, a mapping must be found that physi-
cally embeds the Q matrix on the D-Wave graph. This embedding is found using the available heuristic tool, 
minorminer20, at the beginning of the first run. The map is then reused in subsequent runs. The D-Wave sampler 
is called and the returned samples are ordered from lowest to highest energy and summed across classes to pro-
vide a consensus class score for classification.
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Experimental results
Feature extraction on QPU.  We investigate our hybrid classical quantum approach to feature extrac-
tion by transferring the computation of a convolutional layer from a classically trained NN on a CPU/GPU to 
the D-Wave GPU. A convolutional layer that passes P small 5× 5 filters with stride 2 over N inputs creates FP 
features. To execute this layer a total of N + FP qubits and 52FP couplers are required. Using D-Wave’s minorm-
iner we found an embedding for N = 225 , F = 36 , P = 8 creating a network with 513 qubits and 900 couplers. 
This was the largest suitable network we found and for comparison purposes defined the scope of the classical 
training. We trained a convolutional NN classifier with 60,000 centre cropped (from 28× 28 to 15× 15 ) and 
binarised training MNIST images. The network comprised a convolutional block (8 filters of dimension 5× 5 
which pass over the image with stride 2) followed by a sigmoid activation layer, a fully connected layer (connect-
ing 288 features to 10 classes) and a softmax classification layer. The sigmoid activation layer (for forward and 
backward passes during training) was modified by a temperature coefficient S, σS(x; S) = σ(Sx) and networks 
were trained for a range of values S = 1, 2, 3, 4, 5, 6 and 8. The inclusion of this parameter allows us to assess 
the sensitivity of the results to effective temperature which may misalign the classical and quantum Boltzmann 
distributions. A QS matrix is set up for a given image v and each network. The local field biases, bv , are set to -50 
or 50 for vi = 1 and vi = 0 respectively. The feature biases, b, and coupling weights, W, are extracted from the 
trained convolutional block. These parameters form QS as indicated in Eq. (17).

We compare the performance between quantum QPU and classical CPU/GPU computation in terms of 
feature extraction and subsequent classification on 100 unseen MNIST test digits using a classically trained neural 
network as defined in Eq. (6). The quantum results are obtained by framing feature extraction in quadratic form, 
Eq. (15), finding an embedding for Q, and using quantum annealing to return 500 samples from the probability 
distribution in Eq. (10). We use these samples to form our class predictions, as reported in Table 1. Accuracy 
is higher for the results based on the 100 samples with the lowest energy than on all the 500 samples. With the 
temperature coefficeint set to 4, the accuracy of the quantum approach closely matches the classical case ( 86% 
versus 87%).

Classification on QPU.  We now investigate transferring the computation of f 2 from Eq. (5) to the QPU. 
An RBM classifier was trained following21 using MATLAB code available from the authors website (https://​
www.​cs.​toron​to.​edu/​~hinton/​Matla​bForS​cienc​ePaper.​html). The network consisted of an RBM layer for binary 
feature extraction and a fully connected classification layer. The RBM layer was pretrained in an unsupervised 
manner with MNIST data using the contrastive divergence algorithm. The classification layer was then added 
and the weights from the two layers fine-tuned using labelled MNIST data and the backpropagation algorithm21. 
In this way we leverage efficient classical algorithms and parallel computing. Once trained, we use the RBM 
layer to map from the image space RN to binary feature space BM . For our experiments, we choose {N ,M} to 
be {225, 145} , {361, 230} and {729, 465} with the 60,000 MNIST training images centre cropped from 28× 28 to 
15× 15 , 19× 19 and 27× 27 respectively.

By assigning qubits to each of the binary feature nodes, h, and each class node, hc , of the RBM classifier 
network we can embed the network directly on to the QPU and use quantum annealing to sample from the 
network. In this context, we clamp the known binary feature values, using strong bias values, bh , to force the 
units to be on or off, and determine from the samples the state of the class nodes. These values can then be used 
to determine the most likely class for a test image. To constrain the most likely class to one value we set � = 8 in 
Eq. (14). The matrix Q is built as in Eq. (16) using bh and the parameters extracted from the RBMs, bc and Wc . 
Before quantum annealing can proceed, a mapping is found that physically embeds the Q matrix on the D-Wave 
graph. This embedding is found using minorminer20.

For each model, 10 samples and 100 samples are obtained from the quantum annealer for 100 test images. 
These sets of samples are used to determine the most likely image class. Table 2 shows the number of correctly 
classified test images when 10 or 100 samples were obtained from quantum annealing and compares this result 
with the classical case. We see that the quantum approach gives comparable performance to the classical version, 
and for the largest scale computation is able to match the 99% accuracy.

Table 1.   MNIST Digit Classification. QA prediction accuracy based on 100 samples with the lowest energy 
out of 500 samples column 2, all 500 samples column 3 and classical accuracy column 1 for 100 test images are 
shown for different temperature settings rows. The most consistent and highest level of accuracy with QA is 
seen with temperature coefficient 4. Most consistent values are in bold.

Temperature coefficient

Accuracy (out of 100)

Classical QA 100/500 QA 500/500

1 87 80 76

2 88 76 72

3 87 79 75

4 87 86 81

5 87 82 74

6 88 73 68

8 86 76 64

https://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html
https://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html
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Timings.  The D-Wave system handles one QUBO problem at a time and in our context the combined size of 
images and networks is limited by the number of qubits and couplers. There are also associated pre-processing, 
overhead and post-processing timing costs. As such D-Wave is not currently an efficient way to process state-
of-the-art neural networks. Also, discovering a good QUBO solution may require more than one sample, pro-
portionally increasing the total QPU time. In our timing experiments we used 10, 100 and 1000 samples. For 
comparison between QPU and GPU in Table 3 we report the total QPU sampling time for one sample, under 
different model input sizes (145, 230 and 465), as 181.3µs , 201.4µs and 230.1µs respectively. The total QPU 
sampling time comprises an anneal time ( 20µs ), a delay time ( 20.5µs ) and a readout time which increases with 
input size ( 140.8µs , 160.9µs and 189.6µs ). Based on computations on a single TITAN Xp GPU we estimate the 
equivalent GPU time to process one image (input size 145, 230 and 465) to be 1215.6µs , 1050.8µs and 1260.7µs 
respectively. In this respect, the QPU timings look promising, and we also note that the anneal time is insensitive 
to image size. However processing just one image is not an efficient way to use a GPU, as seen by the time reduc-
tion per image for input size 465 when 10 ( 231.7µs ), 100 ( 18.7µs ) and 1000 ( 3.0µs ) images are processed. The 
results suggest that in order to realise a quantum speedup of at least one order of magnitude, at least 10 images 
need to be processed in parallel. This may be achieved in the near future with novel methods to make better use 
of available qubits22 and with expected increases in the number of qubits and couplers on quantum machines.

Discussion and conclusions
Quantum annealing, which allows us to tackle problems in QUBO form, has been successfully exploited to 
solve several graph-based discrete optimisation problems23,24. In other related work, reviewed by10, quantum 
annealers have been adapted for machine learning classification, and in particular for training hybrid models 
including RBMs. Caldeira et al.18 show that RBMs implemented on D-Wave hardware perform well, show some 
classification performance on small datasets but do not offer a broadly strategic advantage for this task. In order 
to tackle real-world datasets, within the D-Wave constraints, it is necessary to make approximations11 that cause 
loss of expressive power and consequently do not outperform classical approaches. Nath et al.10 find that several 
challenges need to be overcome before quantum annealing can be widely used as a complete replacement for 
classical computation in this context. This includes increasing the number of qubits and the connections between 
them.

In this work we have focused instead on a specific aspect of the deep learning pipeline, showing that it is 
possible to frame a classification task in QUBO form using the weights from a classically trained neural network. 
This problem can then be sent to D-Wave’s QPU for one-step quantum annealing. In summary, given a trained 
network, D-Wave can be used to evaluate it. This strategy may be viewed as an example of a hybrid quantum-
classical algorithm25. Our computational results indicate that this new approach can produce comparable 
accuracy to the purely classical case, while offering potential for computational speed-up.

Regarding timings, we have focused on the annealing time (around 20 µs ). Currently, there are time overheads 
(access, programming, sampling and post-processing) involved. These could be addressed by engineering 
advancements that improve streaming to and from the QPU for specific tasks such as classification.

Table 2.   MNIST Classification using a hybrid quantum classical RBM with three feature sizes (145, 230 and 
465).

Accuracy (out of 100 Images)

 Number of samples per image 10 100 1

 Model QA10 QA100 classical

145 81 87 97

230 83 94 98

465 97 99 99

Table 3.   Comparison between QPU and GPU execution times in microseconds.

Model input size 145 230 465

QPU anneal time per sample 20.0 20.0 20.0

QPU readout time per sample 140.8 160.9 189.6

QPU delay time per sample 20.5 20.5 20.5

Total QPU sampling time for one sample 181.3 201.4 230.1

GPU 1 image - time per image 1215.6 1050.8 1260.7

GPU 10 images - time per image 272.5 251.8 231.7

GPU 100 images - time per image 38.5 37.6 18.7

GPU 1000 images - time per image 3.0 3.0 3.0
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We addressed two barriers to scaling up: binary input states which restrict the types of data that can be 
analysed and the number of couplings between nodes limited by the physical D-Wave graph; and the required 
number of model variables. We showed that real valued features can be considered as biases that can be added 
directly to the biases of connecting nodes or subject to pooling and connecting node constraints. This illustra-
tion opens up the possibility of handling different types of input features including those derived from other 
systems or multi-faceted features from complex systems. We introduced convolutional couplings which serve 
two main purposes. First, down-sampling the input to a) reduce the size of the network and hence the number 
of parameters needed (especially important for quantum computers), (b) reduce the computational cost, and 
(c) improve generalisation. Second, adding non-linearity, required for better model expressiveness, to the linear 
maps. Convolutional filters also reduce the connectivity load, and by extracting features from spatial settings 
they can improve model expressiveness.

In summary, providing neural networks with a quantum engine has the potential, assuming the pipeline for 
streaming data to the quantum computer can be made more efficient, to obtain classification results from high 
dimensional sources with speeds at least an order of magnitude greater than classical analogs.

Data availability
The data from this study is available at http://​dx.​doi.​org/​10.​5525/​gla.​resea​rchda​ta.​1409.
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