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Dynamics of multipartite quantum 
steering for different types 
of decoherence channels
Wei‑Chen Li , Ya Xiao *, Xin‑Hong Han , Xuan Fan , Xiao‑Bing Hei  & Yong‑Jian Gu *

Multipartite quantum steering, a unique resource for asymmetric quantum network information 
tasks, is very fragile to the inevitable decoherence, which makes it useless for practical purposes. It 
is thus of importance to understand how it decays in the presence of noise channels. We study the 
dynamic behaviors of genuine tripartite steering, reduced bipartite steering, and collective steering 
of a generalized three‑qubit W state when only one qubit interacts independently with the amplitude 
damping channel (ADC), phase damping channel (PDC) or depolarizing channel (DC). Our results 
provide the region of decoherence strength and state parameters that each type of steering can 
survive. The results show that these steering correlations decay the slowest in PDC and some non‑
maximally entangled states more robust than the maximally entangled ones. Unlike entanglement 
and Bell nonlocality, the thresholds of decoherence strength that reduced bipartite steering and 
collective steering can survive depend on the steering direction. In addition, we find that not only one 
party can be steered by a group system, but also two parties can be steered by a single system. There 
is a trade‑off between the monogamy relation involving one steered party and two steered parties. 
Our work provides comprehensive information about the effect of decoherence on multipartite 
quantum steering, which will help to realize quantum information processing tasks in the presence of 
noise environments.

Quantum  steering1 enables an untrusted party to remotely steer the quantum state of other trusted parties by 
performing local measurement on his own state. It was first put forward by Schrödinger2,3 as a reply to the well-
known EPR  paradox4. However, it did not attach much attention until 2007 when Wiseman et al. provided an 
operational definition and specific experimental criteria for quantum steering based on the local hidden state 
model in the form of quantum information  tasks5,6. According to the hierarchy of quantum correlations, quantum 
steering stands between entanglement and Bell nonlocality. Especially, it exhibits unique asymmetric feature, 
which can lead to one-way steering where one party can steer the other party’s state, but not vice  versa7–9. The 
asymmetric steering has been experimentally demonstrated both in continuous and discrete variable bipartite 
 systems10–13.

Another directional feature of quantum steering is the monogamy relation in multipartite system. Reid found 
that one party can steer two independent systems, but it is impossible for two parties to independently demon-
strate steering of a third  system14. There are more various steering scenarios in multipartite system compared 
with the bipartite steering. For example, in the tripartite system, there are genuine tripartite steering, reduced 
bipartite steering and collective  steering1. In addition, multipartite steering can be further applied to large-scale 
quantum  networks15. These properties make multipartite steering has received increasing attention. There has 
been abundant research on multipartite steering: various criteria for multipartite steering have been developed 
and verified in experiments with different  systems16,17; how shared steering can be distributed among different 
parties has been  investigated18–22; methods for super-activating steering have been  proposed23; sequential detec-
tion of genuine tripartite steering via unsharp measurements has been  demonstrated24, etc.

As for applications, quantum steering has been identified as a unique physical  resource25 for one-sided device-
independent quantum key  distribution26–28, subchannel  discrimination29–31, quantum secret  sharing32,33, quantum 
 teleportation34–36, and randomness  certification37,38. Therefore, it is essential to preserve the quantum steering 
in a quantum system. However, the quantum system inevitably interacts with its surroundings which can be 
described as different decoherence channels. As a result, the system may lose its quantum properties partially 
or completely (known as sudden death), rendering it unusable for quantum information tasks. Up to now, the 
effects of decoherence channels on  entanglement39–41, Bell  nonlocality42,43,  coherence44,45 and  discord46,47 have 
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been widely studied both theoretically and experimentally. From a practical point of view, it is necessary to study 
the dynamical behavior of quantum steering in the real world.

Recently, the loss in quantum channels has been studied in verifying quantum  steering48–50, with the sudden 
death of quantum steering taken into  consideration51. The effects of decoherence on entanglement, steering and 
Bell nonlocality have been  compared52,53. Besides, weak measurement, distillation, non-Markovian environment, 
and correlated channel are proved to be effective for recovering the disappeared  steerability53–57.

However, all of these works are limited to bipartite system, the decoherence effect on multipartite quantum 
steering is still missing. In this work, we take the generalized three-qubit W state as an example, investigating 
the decay dynamics of multipartite steering when only one party transmits through amplitude damping channel 
(ADC), phase damping channel (PDC) and depolarizing channel (DC), respectively. First, we provide the region 
of decoherence strength and state parameters that the genuine tripartite steering can survive in one-sided device-
independent (1SDI) and two-sided device-independent (2SDI) scenarios, then compare them with genuine tri-
partite entanglement and genuine tripartite Bell nonlocality. The results show that as the decoherence increases, 
entanglement, 1SDI steering, 2SDI steering and Bell nonlocality decay faster in turn, and they exhibit distinct 
decaying behaviors in different channels. Interestingly, we find that when one of the state parameters is small, 
the area of the steerable region of the other state parameters and decoherence strength in the ADC is almost the 
same as that in the PDC, while they are almost the same in the ADC and DC when the state parameter is large. 
Furthermore, by reconstructing steering parameters involving average inference variance for various bipartite 
splits, we find that it is possible to manipulate the direction of reduced bipartite steering, even the symmetry 
of collective steering, via changing the decoherence strength. The results also show collective steering is more 
robust than reduced bipartite steering. We further present how to manipulate the distribution of steerability 
among different parties through decoherence. These results provide a useful reference for applying quantum 
steering in decoherence environments and promoting the development of quantum steering-based quantum 
information technologies.

Results
Channels models and state dynamics. We start by describing the channel models and their effects 
on the evolution of system state. Quantum channel is a completely positive trace-preserving map which has a 
representation in terms of Kraus operators {Km} , where 

∑

m K†
mKm = I and I is a identity matrix. In the pre-

sent study, we restrict ourselves to three typical noise channels, viz. ADC, PDC and DC. The corresponding 
Kraus operators of these channels, with the strength of decoherence d, are shown in Table  1. The inevitable 
interaction between system and noise channels will give rise to a decay of system correlation. To fully investi-
gate the dissipative dynamic of steerability in multipartite system, we take the generalized three-qubit W state 
|ψgW � = α|001� + β|010� +

√

1− α2 − β2|100� as an illustration, where α , β ∈ [0, 1]58–60.
Consider the case where a three-qubit state ρABC = |ψgW ��ψgW | is initially shared among three space-like 

separated parties, say, Alice, Bob, and Charlie. For simplicity, assuming that only Charlie’s qubit interacts with 
the environment simulated by a noise quantum channel of decoherence strength d, the state  becomes61:

where IA and IB represent the identity matrix on Alice’s and Bob’s side, respectively. The value of n depends 
on the number of Kraus operators characterizing a channel. Replacing Kraus operators given by Table 1, the 
corresponding elements of density matrix ε(ρABC) can be obtained, see Supplementary Information for more 
details. In the following, we intend to study the dependence of genuine tripartite steerability, reduced bipartite 
steerability and collective steerability of state ε(ρABC) on the decoherence strength.

Dynamical behaviors of genuine tripartite steering. Detection of genuine tripartite steering. There 
are two different approaches for defining genuine multipartite steering. The first approach sees steering as a semi-
device independent entanglement verification in the multipartite scenario where the untrusted party is  fixed18. 
The second approach uses steering between the bipartitions to define genuine multipartite steering where each 
party is sometimes trusted and sometimes  untrusted19. Here, we adopted the definition of genuine multipartite 
steering where the untrusted party is fixed.

(1)ε(ρABC) =
n

∑

m=1

(IA ⊗ IB ⊗ KC
m)ρABC(I

A ⊗ IB ⊗ KC
m)

†,

Table 1.  Kraus operators for the corresponding ADC, PDC and DC, where d ∈ [0, 1] represents the 
decoherence strength. {σx , σy , σz} represent Pauli operators.

Channels Kraus operators

ADC K0 = |0��0| +
√
1− d|1��1| , K1 =

√
d|0��1|.

PDC K0 = |0��0| +
√
1− d|1��1| , K1 =

√
d|1��1|.

DC
K0 =

√
1− 3d/4I , K1 =

√
d/4σx ,

K2 =
√
d/4σy , K3 =

√
d/4σz
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In this section, we study the effects of ADC, PDC, and DC on genuine tripartite steering. Here two different 
scenarios may arise: First, only one party’s measurement device is untrusted, which is known as 1SDI scenario. 
Secondly, only two parties’ measurement devices are untrusted, i.e, 2SDI scenario.

In the 1SDI scenario, without loss of generality, one can consider the case where Alice tries to genuinely steer 
Bob and Charlie, i.e., the measurement device on Alice’s side is untrusted, while Bob’s and Charlie’s are trusted.

Similarly, in the 2SDI scenario, one can consider the case that Alice and Bob try to genuinely steer Charlie, that 
is, the measurement devices on Alice’s and Bob’s side are untrusted, while the device on Charlie’s side is trusted.

Here, we adopt the experimentally testable inequality W1 and W2 for demonstrating genuine tripartite steer-
ing from Alice to Bob and Charlie and the steering from Alice and Bob to Charlie, respectively (see more details 
in the “Methods” section).

Effects of decoherence channels on genuine tripartite steering. We investigate the dynamical behaviors of genuine 
tripartite steering by changing the input state parameters {α , β} and decoherence strength d of different decoher-
ence channels. The steerabilities in the 1SDI scenario and 2SDI scenario are tested by violating the inequalities 
(3) and (4). The corresponding results are respectively depicted in Fig. 1a–j. Clearly, the effects of decoherence 
channels on genuine tripartite steering in both scenarios are similar. Figure 1a,f show the effective ranges of {α , 
β , d} for genuine tripartite steering. The green, orange, blue surfaces represent the steerable boundaries, in turn, 
indicating the existence of quantum steering under ADC, PDC and DC. Fig. 1b,g are sectional views of Fig. 1a,f 
when d = 0.4 . Clearly, in both scenarios, it is in the PDC that the number of quantum states whose steerability 
can survive is the largest. It means the genuine tripartite steering is the most robust in the PDC. To further sup-
port this conclusion, we investigate the relation between the area of the steerable state parameters Aαβ and deco-
herence strength d. As shown in Fig. 1c,h, Aαβ decreases the slowest in the PDC and the fastest in the DC with 
the increase of d. Clearly, in the 1SDI scenario, the genuine tripartite steerability decays to zero at d = 1 under 
ADC and PDC, but in the 2SDI scenario, it disappears completely at d < 1 , regardless of the type of decoherence 
channels. This is because that there are more untrusted measurement devices in the 2SDI scenario, and more 
residual correlations are need to verify the existence of steerability.

To clarify the dependence of the robustness of genuine tripartite steering on the initial shared state ρABC , 
we further calculate the maximum steerable range �β of state parameter β and the area of the steerable region 
Aβd by changing the other state parameter α . The relations between �β ( Aβd ) and α in 1SDI scenario and 2SDI 
scenario are shown in Fig. 1d,i, respectively. In the 1SDI scenario, the birth of genuine tripartite steering occurs 
at approximately α = 0 and the death of that occurs around α = 0.92 . While, in the 2SDI scenario, the value of 
α that causes the birth of genuine tripartite steering increases to α = 0.11 and the value that causes the death of 
genuine tripartite steering decreases to α = 0.89 . This again demonstrates that the genuine tripartite steering 
is more robust to decoherence in the 1SDI scenario. Interestingly, we find that, both in the 1SDI scenario and 
2SDI scenario, when the parameter α is small, the steerable area Aβd and the steerable range �β in the ADC are 
almost the same as those in the PDC, while when α is large, they are almost the same in the ADC and DC. Note 
that due to the asymmetric nature of these decoherence channels, the dynamic of genuine tripartite steering does 

Figure 1.  Upper panel: The effects of different decoherence channels on the dynamics of 1SDI genuine 
tripartite steering. (a) The steerable regions are parameterized by decoherence strength d and state parameters 
{α , β} . The regions enclosed by the green, orange, and blue surfaces correspond to the existence of 1SDI genuine 
tripartite steering in ADC, PDC, and DC, respectively. (b) The sectional views of (a) when d = 0.4 . (c) The 
area of steerable state parameters Aαβ as a function of decoherence strength d. (d) The maximum steerable 
state parameter range �β and the area of steerable region Aβd as a function of state parameter α . (e) The 1SDI 
genuine tripartite steering parameter W1 as a function of decoherence strength d. Bottom panel: same as upper 
column but in the case of 2SDI scenario. The results of ADC, PDC, and DC are displayed in green, orange, and 
blue in turn. The solid lines and dashed lines shown in (d,i) correspond to �β and Aβd , respectively. The solid 
lines and dashed lines shown in (e) correspond to α = β = 1/

√
3 and α = 3/10 , β = 7/10 , respectively. The 

solid lines and dashed lines shown in (j) correspond to α = β = 1/
√
3 and α = 1/2 , β = 3/5 , respectively.
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not show a symmetric behavior with respect to α = 1/
√
3 . Counter-intuitively, the strength of decoherence that 

the genuine tripartite steering can survive is not the largest even when ρABC is maximally entangled. As shown 
in Fig. 1e,j, whether under the ADC, PDC or DC, the genuine tripartite steering parameters W1 with α = 3/10 , 
β = 7/10 and W2 with α = 1/2 , β = 3/5 decays slower than that of the state with α = β = 1/

√
3.

In addition, it is interesting to compare the decay phenomena among various nonlocal quantum correlations 
of entanglement, steering and Bell nonlocality. The inequality suitable for detecting genuine entanglement and 
the Svetlichny inequality for testing genuine Bell nonlocality of the three-qubit W state are shown in the section 
of Methods.

We present region plots of different genuine nonlocal quantum correlations of the state ε(ρABC) with 
α = 1/

√
3 with respect to the decoherence strength d and the other state parameter β in Fig. 2. The regions 

enclosed by the orange dashed curves, green dashed curves, blue dashed curves and red dashed curves corre-
spond to the existing of genuine tripartite entanglement, 1SDI genuine tripartite steering, 2SDI genuine tripartite 
steering, and genuine tripartite Bell nonlocality, respectively. Clearly, genuine tripartite steering and genuine 
tripartite Bell nonlocality decay the slowest in the PDC, while the genuine tripartite entanglement decay the 
slowest in the ADC. Besides, Genuine tripartite entanglement is the most robust to decoherence, and genuine 
tripartite Bell nonlocality is the least robust to decoherence, as well as the robustness of 1SDI or 2SDI genuine 
tripartite steering is between them. These results again demonstrate the relationship between nonlocal quantum 
correlations as Bell nonlocality ⊂ 2SDI steering ⊂ 1SDI steering ⊂ entanglement. Clearly, the maximum decoher-
ence strength at which the corresponding genuine nonlocal quantum correlation can survive is obtained with 
different initial states, and they become asymmetrical with respect to β after ADC, PDC and DC. This happens 
because ADC, PDC and DC do not affect |0� and |1� symmetrically.

Dynamical behaviors of reduced bipartite steering. Detection of reduced bipartite steering. This 
section studies the effects of ADC, PDC and DC on the reduced bipartite steering. The reduced states between 
Alice and Bob, Alice and Charlie, Bob and Charlie can be obtained by taking the partial trace of the density ma-
trix, as is shown in Eq. (1), i.e., ε(ρAB) = TrC[ε(ρABC)] , ε(ρAC) = TrB[ε(ρABC)] , and ε(ρBC) = TrA[ε(ρABC)] , 
see more details in the Supplementary Information. Here, we employ a steering criterion based on average infer-
ence variance to test the steerability from party i to party j (see more details in the section of “Methods” section 
and in the Supplementary Information).

Effects of decoherence channels on reduced bipartite steering. Since the dynamics of reduced bipartite steer-
ing under ADC, PDC and DC are similar, and the steerability is the most robust under the PDC of 1SDI sce-
nario, we focus on investigating the effect of PDC on the reduced bipartite steering in the 1SDI scenario. For 
convenience, we define r =

√

α2 + β2 , θ = arccot(α/β) . The steering parameters S(3)B|A , S(3)C|A and S(3)C|B as func-
tions of decoherence strength d and state parameters {r, θ} are shown in Fig. 3a–c, respectively. Clearly, S(3)B|A 
is independent of d, and the steerability from Alice to Bob is only affected by {r, θ} . This is because ε(ρAB) 
is regardless of d. However, as d increases, both S(3)C|A and S(3)C|B decrease. As shown in Fig. 3d, for a particular 
decoherence strength, such as d = 9/10 , the region of {r, θ} enabling S(3)C|A < 1 (enclosed by orange dashed line) 
is larger than that enabling S(3)C|B < 1 (enclosed by blue dashed line). This means the steerability from Alice 
to Charlie is more robust than from Bob to Charlie. Interestingly, for some initial states, such as ε(ρAB) with 
r < 1

2

√
3− cos(2θ) , ε(ρAC) with θ = 0 and ε(ρBC) with r = 1 , the corresponding reduced bipartite steerabil-

ity can survive as long as d < 1 . To clarify this, we show the results for the reduced bipartite states marked 
as green triangle ( r =

√
2/3, θ = π/4 ), orange circle ( r =

√
2/3, θ = 0 ), blue star ( r = 1, θ = π/4 ) in Fig. 3d. 

The steering parameters S(3)B|A(r =
√
2/3, θ = π/4) (green dashed line), S(3)C|A(r =

√
2/3, θ = 0) (orange line), 

and S(3)C|B(r = 1, θ = π/4) (blue line) as a function of d are shown in Fig. 3e. Clearly, when the initial shared 
tripartite state ρABC is maximally entangled, i.e. r =

√
2/3 , θ = π/4 , the steerability from Alice to Char-

Figure 2.  The dynamics of various genuine tripartite nonlocal quantum correlations under ADC (a), PDC (b), 
and DC (c). The regions enclosed by the orange dashed curves, green dashed curves, blue dashed curves and red 
dashed curves correspond to the existence of genuine tripartite entanglement, 1SDI genuine tripartite steering, 
2SDI genuine tripartite steering, and genuine tripartite Bell nonlocality, respectively.
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lie and that from Bob to Charlie completely disappear at d = 1/4 (red dashed line), which decays faster than 
S
(3)
C|A(r =

√
2/3, θ = 0) and S(3)C|B(r = 1, θ = π/4).

To illustrate the advantages of the average conditional variance-based steering criterion, we further consider 
the ability of party i to steer party j by using the n-setting linear steering inequality, which is represented as 
S
j|i
n ≡ 1

n

∑n
m=1�σ i

mσ
j
m� ≤ Cn

62,63. Cn is the maximum value of Sj|in  when party j’s system can be described by a 
local hidden state model. Figure 3f presents the difference between Sj|in  and Cn ( �S

j|i
n = S

j|i
n − Cn ) for the reduced 

bipartite states marked as green triangle, orange circle, blue star in Fig. 3d for a fixed d = 9/10 . If �S
j|i
n > 0 , the 

steerability is demonstrated. We find that the number of the measurement settings for �S
j|i
n > 0 is more than 

three, and when n = 3 , the corresponding reduced bipartite steerabilities shown in Fig. 3e have not disappeared 
completely, which means the steering criterion based on average inference variance is more efficient.
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Figure 3.  The dynamics of reduced bipartite steering under PDC. (a–c) The steering parameters S(3)B|A , S(3)C|A 
and S(3)C|B as functions of decoherence strength d and state parameters {r, θ} , respectively. (d) The reduced 
bipartite steering regions are parameterized by {r, θ} for a fixed d = 9/10 . The green region enclosed by 
dashed green line represents Alice can steer Bob, the orange region enclosed by dashed orange line represents 
Alice can steer Charlie, and the blue region enclosed by dashed blue line represents Bob can steer Charlie. 
(e) The steering parameters S(3)B|A(r =

√
2/3, θ = π/4) (green dashed line), S(3)C|A(r =

√
2/3, θ = 0) (orange 

line), S(3)C|B(r = 1, θ = π/4) (blue line) and S(3)C|B(A)(r =
√
2/3, θ = π/4) (red dashed line) as a function of d. 

(f) The difference between Sj|in  and Cn ( �S
j|i
n  ) for the three reduced bipartite states marked as green triangle 

( r =
√
2/3, θ = π/4 ), orange circle ( r =

√
2/3, θ = 0 ), blue star ( r = 1, θ = π/4 ) in (d) for a fixed d = 9/10 . 

S
j|i
n > Cn indicates the existence of the corresponding reduced bipartite steering, where i ∈ {A,B} , j ∈ {B,C}.

Figure 4.  The effects of decoherence channels on the direction of reduced bipartite steering. (a) The steerability 
of ε(ρAB) with r = 1/

√
3 , θ = π/6 vs d. (b) The steerability of ε(ρAC) with r = 1/

√
3 , θ = π/4 vs d. (c) The 

steerability of ε(ρBC) with r = 8/9 , θ = π/6 vs d. Orange, green, and blue regions correspond to two-way 
steerable, one-way steerable and no-way steerable, respectively.
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We also study the effect of PDC on the steering direction. The results are shown in Fig. 4. Obviously, with an 
appropriate d, the one-way steering between Alice and Bob, Alice and Charlie, as well as Bob and Charlie can be 
observed simultaneously. And it is clear that a tunable d allows the states ε(ρAC) and ε(ρBC) to be shifted from a 
region where it is two-way steerable to an one-way steerable region, finally, to a region where it is unsteerable in 
both directions. Clearly, as d increases, the steerability from party i to party j decreases at the same rate as that 
from party j to party i, see Supplementary Information for details.

Dynamical behaviors of collective steering. Detection of collective steering. In addition to the re-
duced bipartite steering mentioned above, there is another bipartite steering scenario in the tripartite system, 
known as collective steering, where one party can be steered collectively by a group of other two parties, but not 
by any individual of  them14,19. It is well known that quantum steering exhibits a monogamous  relationship19–22. 
Collective steering, however, shows that quantum steering can also exhibit polygamous properties. This feature 
thus opens the possibility for the realization of quantum secret  sharing32,33 and quantum key  authentication64. 
Numerous collective steering criteria have been derived, but mostly refer to the continuous-variable  system65,66.

Here, we extend the average inference variance-based two-qubit steering criterion into collective steering by 
replacing single steering party with steering groups. Then, we can obtain the n -setting steerability parameter 
from the group parties i and j to party k, see more details in the section of Methods.

Effects of decoherence channels on collective steering. Since the decay behaviors of collective steering under 
ADC, PDC and DC are similar, here we focus on the case of PDC in the 1SDI scenario. We compare the dynam-
ics of collective steering and its corresponding reduced bipartite steering, the results of the state ε(ρABC) with 
r = 3

√
2/5 , θ = π/4 are shown in Fig. 5. The steering parameter groups {S(3)C|{AB}, S

(3)
C|A, S

(3)
C|B} , {S

(3)
B|{AC}, S

(3)
B|A, S

(3)
B|C} 

and {S(3)A|{BC}, S
(3)
A|B, S

(3)
A|C} as a function of d are presented in Fig. 5a–c, respectively. Clearly, with the increase of 

decoherence strength, the decay speed of the steerabilities between Alice and Bob (green lines), between Bob 
and Charlie (blue line), between Alice and Charlie (orange line) decreases in turn, and the collective steerability 
(pink lines) decays more slowly than its corresponding reduced bipartite steerability. Interestingly, even when 
the reduced bipartite steerability disappears completely, the collective steerability can still survive.

The effects of decoherence on the direction of collective steering were also studied. As shown in Fig. 5d, the 
PDC imposed on Charlie also leads to the asymmetric steering, i.e., S(n)k|{ij} �= S

(n)
{ij}|k . However, unlike the reduced 

bipartite steering case, there is no parameter window for one-way collective steering. And both S(n)k|{ij} < 1 and 

S
(n)
{ij}|k < 1 hold once d < 1 . It means when the steered system is composed of two parties, they can be steered by 

Figure 5.  The effects of decoherence channels on the steerability between single party and group parties when 
r = 3

√
2/5 , θ = π/4 . (a) The steering parameters {S(3)C|{AB}, S

(3)
C|A, S

(3)
C|B} for Charlie being steered party as a 

function of d. (b) The steering parameters {S(3)B|{AC}, S
(3)
B|A, S

(3)
B|C} for Bob being steered party as a function of d. 

(c) The steering parameters {S(3)A|{BC}, S
(3)
A|B, S

(3)
A|C} for Alice being steered party as a function of d. (d) The effects 

of decoherence on the direction of collective steering. (e) The monogamy relation for one steered party. (f) The 
monogamy relation for two steered parties. S(3)k|{ij} < 1 , S(3){ij}|k < 1 and S(3)k|i(j) < 1 indicate the existence of the 
corresponding types of steering, �S

(3)
k|{ij} > 0 and �S

(3)
{ij}|k > 0 indicate the satisfaction of the corresponding 

monogamy relation, where i ∈ {A,B} , j ∈ {B,C} , k ∈ {A,B,C}.
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the remaining party at the same time. Similarly, when the steering system contains two parties, they can steer 
the rest party simultaneously.

We further investigate how the shared steerability distributed among the parties from the perspective of Coff-
man–Kundu–Wootters (CKW) monogamy relation. In the case of three measurement settings, the monogamy 
relation involving either one steered party or two steered parties can be respectively expressed  as14

where i, j, k ∈ {A,B,C} in our case. We present the results in Fig. 5e,f. Clearly, as d increases, the monogamy 
relation Eq. (2) is always satisfied, which means two parties cannot independently demonstrate the steering of a 
third party. This is different from the above-mentioned results. In addition, we find there is a trade-off relation 
between �S

(3)
k|{ij} and �S

(3)
{ij}|k , i.e., �S

(3)
k|{ij} increases with the decrease of the corresponding �S

(3)
{ij}|k , and vice versa.

Conclusions
In conclusion, we have theoretically investigated different nonlocal quantum correlations of genuine tripartite 
steering, reduced bipartite steering and collective steering of a tripartite generalized W state under three types 
of decoherence, amplitude damping, phase damping, and depolarizing. The region of decoherence strength and 
state parameters that each type of steering can survive were provided. Compared with ADC and DC, we found 
that these steering correlations were more resistant to PDC with increasing decoherence strength. In the case 
of tripartite, we observed that both 1SDI and 2SDI genuine tripartite steering under ADC behaved similarly to 
that under PDC when one of the state parameters was small, while their behaviors were similar to those under 
DC, when the state parameter became larger. In addition, we found they decayed faster than genuine tripartite 
entanglement and slower than genuine tripartite Bell nonlocality. In the case of bipartite, we investigated the 
dynamics of reduced bipartite steering and collective steering. The results show that reduced bipartite steer-
ing is more fragile in the presence of decoherence. With the average inference variance steering criterion, we 
further found that the direction of reduced bipartite steering and the symmetry of collective steering can be 
easily manipulated by changing the decoherence strength. What’s more, we considered the two steered parties 
situation. It has clearly shown that not only one party can be steered by a group system, but also two parties can 
be steered by a single system. However, in the view of CKW monogamy relation, we found two parties cannot 
independently demonstrate steering of a third system, showing a completely different conclusion from the aver-
age inference variance steering criterion.

Therefore, our findings provide clear theoretical evidence for the dynamic difference of steering correlations 
in the presence of decoherence. We also indicate the structural difference between various nonlocal quantum cor-
relations and the efficiency of different steering criteria. Considering the fundamental and practical importance 
of quantum steering in quantum information science, our results not only provide an in-depth understanding 
of decoherence mechanism, but also inspire various applications of quantum information.

Methods
In this paper, genuine tripartite steering, genuine tripartite entanglement, and genuine tripartite Bell nonlocality 
are demonstrated by violating the corresponding inequalities, respectively.

For the general three-qubit W state in the 1SDI scenario, the experimentally testable inequality for demon-
strating genuine tripartite steering from Alice to Bob and Charlie is given  by18

 with {A1,A2,A3} being the observables associated with Alice’s measurements. �·� denotes the expected value of a 
corresponding observable. Violation of this inequality implies genuine tripartite steering from Alice to Bob and 
Charlie. The maximum quantum violation is −0.759 , which can be obtained only when Alice, Bob and Charlie 
share a pure W state ( α = β = 1/

√
3) and Alice adopts the optimal measurement settings {σx , σy , σz}.

Similarly, for the general three-qubit W state in the 2SDI scenario, the genuine tripartite steering from Alice 
and Bob to Charlie can be detected by violating the following  inequality18

 with {A1,A2,A3} and {B1,B2,B3} being the observables associated with Alice’s and Bob’s measurements, respec-
tively. The maximum quantum violation is −0.480 , which can be obtained only when Alice, Bob and Charlie 
share a pure W state ( α = β = 1/

√
3) and Alice and Bob adopt the optimal measurement settings {σx , σy , σz}.

(2)
�S

(3)
k|{ij} ≡ S

(3)
k|i + S

(3)
k|j − 2S

(3)
k|{ij} > 0,

�S
(3)
{ij}|k ≡ S

(3)
i|k + S

(3)
j|k − 2S

(3)
{ij}|k > 0,

(3)

W1 = 1+ 0.4405(�σB
z � + �σC

z �)− 0.0037�σB
z σ

C
z � − 0.1570(�σB

x σ
C
x � + �σB

y σ
C
y � + �A3σ

B
x σ

C
x � + �A3σ

B
y σ

C
y �)

+ 0.2424(�A3� + �A3σ
B
z σ

C
z �)+ 0.1848(�A3ZB� + �A3ZC�)− 0.2533(�A1σ

B
x � + �A1σ

C
x � + �A2σ

B
y � + �A2σ

C
y �

+ �A1σ
B
x σ

C
z � + �A1σ

B
z σ

C
x �)+ �A2σ

B
y σ

C
z � + �A2σ

B
z σ

C
y �) ≥ 0,

(4)

W2 = 1+ 0.2517(�A3� + �B3�)+ 0.3520�σC
z � − 0.1112(�A1σ

C
x � + �A2σ

C
y � + �B1σC

x � + �B2σC
y �)

+ 0.1296(�A3σ
C
z � + �B3σC

z �)− 0.1943(�A1B1� + �A2B2�)+ 0.2277�A3B3�
− 0.1590(�A1B1σ

C
z � + �A2B2σ

C
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C
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C
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The genuine entanglement of the three-qubit W state can be detected by violating the inequality in terms of 
the matrix elements, which can be written  as67,68

If a state ε(ρABC) gives KW > 0 , then genuine entanglement is certified. And the genuine Bell nonlocality is 
verified by violating the Svetlichny  inequality69

{A1,A2} , {B1,B2} and {C1,C2} represent the measurement settings of Alice, Bob and Charlie, respec-
tively. To maximize the violation, Alice and Charlie’s measurements are set as {σx , σz} , Bob’s are set as 
{(σx + σz)/

√
2, (σx − σz)/

√
2}.

Here, we employ a steering criterion based on average inference variance to test the reduced bipartite steering 
and the collective steering. In the case of party i steers party j, the steering parameter has the following  form14,19

where i, j ∈ {A,B,C} , n is the number of the measurement settings. σ i
m and σ j

m represent the m-th measurement 
setting for party i and party j, respectively. S(n)j|i < 1 indicates party j can be steered by party i. The amount of 
violation increases with n, i.e., for a larger n, a larger set of steerable states can be captured. To compare with 
the dynamical behaviors of genuine tripartite steering, we take n = 3 . In this case, Cn = 2 . And the optimal 
measurement settings of party i and party j are both set as {σx , σy , σz}.

By replacing single steering party with steering groups, the n-setting steerability parameter from the group 
parties i and j to party k can be written as

where i, j, k ∈ {A,B,C} . σ i
m , σ j

m and σ k
m correspond to the m-th measurement setting of parties i, j and k, respec-

tively. Similarly, the n-setting steering parameter from party k to the group parties i and j can be defined as 

S
(n)
{ij}|k ≡

1

Cn

∑n
m=1(�infσ

i
mσ

j
m|σ k

m)
2 . S(n)k|{ij} < 1 and S(n){ij}|k < 1 indicate the existence of the corresponding types 

of collective steering. Again, we mainly consider the case of n = 3 . To minimize S(3)k|{ij} and S(3){ij}|k , the measurement 
directions of Alice, Bob, Charlie are set as {σx , σy , σz}.

Data Availability
The datasets used and analysed during the current study available from the corresponding author on reasonable 
request.
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