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Exploiting machine learning 
models to identify novel 
Alzheimer’s disease biomarkers 
and potential targets
Hind Alamro 1,2,3, Maha A. Thafar 1,2,4, Somayah Albaradei 1,2,5, Takashi Gojobori 1,2, 
Magbubah Essack 1,2* & Xin Gao 1,2*

We still do not have an effective treatment for Alzheimer’s disease (AD) despite it being the most 
common cause of dementia and impaired cognitive function. Thus, research endeavors are directed 
toward identifying AD biomarkers and targets. In this regard, we designed a computational method 
that exploits multiple hub gene ranking methods and feature selection methods with machine 
learning and deep learning to identify biomarkers and targets. First, we used three AD gene expression 
datasets to identify 1/ hub genes based on six ranking algorithms (Degree, Maximum Neighborhood 
Component (MNC), Maximal Clique Centrality (MCC), Betweenness Centrality (BC), Closeness 
Centrality, and Stress Centrality), 2/ gene subsets based on two feature selection methods (LASSO 
and Ridge). Then, we developed machine learning and deep learning models to determine the gene 
subset that best distinguishes AD samples from the healthy controls. This work shows that feature 
selection methods achieve better prediction performances than the hub gene sets. Beyond this, the 
five genes identified by both feature selection methods (LASSO and Ridge algorithms) achieved an 
AUC = 0.979. We further show that 70% of the upregulated hub genes (among the 28 overlapping hub 
genes) are AD targets based on a literature review and six miRNA (hsa-mir-16-5p, hsa-mir-34a-5p, 
hsa-mir-1-3p, hsa-mir-26a-5p, hsa-mir-93-5p, hsa-mir-155-5p) and one transcription factor, JUN, are 
associated with the upregulated hub genes. Furthermore, since 2020, four of the six microRNA were 
also shown to be potential AD targets. To our knowledge, this is the first work showing that such a 
small number of genes can distinguish AD samples from healthy controls with high accuracy and that 
overlapping upregulated hub genes can narrow the search space for potential novel targets.

Alzheimer’s disease (AD) is the most common cause of dementia, and its prevalence increases with  age1,2. Unfor-
tunately, no approved drugs can prevent or delay AD progression despite the array of potential targets identified 
for AD treatment. Also, many potential therapies in clinical trials have failed, including the most promising 
Aβ-directed  therapies3,4. The problem may be that although our knowledge of AD progression has grown, and 
we know the development of amyloid-β (Aβ) plaques and tau neurofibrillary tangles in the brain are hallmarks 
of AD, the real cause of AD is still  unclear5,6. Nonetheless, early detection of AD is key to its treatment. Thus, 
researcher efforts are also directed at detecting AD using artificial intelligence (AI), machine learning (ML), and 
deep learning (DL) algorithms and incorporating different types of data including but not limited to: neuroim-
aging  data7, non-coding  RNAs8,9, transcriptomic  data10, miRNAs  biomarker11, or other genome  data12. Another 
direction that researchers paid more attention to is to repurpose approved drugs to treat  AD13,14.

Despite the caveats in our understanding of AD pathogenesis, current knowledge has allowed us to identify 
potential biomarkers and several proteins that may serve as effective targets in counteracting AD. Many of these 
biomarkers and targets are now also first determined through in silico means to minimize the considerable 
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investments in developing novel drugs. For example, Madar et al.15 used 26 differentially expressed genes (DEGs), 
shortlisted based on p-value and analyses using the online annotation tool DAVID, to build six different classi-
fiers that differentiate healthy and diseased samples. Then, they performed additional co-expression analyses to 
identify 13 of the genes as potential AD biomarkers. Perera et al.16, on the other hand, determined the AD DEGs 
and then shortlisted them using PCA, Random Forest, and Extra Tree Classifier as feature selection methods. 
They used the shortlisted features to build six different classifiers that differentiate healthy and diseased samples, 
and the feature importance scores from Random Forest and Extra Tree Classifier and correlation matrix were 
used to identify 14 new candidate biomarker genes for AD. Zhao et al.17 started by identifying the key modules 
associated with AD, then performed functional enrichment analysis to reveal the hub genes, which they validated 
by machine learning algorithms. Yu et al.18 determined the AD DEGs, from which hub genes were shortlisted 
and genes based on the LASSO feature selection method. They identified a 16 hub gene set and a 35 biomarker 
set based on LASSO and proposed the overlapping genes as potential AD targets through this process. These 
studies obtained significantly different results based on the methodologies used, but they each contribute to 
revealing more of the complex AD progression.

Several studies have analyzed the gene expression in different brain regions and compared the gene expression 
in specific brain regions to unravel the underlying biology. Here, instead, we used machine learning to pinpoint 
genes that feature in AD’s progression despite the differences in sample type, such as laser-captured neurons 
versus bulk tissue or differences in brain regions. First, we used AD DEGs to determine hub genes through six 
ranking algorithms (and the overlapping genes) and two feature selection methods (and the overlapping genes). 
We then used this to determine the gene set/s that best contribute to an AD versus healthy controls prediction 
task using random forests (RF) and support vector machine (SVM) classifiers for the ML models, and convolu-
tion neural networks (CNN) and deep neural networks (DNN) for DL models. The feature selection methods 
achieved better prediction performances than the hub gene sets, and the five overlapping genes from the feature 
selection methods (LASSO and Ridge algorithms) achieved an AUC = 0.979. We also explored which set of over-
lapping genes is more aligned with the underlying biology of AD based using DisGeNET in Enrichr and found 
that 7 of the top-10 enriched diseases were neurological diseases/disorders for the upregulated genes from the 
overlapping hub gene set. Furthermore, we conducted a literature review and found a substantial portion of the 
pinpointed upregulated hub genes (70%) are known AD targets.

Materials and method
Gene expression data. We searched for gene expression datasets of brain tissue in the Gene Expression 
Omnibus (GEO)  database19 using the query: "Alzheimer* AND Homo sapiens" filtered by "Expression profiling 
by array" on the 2nd March 2022. We retrieved 188 entries which we sifted through. We found three datasets 
 (GSE528120,  GSE4835021, and  GSE129722) generated using the same platform, in this case, Affymetrix Human 
Genome U133 Plus 2.0 Array, that provides gene expression data of the brain tissue of AD patients and healthy 
controls within the same age range. There are 253 samples (80 ADs and 173 controls) in GSE48350, 161 samples 
(87 ADs and 74 controls) in GSE5281, and 31 samples in GSE1297 (22 ADs and 9 controls). In total, we had 
455 samples (189 ADs and 256 controls) which we used to develop our ML and DL models. We also used the 
 GSE10988723 and  GSE13826024 datasets for independent testing. GSE109887 is a brain tissue dataset from the 
medial temporal gyrus, containing 46 AD samples and 32 controls, and GSE138260 is a brain tissue dataset 
containing 17 AD samples and 19 controls. Table 1 describes the selected datasets.

Note, for dataset selection, we considered the datasets with more than 30 samples. However, several datasets 
have been excluded for different cases, some datasets were excluded by the ImaGEO quality control tool (elabo-
rated on in the next section). Other datasets that we checked containing duplicates for the same individual, in 
the same brain region, with highly varying expression levels, were also excluded, as this reflects poorly on the 
quality of the provided data.

Meta-analysis of the gene expression data. We used  ImaGEO25, a web-based platform that integrates 
and performs meta-analyses of multiple GEO datasets. We aimed to combine the same experimental condition 

Table 1.  Description of the datasets selected for training and independent testing.

Dataset IDs No. of Samples Healthy controls/AD Brain region Female/ Male Use

GSE5281 161 74/87

Hippocampus
Entorhinal cortex
Medial temporal gyrus
Posterior cingulate
Superior frontal gyrus
Primary visual cortex

58/103 Training

GSE48350 253 173/80
Hippocampus
Entorhinal cortex
Superior frontal cortex
Post-central gyrus

129/124 Training

GSE1297 31 9/22 Hippocampus, Entorhinal 
cortex 18/13 Training

GSE109887 78 32/46 Medial temporal gyrus 40/38 Independent testing

GSE138260 36 19/17 Brain Tissue 19/16 (one sample is NA) Independent testing
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across different studies to increase the sample size and statistical power. Thus, we established the ImaGEO meta-
analysis as an effect size method. Then, we selected the fixed-effect model parameter for the effect size estima-
tion to identify the genes with the most potent effect in the selected datasets with an adjusted p-value < 0.05, 
with only 10% missing values allowed. Next, we used ImaGEO to integrate all three GEO datasets (GSE5281, 
GSE48350, and GSE1297), perform background correction, normalization, batch effect correction, and apply 
initial differential expression analysis. Through this process, ImaGEO generated an integrated matrix with 924 
genes as the potential DEGs, which we used in subsequent analyses. To define our features for the ML models, 
we downloaded the matrix file provided by ImaGeo for each of the three datasets. We then used  R26, an open-
source statistical and scientific programming language for data analysis, to integrate the matrices, creating the 
full matrix containing gene expression for all the samples. After that, we selected the DEGs from this full matrix 
to build the final matrix with 445 samples and 924 features (DEGs).

Identifying hub genes using the PPI network. Hub genes are regularly used to zoom in on the subset 
of DEGs that would best discern the diseased samples from the healthy control. Thus, we used  STRING27, a bio-
logical database and web resource of known and predicted PPI (http:// string- db. org), to explore the interactions 
between the DEGs. Next, we used the Cytoscape  software28 (version 3.9.1) (https:// cytos cape. org/) to visualize 
the network, and we utilized the cytoHubba plugin in Cytoscape to identify the hub genes in the PPI network 
using several ranking methods.

CytoHubba29 provides different algorithms for node ranking, including local and global methods. The local 
rank method considers the relationship between the node and its direct neighbors, while the global method 
examines the relationship between the node and the entire network. We used six ranking algorithms to determine 
the hub genes, including three local ranking algorithms (Degree, Maximum Neighborhood Component (MNC), 
Maximal Clique Centrality (MCC)), and three global ranking algorithms (Betweenness Centrality (BC), Close-
ness Centrality, and Stress Centrality). The degree of a node v is the number of its adjacent nodes. MNC is the 
size of the maximum connected component of N(v), where the neighborhood N(v) is the set of nodes adjacent to 
v and does not contain node v. Stress centrality measures the absolute number of shortest paths, while between-
ness centrality measures the fraction of the shortest paths passing through a node. Finally, closeness centrality 
indicates how close a node is to all other nodes in the network, calculated as the average of the shortest path 
length from the node to every other node in the network. Finally, we used the top-100 genes from each ranking 
method to develop ML/DL models.

Identifying the subset of DEGs that best discern the diseased samples from the healthy con-
trol using feature selection models. To identify the subset of DEGs that best differentiate the diseased 
samples from the healthy controls, we applied feature selections algorithms, including LASSO regression (Least 
Absolute Selection and Shrinkage Operator)30 and Ridge  regression31 that select the best features in high-dimen-
sional data (i.e., provide a principled way to reduce the number of features in a model). These algorithms assign 
an importance score to each feature based on the feature’s ability to predict the correct label. Briefly, LASSO 
regression eliminates many features and reduces overfitting in the linear model, while Ridge regression mini-
mizes the impact of features that are not important in predicting the sample’s label. LASSO involves a penalty 
factor that determines how many features are retained; using cross-validation (CV) to choose the factor helps 
assure that the model will generalize well to future data samples. We implemented LASSO and Ridge algorithms 
using Python programming language and the Sikitlearn library. To apply the LASSO regression feature selec-
tion, we first need to tune the alpha (α) hyperparameter to make a suitable regression model and obtain the 
best performance. Thus, we utilized grid search for an α parameter by applying GridSearchCV using fivefold 
CV and repeated the process five times. Next, we fed the sample matrix with all the features (924 DEGs) into 
LASSO logistic regression. The model then allows us to select the best subset of features based on a threshold 
important score. We evaluated the ability of each subset chosen to differentiate between AD and healthy samples 
by calculating the AUC scores using our ML/DL models and then selected the subset with the highest AUC. We 
applied similar steps to the Ridge algorithm. At the end of this process, the α values selected were 0.01 and 0.99 
for LASSO and Ridge, respectively.

Developing ML and DL models. We developed several ML and DL models to distinguish between the 
AD samples and the healthy controls. We implemented RF and SVM classifiers for the ML models and CNN and 
DNN for the DL models.

For the ML models, we created a search space for each model for parameter optimization to find the best 
combination of parameters. Therefore, we used a randomized search followed by a grid search algorithm for 
hyperparameter optimization in RF and SVM. We created a grid of hyperparameters for the randomized search 
and then trained/tested our models using random hyperparameter combinations. Next, the best parameters iden-
tified through the randomized search are subjected to a grid search to find the optimal parameter combinations.

For the DL models, we only applied the grid search in our hyperparameter search space. We implemented 
DNN, a neural network with four hidden layers with unit sizes (64, 64, 32, 32), followed by a dense layer. We set 
the batch size to 128 and trained 500 epochs. In the same way, we implemented CNN, a convolutional neural 
network using two 1D-CNN layers with filter sizes 64, followed by two dense layers with unit sizes 32. We used 
max-pooling and flatten layers between the CNN and the dense layer. We trained the model with batch size = 128 
and 500 epochs. Table 2 summarizes the tested values and bold font indicates the selected values.

To evaluate these models, we used five-fold-cross-validation (CV), where the data is divided into five subsets 
using the StratifiedKFold method, which ensures that all subsets include the same percentage of positive and 
negative samples (i.e., AD and controls). The process is implemented (repeated) five times by keeping one subset 

http://string-db.org
https://cytoscape.org/


4

Vol:.(1234567890)

Scientific Reports |         (2023) 13:4979  | https://doi.org/10.1038/s41598-023-30904-5

www.nature.com/scientificreports/

for testing and using all the remaining sets for training. The AUC score of each fold is calculated, which we used 
to report the average AUCs.

Bioinformatics analyses. For the bioinformatics analyses, we used DisGeNET housed in the comprehen-
sive gene set analyses tool,  Enrichr32. We ranked the results based on the Odds Ratio. We also used  miRNet33 
with a network degree filter cutoff of 5.0 for all network nodes to determine the key set of microRNA and tran-
scription factors associated with the upregulated genes among the 28 overlapping hub genes.

Results and discussion
The study design. The workflow of our study incorporates six main steps, as depicted in Fig. 1. First, we 
downloaded three brain tissue-based datasets from the National Center of Biotechnology Information-GEO 
(NCBI-GEO)  Datasets34 accessed by March 2022. The details and statistics of these datasets are given in Table 1. 
Thus we obtained a total of 445 samples consisting of 189 ADs and 256 controls. Second, after combining all data 
samples, we used them in an integrated meta-analysis. Therefore, the analysis identified 2915 DEGs in GSE5281, 
163 DEGs in GSE48350, and 4 DEGs in GSE1297. Third, we utilized the ImaGEO tool to integrate and identify 
the DEGs of the three integrated datasets (i.e., the overlapped DEGs that are found in the three datasets). Fourth, 
we identified the hub genes using six graph ranking algorithms. Fifth, we identified the most significant DEGs 
using other feature selection methods. The sixth step is to build and evaluate ML/DL models using different sets 
of features (i.e., DEGs) generated from the latter two steps. Each step is explained later in more detail in the cor-
responding subsection. Finally, we tested our best models using independent datasets.

Identifying DEGs between brain samples from AD patients and healthy aged controls. The 
ImaGEO tool’s quality control test shows the data used in this study is of good quality. For the integrated data-
sets, the ImaGEO tool’s meta-analysis further identified 924 DEGs, including 512 upregulated DEGs and 403 
down-regulated DEGs. Supplementary Table S1 provides the complete list of DEGs. A visual representation of 
the top-100 DEGs in a heatmap shows that the expression of more of the genes in the AD group is consistently 
upregulated in all the samples compared to the healthy aged controls (see Fig. 2, purple represents the AD sam-
ples, and the green represents the control samples from the healthy aged individuals, annotated at the top of each 
plot). Also, about 50% of these clearly down-regulated genes in the AD group are consistently upregulated in the 
control samples. On the other hand, most of the genes upregulated in the so-called ‘healthy aged controls’ were 
not consistently upregulated in all the samples, and expression levels varied dramatically across samples. This 
observation is not too surprising as Berchtold et al.21, amongst others, reported age-dependent changes in gene 
expression in the brain. Specifically, the aged brain in both sexes increases immune activity, but it is proportion-
ally in the female brain, and the male brain suffers a global decrease in catabolic and anabolic capacity. These sex 
and age-dependent changes in gene expression in the brain are thought to set the balance between neurodegen-
eration and compensatory mechanisms in the brain.

Determining the subset of DEGs that can serve as features to build the ML/DL models. We 
determined the features needed to build the ML/DL models using: 1/ various ranking algorithms to identify the 
hub genes and 2/ feature selection methods to determine the gene sets that best contribute to the prediction task.

Table 2.  Parameter search space for optimizing RF, SVM, DNN and CNN models. The optimal parameter 
values are in [bold].

Model Hyperparameters Search space

RF

Max_depth [10,20,30,40,50,60,70,80,90,100]

N_estimators [100,200,300,400,500,600]

Min_samples_leaf [1, 4, 6, 8, 12]

SVM

Gamma [‘scale’, ‘auto’]

Kernel [‘linear’, ‘poly’, ‘rbf ’]

C [0.05, 0.25, 0.5, 1.0, 1.5, 2.0]

DNN

Activation function [’softmax’, ’relu’, ’tanh’, ’sigmoid’, ’linear’]

Optimizers [’SGD’, ’RMSprop’,’Adam’, ’Nadam’]

Node size in each layer [32, 64, 128, 256]

Batch size [8, 16, 32, 64, 128, 256]

Epochs [50, 100, 200, 500, 1000]

CNN

Activation function [’softmax’, ’relu’, ’tanh’, ’sigmoid’, ’linear’]

Optimizers [’SGD’, ’RMSprop’,’Adam’, ’Nadam’]

Filters [32, 64, 128, 256]

Batch size [8, 16, 32, 64, 128, 256]

Epochs [50, 100, 200, 500, 1000]
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Briefly, we used the 924 DEGs to construct a PPI network using STRING. To remove all nodes with less than 
five connected edges, we filtered the PPI network using a threshold of five degrees, which generated a network 
consisting of 863 nodes (i.e., genes) and 4720 edges (i.e., direct physical PPI). This network was then fed into 
Cytoscape  software28 to visualize and determine the hub genes using the cytoHubba plugin. As a result, we 
obtained the top-100 hub genes for six topological ranking algorithms, including Degree, Betweenness Centrality 
(BC), Maximum Neighborhood Component (MNC), Maximal Clique Centrality (MCC), Closeness Central-
ity, and Stress Centrality (see Supplementary Table S2). Surprisingly, we found that all six ranking algorithms 
commonly identified only 28 of the hub genes (ATP5B, ATP5C1, CYCS, NDUFA4’, ACO2, NHP2, RPS7, FAU, 
EIF2S1, CCT7, UBC, PTEN, PSMD4, PSMD7, GOT2, SNAP25, MAPT, BDNF, NTRK2, SNCA, APP, JUN, IGF1, 
MAP2K1, RAF1, CDC42, ENO2, JAK2), and if we exclude the MCC list, the genes commonly identified by the 
ranking algorithms increase to 53 hub genes. Finally, we used these hub gene lists to develop computational 
models that could differentiate between AD samples and the healthy control samples.

We also applied the LASSO and Ridge logistic regression feature selection methods using the 924 DEGs. We 
tested several threshold values to select the best subset of features for both methods. Utilizing LASSO logistic 
regression, we obtained gene sets of 71, 27, and 8 by specifying the important scores higher than 0.01, 0.02, and 
0.03, respectively. Similarly, for the Ridge algorithm, we obtained sets of 80, 41, and 26 genes by specifying the 
important scores higher than 0.05, 0.06, and 0.07, respectively.

Evaluating the prediction performance of the ML and DL models. We evaluated the changes in 
the prediction performances of the two ML (RF and SVM) and the two DL (DNN and CNN) models when fed 
different sets of the features determined by the six ranking algorithms (hub genes) and the two feature selection 
methods separately (see Fig. 1).

Prediction performances using hub genes determined by diverse ranking algorithms. We constructed RF, SVM, 
DNN, and CNN models using genes identified through the six ranking algorithms separately. We iteratively 
added ten of the top-100 ranked genes for each ranking algorithm to evaluate the models. Briefly, the evaluation 

Figure 1.  The study workflow consists of two key paths, via ranking algorithms and feature selection methods.
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process is as follows: first, we obtained the featured hub genes list based on the MNC algorithm, sorted using the 
MNC score. We evaluated the performance of the top genes by iteratively adding ten by ten genes each time. That 
is, for training and testing, we added the 10 top-ranked genes, used the cross-validation method, and reported 
the averaged AUC score as described in section "Identifying hub genes using the PPI network". Then, we added 
the next set of 10 genes, making it the top-20 genes, and applied the same evaluation process to obtain the aver-

Figure 2.  An ImaGEO generated heatmap of the top-100 DEGs (Red represents the relative upregulated gene 
expression; green represents the relative downregulated gene expression; black represents no significant change 
in gene expression).
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aged AUC. We repeated this process until the complete list of the top-100 genes was fed into the RF classifier. 
Note, we performed the same procedure for all ranking lists separately.

Table 3 provides the results for each experiment of the evaluation process. For each model, we underline the 
best prediction performance for each ranking method, then the bold and italic indicate the best and second-
best of these results. The results show that the BC ranking algorithm consistently appeared among the best and 
second-best of these results for all the models, followed by Stress Centrality and Degree. On the other hand, the 
MCC list generally produced the worst performances for all the models, except DNN.

Focussing on the models, we find that the RF and DNN models clearly outperformed other models. Specifi-
cally, the DNN achieved the best prediction performance with an AUC of 0.8955 using the top-40 genes of the 
BC ranking list. On the other hand, the best prediction performance for RF is an AUC of 0.8735, achieved with 
the top-80 genes of the BC ranking list.

Prediction performances of the models using genes determined by feature selection algorithms. We evaluated the 
RF, SVM, DNN, and CNN models separately based on two feature selection algorithms, LASSO and Ridge. We 
evaluated the prediction performances at multiple thresholds for the importance scores. Figure 3 provides the 
prediction performances achieved using the features selection algorithms. First, all the AUC results are bet-
ter when applying Ridge or LASSO feature selection methods than when feeding all 924 DEGs to ML and DL 
models, indicating that filtering the features by removing some of them with low importance scores improves 
the results. Second, the Ridge algorithms achieved the best results when using the important score > 0.06 (Fig. 3 
a). While the best results were achieved for the LASSO algorithms when using the important score > 0.02 (Fig. 3 
b). Another observation is that all ML and DL prediction performances were significantly higher when applying 
Ridge and LASSO features than when the hub genes were applied. The high AUC demonstrates that both the 

Table 3.  Based on six topological ranking algorithms, the prediction performances for RF, SVM, CNN, and 
DNN in terms of AUC for top-ranked DEGs (increased by 10). The underline indicates the highest AUC 
achieved for each ranking algorithm. The Bold and Italic values suggest the best and second-best performing 
ranking algorithms.

RF

Ranking top10 top20 top30 top40 top50 top60 top70 top80 top90 top100

BC 0.773 0.796 0.8286 0.8454 0.8599 0.8604 0.8696 0.8735 0.8659 0.8642

MNC 0.7576 0.8176 0.8272 0.847 0.849 0.8523 0.8607 0.8592 0.8666 0.8651

MCC 0.746 0.8277 0.8513 0.8469 0.8493 0.856 0.8507 0.8427 0.8509 0.8555

Stress 0.7603 0.8028 0.8284 0.8428 0.8613 0.855 0.8641 0.8628 0.8638 0.8658

Close 0.7684 0.7889 0.8107 0.8326 0.8403 0.8502 0.8469 0.859 0.8645 0.8661

Degree 0.7576 0.8176 0.8344 0.8436 0.8541 0.848 0.8556 0.8583 0.8671 0.8669

SVM

Ranking top10 top20 top30 top40 top50 top60 top70 top80 top90 top100

BC 0.7064 0.7497 0.7636 0.799 0.7978 0.8101 0.8114 0.8246 0.8247 0.8183

MNC 0.7061 0.7518 0.7621 0.7843 0.787 0.781 0.7955 0.8032 0.8119 0.8104

MCC 0.7029 0.739 0.7467 0.7476 0.7519 0.7692 0.7719 0.7863 0.7815 0.7841

Stress 0.6995 0.7406 0.7607 0.786 0.81 0.7985 0.8009 0.8123 0.8081 0.817

Close 0.6845 0.7339 0.7326 0.7859 0.781 0.7922 0.8002 0.7979 0.8049 0.8062

Degree 0.7061 0.7518 0.7615 0.782 0.7929 0.7922 0.7871 0.7921 0.8129 0.8105

CNN

Ranking top10 top20 top30 top40 top50 top60 top70 top80 top90 top100

BC 0.7431 0.8324 0.8511 0.8353 0.7855 0.843 0.8281 0.8489 0.8524 0.8465

MNC 0.7465 0.8245 0.836 0.7878 0.8397 0.8449 0.8369 0.8011 0.8336 0.8277

MCC 0.7225 0.7853 0.7954 0.7904 0.8193 0.809 0.8153 0.796 0.7922 0.8123

Stress 0.7337 0.7652 0.8381 0.8012 0.8352 0.8443 0.8453 0.853 0.8502 0.853

Close 0.7507 0.7529 0.7889 0.8109 0.7925 0.8131 0.8254 0.8376 0.8301 0.8422

Degree 0.7465 0.8245 0.8339 0.808 0.8494 0.824 0.8373 0.8121 0.8483 0.8234

DNN

Ranking top10 top20 top30 top40 top50 top60 top70 top80 top90 top100

BC 0.7908 0.8262 0.8793 0.8955 0.8721 0.8641 0.8727 0.8641 0.8622 0.8725

MNC 0.7819 0.8631 0.8413 0.853 0.8672 0.8643 0.8529 0.8425 0.8564 0.8546

MCC 0.756 0.8101 0.8629 0.8472 0.8756 0.8766 0.8491 0.8498 0.8622 0.84

Stress 0.7958 0.8223 0.8546 0.863 0.8736 0.8621 0.861 0.8749 0.8665 0.8764

Close 0.7937 0.812 0.8552 0.8372 0.8429 0.8505 0.8412 0.8598 0.8613 0.8556

Degree 0.7819 0.8631 0.8698 0.8653 0.8613 0.8495 0.8397 0.8449 0.8428 0.8585
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LASSO and Ridge algorithms captured the significant DEGs that allow the classifiers to distinguish the AD sam-
ples from the samples belonging to the healthy aged controls. Both the LASSO and Ridge algorithms achieved 
high AUCs of 0.9896 and 0.9841, respectively, with the DNN model, outperforming all the other models. The 
lists of genes are provided in Supplementary Table S3.

Prediction performances using overlapping hub genes determined by ranking and feature selection algorithms. As 
mentioned above, 28 hub genes were commonly identified through the six ranking algorithms, and when we 
exclude the genes identified by MCC, we found this list of commonly identified genes almost doubles to 53 
hub genes. Thus, we also evaluated the prediction performances of these overlapping genes. We found that of 
the genes common to all the ranking algorithms (the 28 and 53 hub genes), the 53 hub genes achieved higher 
AUC for all the models than the 28 genes (Fig. 4). Moreover, with the 53 hub genes, the DNN and RF models 
achieved better prediction performances. Specifically, the DNN model achieved the best prediction performance 
with an AUC = 0.8473. Beyond this, the feature selection algorithms LASSO and Ridge commonly identified 
five genes, including FCER1G, PDE6H, SEMA6A, SLC25A46, and SST. When evaluating the prediction per-
formances of the models with these five genes, we similarly found that deep learning models achieved better 
prediction performances than the machine learning models. Specifically, the CNN model achieved the best 
prediction performance with an AUC = 0.979. Moreover, the prediction performances of the models with these 
five genes achieved AUC’s ranging from 0.9589 to 0.979, which is surprising as the five hub genes commonly 
identified by the feature selection algorithms are not a subset of the 28 or 53 hub genes identified through the 
ranking algorithms. 

These results suggest that even though several research groups built classifiers that achieved good prediction 
performances using hub  genes35,36, we can likely improve the classifier’s prediction performances by using fea-
ture selection algorithms such as LASSO and Ridge instead. Also, the AUC = 0.979 achieved with the five genes 
(commonly identified by the LASSO and Ridge algorithms) is very close to the highest AUCs achieved with the 
27 (AUC = 0.9896) and 41 (AUC = 0.9841) genes identified by the LASSO and Ridge algorithms, respectively. 
This finding is crucial as even though we have moved to a time where high throughput expression data is more 
easily attainable, medical facilities are still largely implementing the practice of only testing a small set of genes to 

Figure 3.  The prediction performance of the list of DEGs selected by (a) LASSO (L) and (b) Ridge (R) 
regression algorithms at multiple thresholds for the importance scores.
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determine the diagnosis. Thus, incorporating the five genes into current medical practice should be more readily 
accepted than long lists of genes. Nonetheless, more experiments are needed before this idea will be feasible.

Evaluating the performance of the classification models on independent sets. To further assess the robustness of 
our best models. We tested these models on two independent datasets (GSE109887 and GSE138260, see Table 1). 
We performed the external testing using two of the best-constructed models, the DNN model built by the 27 key 
genes selected by LASSO and the DNN model built using 41 key genes selected by Ridge.

In this experiment, we used all the samples of the combined dataset to train the DNN model and then tested 
the model using the external datasets. For the GSE109887 brain tissue dataset from the medial temporal gyrus, 
our best model successfully classifies the samples using the 41 genes, and achieves AUC = 0.8546, F1 = 0.7524, 
Recall = 0.7564, and Precision = 0.7549. Also, for the GSE138260 brain tissue dataset, our best model classified the 
samples with AUC = 0.7523, F1 = 0.7205, Recall = 0.7222, and Precision = 0.737. The results show that even though 
the cross-validation shows several feature sets give high accuracy, performing the external testing, we found that 
the best feature set is the 41 genes since it performed well in both the training and the independent testing sets.

Bioinformatics analyses of the overlapping gene sets. To determine which set of overlapping genes 
is more aligned with the underlying biology of AD based on different bioinformatics tools, we used the compre-
hensive gene set analyses tool,  Enrichr32. First, we determined which gene set is linked to the most neurological 
disorders using DisGeNET in Enrichr. For this process, we only used the upregulated genes that in essence 
contributors to the features that characterize AD. Figure 5 provides the top-10 enriched diseases retrieved from 
DisGeNET for all the overexpressed genes in the LASSO, Ridge, and DEGs gene set, as well as the overlapping 
gene sets. We then determined all the neurological disorders in each gene set (highlighted in pink). All the 
upregulated DEGs and all the overlapping gene sets, only had two or less neurological diseases/disorders featur-
ing in the enriched top-10 diseases, except the 28 overlapping hub gene set. For the upregulated genes from the 
28 overlapping hub genes, 7 of the top-10 enriched diseases were neurological diseases/disorders, suggesting that 
this list likely captures more of the underlying AD pathophysiology.

For the 5 overlapping genes identified through the feature selection methods (LASSO and Ridge), two of the 
potentially identified biomarkers SST and SEMA6A are also identified in Perera et al.16, Yu et al.18, and Madar 
et al.15. MT1M is also one of the genes selected by LASSO, the subset that achieved high accuracy in distinguish-
ing AD and control samples, and was also identified as a potential biomarker in Perera et al.16. For the 28 overlap-
ping genes identified through the ranking algorithms, one of the potentially identified biomarkers BDNF is also 
identified in Yu et al.18. This shows the overlap between our study and other  studies15–18 specifically is very small.

We subsequently conducted a literature review to determine which of the ten upregulated hub genes (among 
the 28 overlapping hub genes) have already been recognized as AD therapeutic targets. There are currently many 
research efforts to provide disease-modifying therapies for AD  treatment37. The key targets are Tau (the MAPT 
gene product) and amyloid precursor protein (APP), as they are the significant components of neurofibrillary 
tangles and amyloid plaques,  respectively38,39. Brain-derived neurotrophic factor (BDNF) functions as a ligand for 
neurotrophic tyrosine kinase receptor type 2 (NTRK2). BDNF stimulates NTRK2 to phosphorylate APP, causing 
its accumulation in the TGN (Trans-Golgi Network), diminishing its amyloidogenic cleavage. However, BDNF is 
reduced in AD, while levels of APP increase. Moreover, NTRK2 and APP are cleaved by δ-secretase in AD brains, 
and blocking TrkB cleavage in 5xFAD mice attenuated AD  pathologies40. Also, Aβ triggers PDZ-dependent 

Figure 4.  Comparing the AUC results of different genes lists. The blue bar is for the whole DEGs list (924 
genes), the red bar is the overlapping list of LASSO and Ridge (5 genes). The yellow bar is the overlapping list of 
the six ranking algorithms (28 genes), and the green is the overlapping list of the ranking algorithms excluding 
MCC (53 genes).
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recruitment of PTEN into the postsynaptic compartment to induce synaptic toxicity and cognitive dysfunction, 
which offers a new mechanism-based therapeutic target to counteract downstream Aβ  signaling41,42. Thus, APP, 
NTRK2, PTEN, and the MAPT gene product (Tau) are all aggregate protein-related therapeutic targets.

Moreover, the JAK2 inhibitor, TG101209, attenuated the IFNγ-induced changes in cultured microglia and 
microglia from APP/PS1  mice43. Also, Raf inhibitor, sorafenib, reversed memory impairment and reduced the 
expression of APP, Cox-2, and iNOS in the brain of an AD transgenic mouse model, which also suggests target-
ing  RAF144. These works suggest JAK2 or RAF1 as AD targets and potential strategies for reducing AD’s neu-
roinflammation. George et al.45 also recently demonstrated that long-term suppression of (insulin-like growth 
factor 1 receptor) IGF1R signaling alleviates AD progression and promotes neuroprotection in animal models.

This shows that a substantial portion of the pinpointed upregulated hub genes (70%) are AD targets and sug-
gests that JUN, CYCS, and PSMD4 should also be explored. This is in line with recent  reviews46–48 that suggest 
inhibitors of the mitogen-activated protein kinases (MAPK) pathways, such as the c-Jun N-terminal kinase (JNK) 
pathway, be tested for AD treatment as JNK3 enhances Aβ production and plays a key role in the maturation 
and development of neurofibrillary tangles.

To further determine the key set of microRNA and transcription factors associated with the upregulated 
genes among the 28 overlapping hub genes, we used  miRNet33 with a network degree filter cutoff of 5.0. Figure 6 
provides the network generated with miRNet that shows six important miRNA (hsa-mir-16-5p, hsa-mir-34a-5p, 
hsa-mir-1-3p, hsa-mir-26a-5p, hsa-mir-93-5p, hsa-mir-155-5p) and highlights JUN as the critical transcription 
factor participating in this process. Since 2020 four of the six microRNA were shown to be potential AD targets. 
Specifically, miR-16-5p49 and miR-34a-50 were shown to relieve amyloid β-induced injury by decreasing apoptosis 

Figure 5.  The top-10 enriched diseases retrieved from DisGeNET for upregulated genes in the different gene 
sets, including the DEGs, LASSO, Ridge, and the overlapped/common hub and feature selection genes.



11

Vol.:(0123456789)

Scientific Reports |         (2023) 13:4979  | https://doi.org/10.1038/s41598-023-30904-5

www.nature.com/scientificreports/

and oxidative stress via targeting BACE1, and overexpression of miR-26a-5p suppresses Tau phosphorylation and 
Aβ  accumulation51, indicating these microRNAs downregulated in AD are protective agents, and their increase 
can be targeted as a treatment. Moreover, another study show inhibitor of NF-κB kinase β (IKKβ) knockdown 
and miR-155-5p inhibition ameliorated cognitive impairment, improved neuron regeneration, and attenuated 
Aβ deposition in APP/PS1 mice, suggesting miR-155-5p as a target for AD  treatment52.

Together these results suggest that even though the feature selection methods are better for the classification 
of samples, in this case, the 28 overlapping hub genes may be better for analyzing the underlying pathophysiol-
ogy of AD and for pinpointing the potential targets, compared to the 5 overlapping genes identified through 
the feature selection methods. Additionally, the obtained results and follow-up investigation can deliver new 
insights into AD treatment.

Concluding remarks
Decades of research have been poured into understanding the underlying pathophysiology of AD, yet we still 
do not have a cure for AD. And more recently, these efforts have been focused on identifying more potential 
targets for drug development as past drug development failures were found to be a result of inefficient targets. In 
parallel, advances associated with high throughput technology made more data available to build classifiers that 
can serve as decision support tools for clinicians. Thus, several research groups have built classifiers using hub 
genes and feature selection methods, and further used these gene sets to unveil more of the diseases’ underlying 
pathophysiology Thus, we here used both hub and feature selection genes to build ML/DL classifiers that can best 
distinguish AD samples from healthy aged controls. We also used the overlapping genes which allow zooming 
in on genes commonly pinpointed by more than one approach which increases confidence in their reliability. In 
our case, the five genes (commonly identified by the LASSO and Ridge algorithms) that produce a prediction 
performance (AUC = 0.979) similar to the best-performing method with 27 to 41 genes, can be incorporated 

Figure 6.  Network generated by miRNet. It shows six important miRNAs, represented by blue squares, and 
highlights JUN as the critical transcription factor.
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into current medical practice more easily than a larger number of genes. Second, using only the overlapping hub 
genes and specifically, the upregulated ones makes the data less convoluted to show its link to the disease and 
the literature review further suggests that the majority of the upregulated overlapping hub genes may be targets, 
as well as the microRNAs that target multiple of the genes in this specific set.

Data availability
In this study, we used publicly available gene expression datasets. These datasets can be found on Gene Expression 
Omnibus, (accessed by April 2022), https:// www. ncbi. nlm. nih. gov/ geo/. The source code of the ML\DL models 
in this work is available on: https:// github. com/ HindA lamro/ AD_ bioma rker.
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