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An interpretable transformer 
network for the retinal disease 
classification using optical 
coherence tomography
Jingzhen He 1*, Junxia Wang 2, Zeyu Han 3, Jun Ma 4, Chongjing Wang 5 & Meng Qi 2*

Retinal illnesses such as age-related macular degeneration and diabetic macular edema will lead 
to irreversible blindness. With optical coherence tomography (OCT), doctors are able to see cross-
sections of the retinal layers and provide patients with a diagnosis. Manual reading of OCT images is 
time-consuming, labor-intensive and even error-prone. Computer-aided diagnosis algorithms improve 
efficiency by automatically analyzing and diagnosing retinal OCT images. However, the accuracy and 
interpretability of these algorithms can be further improved through effective feature extraction, 
loss optimization and visualization analysis. In this paper, we propose an interpretable Swin-Poly 
Transformer network for performing automatically retinal OCT image classification. By shifting the 
window partition, the Swin-Poly Transformer constructs connections between neighboring non-
overlapping windows in the previous layer and thus has the flexibility to model multi-scale features. 
Besides, the Swin-Poly Transformer modifies the importance of polynomial bases to refine cross 
entropy for better retinal OCT image classification. In addition, the proposed method also provides 
confidence score maps, assisting medical practitioners to understand the models’ decision-making 
process. Experiments in OCT2017 and OCT-C8 reveal that the proposed method outperforms both the 
convolutional neural network approach and ViT, with an accuracy of 99.80% and an AUC of 99.99%.

The number of patients suffering from retinal illness has increased dramatically in recent  years1,2. Age-related 
macular degeneration (AMD) and diabetic macular edema (DME) are two frequent retinal disorders that can 
lead to lifelong blindness. AMD, which comes in two forms: dry AMD and wet AMD, is the most prevalent cause 
of blindness in people over 65. Patients with dry AMD present drusen on the retina, and most patients with 
wet AMD show choroidal neovascularization (CNV)3. DME is a diabetic complication that causes structural 
alterations in the retinal neurovascular systems, resulting in visual  loss4. It is caused by a rupture in the retinal 
vessel walls, which results in the accumulation of fluid and proteins in the  retina5. According to survey statistics, 
about 25% of diabetic retinopathy patients develop to  DME6. With early identification and treatment, the course 
of fundus disease can be delayed.

Optical coherence tomography (OCT) is a sophisticated ophthalmic imaging technique to display the cross-
section of retina layers. It has the advantages of being non-contact, non-invasive, and rapid  imaging7. Ophthal-
mologists regard OCT as one of the most important tools for the quantification, analysis, and treatment design 
of retinal diseases. However, there are certain difficulties in manually diagnosing retinal OCT images. First, as 
the number of patients grows year by year, relying solely on qualified medical professionals to make diagnoses 
will no longer be sufficient to meet the diagnostic and therapeutic  requirements8. Second, the characteristics 
of certain lesions are not readily obvious, leading to misinterpretation and missed diagnoses. Moreover, a large 
number of patients have gone undiagnosed in the early stages of the disease due to a lack of medical care in some 
locations, which will cause disease aggravations.

Computer-aided diagnosis (CAD) is an effective method to address these problems. Although some break-
throughs have been obtained in the field of classification of retinal OCT images, there are some challenges 
of design well-performing machine learning CAD systems, such as complicated feature selection and high 
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computational cost. In recent years, deep learning has developed rapidly and has shown brilliant performance 
in the field of computer vision. Deep learning has become the mainstream algorithm for retinal OCT image 
classification. It uses convolutional neural layers to automatically learn image features from low level to high 
level, which overcomes the shortcomings of manual feature extraction.

Several scholars have explored the application of convolutional neural networks (CNNs) for the automatic 
diagnosis of OCT images. Perdomo et al.9 developed an OCT-Net to classify normal retina and three common 
retinal diseases. The proposed network extracted and displayed information that was interpretable for clinical 
diagnosis. Kamran et al.10 proposed a retinal disease classification framework consisting of two joint networks, 
which combine supervised and unsupervised approaches to improve the robustness and accuracy of identifying 
retinal diseases. In addition, Rajagopalan et al.11 trained a deep learning-based fully automatic diagnosis system 
and used the Kuan filter to remove speckle noise from the input image, which provided higher classification 
accuracy for large public OCT datasets. Song et al.12 proposed a depth inference mechanism for the diagnosis 
of glaucoma, which combined OCT and visual field (VF) examination to effectively utilize complementary 
information from different modalities. jin et al.13 proposed to improve the performance and interpretability of 
traditional DL models by implementing segmentation based on prior human knowledge. Vidal et al.14 transforms 
binary masks into photorealistic OCT images using image-to-image generative adversarial networks. Based on 
the clinical relationship between retinal shape and the presence of DME fluid, this method generates pathologi-
cal and non-pathological samples by changing the dichroic mask morphology. Previous works have shown that 
the deep learning method achieved a matching or exceeding performance to that of ophthalmologists with 
significant clinical  experience15,16.

The evolution of network architectures in natural language processing (NLP) has promoted computer image 
processing from CNN to the sequence network Transformer. Vision Transformer (ViT) has become the most 
prevalent architecture in computer vision. Designed for sequence modeling and transduction activities, ViT is 
notable for its use of self-attention based on windows to model long-range dependencies in the whole image. 
Wen et al.17 recently applied the ViT framework to OCT images for auxiliary diagnosis of ocular abnormalities. 
They employed CNN to extract local features and the ViT to consider the image’s global information, resulting 
in an increase in overall accuracy, sensitivity, and specificity. Their proposed method illustrates the advantages 
of ViT for modeling global dependencies.

However, due to domain differences, converting the Transformer from natural language processing (NLP) to 
computer vision presents two obstacles. On the one hand, ViT cannot capture features at multiple scales, because 
the language is not affected by scale changes. On the other hand, image pixels have a larger resolution than text 
words, resulting in an exponential rise in computation. Fortunately, Liu et al.18 introduced the Swin Transformer, 
a hierarchical vision transformer that increased computational efficiency by using a shifted-window strategy. 
They also developed a Patch Merging method for flexibly synthesizing small patches into large patches, thereby 
widening the perceptual field and providing feature information on multiple scales.

In this paper, inspired by the Swin Transformer, we proposed an automatic diagnosis network Swin-poly 
Transformer for classifying OCT images into different categories. Figure 1 depicts examples from eight categories 
of fundus diseases. Furthermore, We adopt the PolyLoss as a loss function, which adjusts polynomial coefficients 
automatically for better retinal OCT image classification. In addition, the visual interpretation method is adopted 
in the inference stage to improve the model’s interpretability. We utilize the post-hoc interpretation method 
Score-CAM19 to generate confidence score maps, which highlight the discriminative features and thereby assist 
clinicians to understand the model’s decision-making.

In summary, the contributions of this work are as follows:

• In this paper, We propose the Swin-poly Transformer that combines the multi-scale features and the Poly 
loss to improve the performance of automatic retinal OCT classification.

Figure 1.  Examples of OCT images in eight classes, including AMD, CNV, CSR, DME, DR, drusen, MH and 
Normal.
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• To intuitively understand the suggested model decision, we generate a heatmap based on the Score-CAM 
and apply it to the original image to highlight the tumor region.

• The suggested strategy achieves state-of-the-art performance in OCT2017, outperforming both the ViT 
network approach and convolutional neural network approach, with an accuracy of 99.80% and an Area 
Under Curve of 99.99%.

Related work
Several studies have looked into using deep learning algorithms to identify OCT images. Lu et al.15 and Bhadra 
et al.20 trained a deep multi-layered CNN to classify OCT images into healthy, dry AMD, wet AMD, and DME cat-
egories. Kermany et al.21,22 and 23 investigated the application of deep transfer learning for the automatic diagnosis 
of diabetic retinopathy in OCT images. Das et al.24 introduced a multi-scale deep feature fusion (MDFF) network 
to contribute discriminative features and complementary information to the classifier. Huang et al.25 suggested 
a layer-guided CNN (LGCNN) for identifying normal retina and three common types of macular pathologies 
(CNV, DME and Druse). It employed an effective segmentation network to build retinal layer segmentation maps 
and then integrate the information from two lesion-related layers to improve OCT classification. Kim and  Tran26 
implemented a CNN-based ensemble learning model through several CNNs to further improve classification 
performance. Similarly, Alqudah et al.27 trained a CNN classification model on a large number of OCT images 
for distinguishing five types of retinal diseases, which achieved an overall accuracy of 0.953.

Recently, there have been new advances in OCT image classification based on deep learning. Saleh et al.28 and 
Subramanian et al.29 explored the transfer learning of pre-trained CNN networks to diagnose retinal disorders. 
The accuracy and robustness of transfer learning with CNN for retinal disease classification is demonstrated by 
comparison with other classifiers and human experts. Wen et al.17 proposed a lesion-localization convolution 
transformer (LLCT) network. It combines both convolution and self-attention to classify ophthalmic diseases and 
localize the retinal lesions. This design takes advantage of CNN’s extracting local features and the transformer’s 
consideration of global context and dynamic attention, accurately classifying and localizing retinal lesions. In 
addition, Saleh et al.30,31 developed a multi-criteria decision platform to investigate how to evaluate diagnostic 
models for retinal diseases and to enable the decision model to select the appropriate diagnostic model. The 
platform uses an entropy technique with ideal solution similarity ranking and employed nine quantitative crite-
ria to evaluate models, facilitating reliable and fast diagnosis. Karthik and  Mahadevappa32 proposed a modern 
diagnosis system for OCT image classification. They replace the residual connection in three ResNet architectures 
with EdgeEn block and cross-activation for increasing the contrast of the derivatives to generate sharper features, 
successfully increasing the classification accuracy. In this work, we propose to employ a transformer network 
that combines the multi-scale features and the Poly loss to improve the performance of automatic retinal OCT 
classification.

Materials and methods
Materials. We use the retinal OCT image datasets  OCT201721 and OCT-C833 to evaluate the proposed 
method. We follow the original data division strategy and use the handout method to split the training, valida-
tion set, and test sets. The first dataset consists of 109,312 images, where 108,312 images are used for training, 
32 for validation, and 968 for testing. In the training set, there are 37,205 retinal OCT images with CNV, 11,348 
images with DME, 8616 images with drusen, and 26,315 normal images in the training set. In the validation 
and test sets, 8 and 242 OCT images were included in each category, respectively. The second dataset OCT-
C8 consists of 24,000 images and is divided into eight categories: Age-related macular degeneration (AMD), 
Choroidal Neovascularisation (CNV), Diabetic macular edema (DME), Drusen, Macular Hole (MH), Diabetic 
Retinopathy (DR), Central Serous Retinopathy (CSR) and one for healthy classes. Where 25,600 images are 
used for training, 2800 for validation, and 2800 for testing. Each category includes 3200 for training and 350 for 
validation and testing respectively.

Data preprocessing and augmentation are performed prior to model training. Deep learning models are a 
data-driven way to learn task-related features. These models are based on the assumption that training data and 
test data have the same distribution. In a real scenario, this hypothesis holds only when the sample size is large 
enough. However, collecting numerous labeled medical images is difficult compared to natural  images1 because 
labeling medical images requires a lot of time and effort from experienced experts. Numerous works have proven 
that data augmentation is an effective method to improve the diversity of training data, which contributes to 
enhancing the generalization and stability of the  model34. Additionally, the features’ scale and rotation invari-
ance are not captured by the CNN model. Therefore, data augmentation methods, including random rotation, 
flipping and mirroring, are adopted to increase the diversity of training images. Furthermore, to match the input 
of the model, all images are resized to 224× 224 and normalized to [0, 1]. Finally, converting data into tensors 
and sending them to the proposed model.

Overall framework. We present a Swin-Poly Transformer network, which combines Swin  Transformer18 
and PolyLoss, for the automatic diagnosis of retina diseases in OCT images. Moreover, the proposed method pro-
vides visual interpretation based on the score-CAM method. The pipeline of the proposed method is depicted in 
Fig. 2. Specifically, in the training stage, random data augmentation is performed on the training set to improve 
the generalization ability of the model. After that, the enhanced images are fed into Swin Transformer in batches 
for weights and parameters learning. Furthermore, PolyLoss is employed in this work to automatically adjust 
polynomial coefficients for better retinal OCT image classification. Based on the prediction, score-CAM gener-
ates a visual explanation to help understand the model’s decision-making.
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Swin Transformer for multi-scale feature representation. The Transformer architecture and 
its adaptation on image  classification35 performs global self-attention by establishing a relationship between 
one token and all others. However, in contrast to convolutional neural networks, induction biases, i.e., two-
dimensional neighborhood structure (locality) and translational equivalence, are lost in  Vit18. Specifically, the 
two neighborhood structure describes the neighboring regions with similar features in an image. Translational 
equivalence means that objectives in an image should get the same result (labels) no matter where they are 
moved. Scholars have demonstrated that the lack of inductive bias breaks down when the amount of data is large 
 enough36. However, access to millions of labeled medical images is difficult due to privacy and ethical require-
ments. Moreover, the pixel resolution in images is much higher than the length of words in text paragraphs, 
resulting in an increase in the amount of computation. Therefore, in this work, we investigate the use of the Swin 
Transformer to express the multi-scale feature representation in OCT images. It can reduce the computational 
complexity of self-attention by exploiting the prior knowledge of induction bias in ViT.

Architecture of Swin Transformer. An overview of the Swin Transformer is presented in Fig. 3. A patch partition 
module first splits an input image of 224× 224 into non-overlapping patches of size 4× 4 . Each patch is treated 
as a ”token”, and the patch tokens are projected to the C dimension using a linear embedding layer. Following 
that, two successive Swin Transformer blocks with self-attention computation are applied to these patch tokens 
to control the number of tokens, as shown in Fig. 3b. A ”stage” is the combination of the linear embedding layer 
and the Swin Transformer blocks. The design of the Swin Transformer is similar to the layer structure of a CNN, 
where the resolution of each stage is halved and the number of channels is doubled. To produce hierarchical 
representations, the Swin-Transformer reduces the number of tokens by merging patch layers as the network 
gets deeper. An example of hierarchical representation is illustrated in Fig. 3c.

Swin Transformer block. There are two units in the Swin Transformer block. Each unit consists of two nor-
malization layers (LayerNorm), a self-attention module, and a multilayer perceptron (MLP) layer. In the Swin 
Transformer block, the standard multi-head self attention (MSA) module in ViT is replaced with two succes-
sive Swin Transformer modules, the window multi-head self attention (W-MSA) module and shifted window 
multi-head self attention (SW-MSA) module, as illustrated in Fig. 3b. Each unit consists of two normalization 
layers (LayerNorm), a self-attention module, and an MLP layer. The first unit uses the Window MSA (W-MSA) 
module, while the second unit uses the shifted Window MSA (SW-MSA) module. LayerNorm layers are added 
before each MSA module and each MLP layer, and the residual connection is employed after each module.

The Swin Transformer conducts self-attention on windows to reduce computational complexity. While in 
ViT, standard MSA is used for global attention. The relationship between each patch is computed based on all 
other patches. However, the computational complexity is quadratic because of the enormous number of patches, 

Figure 2.  The overall framework of the proposed method.
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making it unsuitable for high-resolution images. For effective modeling, Swin Transformer uses the W-MSA for 
calculating self-attention within a local window. Where a window is a set of patches that uniformly and non-
overlappingly split the entire image. Assuming that each window contains M ×M patches, the computational 
complexities of the global MSA module and W-MSA in an image of h× w patches are as follows.

where h× w represents the number of patches in whole images, and C is the channel of patches channel. In Eq. 
(1), the complexity is quadratic to patch number h× w . While in Eq. (2), the complexity of the latter is linear 
when M is fixed (set to 7 by default). For a large h× w , global self-attention computation is generally unafford-
able, whereas window-based self-attention is scalable.

Shifted window for self‑attention. However, the window-based self-attention (W-MSA) lacks cross-window 
connections, which limits the model’s modeling capabilities. In order to introduce the cross-window connection 
while maintaining efficient computation of non-overlapping windows, a shift window partitioning method is 
proposed in the Swin Transformer block. Figure 3d illustrates the shifted window partitioning strategy. In the 
l-th layer of the Swin Transformer, we use the window partitioning strategy for calculating the local attention. 
The 8× 8 feature map is uniformly divided into 2× 2 windows of size 4× 4 ( M = 4 ). Then, the next layer l + 1 
adopts the window partitioning configuration from the front layer to generate new windows, by replacing the 
window 

(⌊
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2

⌋
,
⌊
M
2

⌋)
 pixels from the regular partitioned window. The self-attention computation of the new 

window crosses the boundary of the previous window in layer l, providing a connection between them. By using 
the shifted window partitioning strategy, the successive Swin Transformer blocks are calculated as:

(1)�(MSA) =4hwC2 + 2(hw)2C

(2)�(W −MSA) =4hwC2 + 2M2hwC

(3)ẑl = W −MSA

(

LN
(

zl−1
))

+ zl−1

Figure 3.  (a) The overall architecture of Swin Transformer, which is adapted from Liu et al.18. (b) Two 
successive Swin Transformer blocks. (c) The hierarchical structure of Swin Transformer for extracting multi-
scale feature representation. (d) An illustration of the shifted window strategy for computing self-attention in 
the Swin Transformer architecture.
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where ẑl and zl represent the output features of the W-MSA module and MLP in the l layer, ẑl and zl represent the 
output features of the W-MSA module and MLP in the l layer. The shift window partitioning method introduces 
the connection between adjacent non-overlapping windows in the previous layer, which helps to establish the 
relationship of the model.

The window partitioning strategy produces multiple new windows of different sizes, and some of the new 
windows are smaller than M ×M . To calculate self-attention, one typical method is to fill all windows into 
M ×M . This method, however, will result in a rise in the number of windows. As shown in Fig. 3d, the number 
of windows increases from 2× 2 to 3× 3 after the window transformation strategy, which obviously increases the 
calculation cost of the model. To alleviate this problem, Swin Transformer proposes an efficient batch computa-
tion approach of cyclic shifting toward the top-left direction, as illustrated in Fig. 4. After shifting, the window 
computed in batches may consist of several windows in the feature map that are not adjacent to each other. 
Therefore, to confine the calculation of self-attention to each sub-window, a masking method is applied. With 
the cyclic shift, the number of batch windows remains the same as the number of regular window divisions, thus 
improving computational efficiency.

Loss function. In this paper, PolyLoss is used to optimize the OCT classification model. PolyLoss is pro-
posed by Leng et al.37, which provides a framework for understanding and refining the commonly used cross-
entropy loss. It allows the importance of multiple polynomial bases to be easily modified based on the targeting 
tasks and datasets. As a result, we use the PolyLoss in this study to automatically change polynomial coefficients 
for better retinal OCT image classification.

Applying the Taylor expansion, the cross entropy loss in the bases of (1− Pt)
j can be decomposed as

The Eq. (7) can be further condensed in the form of 
∑∞

j=1 αj(1− Pt)
j , where αj ∈ R

+ is the polynomial coef-
ficient and Pt is the prediction probability of the target category label. Each polynomial base (1− Pt)

j is weighted 
by a corresponding polynomial coefficient αj , allowing us to easily adjust the importance of different bases for 
various applications. The PolyLoss is equivalent to the cross-entropy loss when αj = 1/j for all j.

Leng et al., propose perturbing the leading polynomial coefficients in cross-entropy to reduce the number of 
αj . They substitute the j − th polynomial coefficient in cross entropy loss 1/j with 1/j + εj.

where j ∈ [−1/j,∞) . N is the number of leading term coefficients to be tuned. PolyLoss experiments found that 
tuning the first polynomial term yields the largest significant gain. As a result, the Eq. (8) can be reduced to:

(4)zl = MLP
(

LN
(

ẑl
))

+ ẑl ,

(5)ẑl+1 = SW −MSA

(

LN
(

zl
))

+ zl ,

(6)zl+1 = MLP
(

LN
(

ẑl+1
))

+ ẑl+1

(7)LPoly = −log(Pt) =

∞∑

j=1

1/j(1− Pt)
j = (1− Pt)+ 1/2(1− Pt)+ · · ·

(8)
LPoly = (ε1 + 1)(1− Pt)+ · · · + (εN + 1/N)(1− Pt)

N

︸ ︷︷ ︸

perturbed by εj

+ 1/(N + 1)(1− Pt)
N+1 + · · ·

︸ ︷︷ ︸

same as LCE

(9)=− log(Pt)+

N∑

j=1

εj(1− Pt)
j

(10)LPoly = − log(Pt)+ ε1(1− Pt)

Figure 4.  Efficient batch computation approach for self-attention in shifted window partitioning.
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In this paper, we set ε1 = 2 following the configuration on ImageNet image classification.

Score-CAM for visual interpretation. Although deep learning has been widely applied in a variety of 
scenarios such as medical image analysis and consultation assistance, the majority of existing deep learning 
networks are black box models with low interpretability. However, medical applications have a great demand for 
the interpretability of deep learning models due to the involvement of ethics and life health. Therefore, decisions 
regarding artificial intelligence applications should be supported by rationales and explanations. Some scholars 
have proposed post-hoc methods to explain the predicted behavior after the training is completed, such as Sali-
ency  Maps38, guided backpropagation (GuidedBP)39 and class activation mapping (CAM)40. In this work, we 
introduce Score-CAM, a robust and reliable interpretation method, to provide a fair interpretation of the deci-
sion process. Score-CAM treats the importance of features as a function of the confidence level, thus getting rid 
of the dependence on gradients.

Definition: Increase of confidence Given a general function Y = f (X) that takes an input vector 
X = [x0, x1, . . . , xn]

⊤ and outputs a scalar Y. For a known baseline input Xb , the contribution ci of xi , (i ∈ n− 1]) 
towards Y is the change of the output by replacing the i − th entry in Xb with xi . Formally,

where Hi is a vector with the same shape of Xb but for each entry hj in Hi , hj = I[i = j] and ◦ denotes Hadamard 
Product.

We define the trained Swin Transformer as Y = f (X) that outputs a class probability scalar Y. We pick the 
second normalization layer in the last Swin Transformer block and the corresponding activation as A. Denote 
the kth channel of activation A as Ak . Therefore, the contribution score Ak towards Y is defined as

where

Up(·) represents the operation that upsamples Ak into the input size. In this way, each upsampled activation map 
not only presents the most relevant spatial location to the internal activation map but also can be used directly 
as a mask to disturb the input image. s(·) is a normalization function that maps each element in the activation 
map matrix into [0, 1], which generates a smoother mask Hk . The normalization function s(·) is represented as

Then, the final visualization is obtained by a linear combination of weights and activation mappings. In addi-
tion, ReLU is also applied to the linear combination of mappings, since we are only interested in those features 
that have a positive impact on the category of interest.

Finally, we show the visualization in the form of heatmap and apply it to the input image for explaining the 
decision process.

Implement details. The experiments are conducted on Linux Ubuntu 16.04, Python 3.6, and Pytorch 
1.11.0. Models are trained on an NVIDIA Tesla V100 GPU. We initialize the weights with Xavier  initialization41 
and optimize them during training with the Adam optimizer using β1 = 0.900 . The initial learning rate is 2e−4 
and then decays into 1e−5 lastly. All of the OCT images are resized to 224× 224 . The batch size was set to 32. 
We train each model for 200 epochs. The model at the last epoch is used to evaluate performance. Moreover, 
for the dataset OCT2017, we adopt the weight loss strategy to alleviate the incorrect prediction caused by class 
imbalance.

Evaluation of classification models. For evaluating the classification performance, we apply the softmax 
method to convert logits into class probabilities, and then take the highest probability value as the predicted 
category. Accuracy, precision, recall, and F1-score are used as evaluation metrics. The formulas of evaluation 
metrics are as follows.

(11)ci = f (Xb ◦Hi)− f (Xb)

(12)C(Ak) = f (X ◦Hk)− f (Xb)

(13)Hk = s(Up(Ak))

(14)s(Ak) =
Ak −minAk

maxAk −minAk

(15)VScore−CAM = ReLU

(
∑

k

αc
kA

k
l

)

(16)Accuracy =
TP + TN

TP + FP + TN + FN

(17)Precision =
TP

TP + FP

(18)Recall =
TP

TP + FN
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Where TP, TN, FP, and FN represent the number of true positives, true negatives, false positives, and false nega-
tives, respectively. For the four classes OCT classification, TP is defined as the number of cases correctly identified 
as a category, TN as the number of negative cases correctly identified as a negative class by the model, FP as the 
number of negative samples incorrectly identified as positive classes, and FN as the number of positive cases 
incorrectly identified as negative categories. In addition, the area under curve (AUC) is an additional metric for 
further evaluate the proposed method. The larger the AUC, the closer the prediction is to the true label.

Results
Results on each category. In order to observe micro performance, we report the performance of several 
networks across each category of OCT2017 and OCT-C8. Table 1 shows the performance of  LLCT17, Vision 
Transformer (ViT), Swin Transformer and our method. For dataset OCT2017, we observe that ViT outperforms 
LLCT in our setting, demonstrating the effectiveness of ViT for the task of OCT image classification. In addition, 
the performance on CNV and drusen images is further improved when Swin Transformer is used, which means 
that hierarchical multi-scale features contribute to better predictions. Swin Transformer obtained 1.0000 on four 
metrics (accuracy, precision, recall and F1 score) for DME and normal images, demonstrating the model’s ability 
to identify DME and normal images. Moreover, the PolyLoss leads to a further increase in classification accu-
racy, recall, F1-score, and AUC. The suggested method’s average accuracy, precision, recall F1-Score, and AUC 
are 0.9980, 0.9980, 0.9980, 0.9980, and 0.9999, respectively, slightly outperforming the LLCT’s 0.0095, 0.0197, 
0.0215, 0.0057 and 0.0321. Although there is a small improvement in evaluation values, this improvement is 
visible in the dataset OCT2017, as all evaluation metrics are close to 1. The proposed Swin-Poly Transformer 
achieves the best performance on four metrics, suggesting the effectiveness of the proposed method. Similarly, 
we validate the proposed method on OCT-C8. For dataset OCT-C8, similarly, the proposed method surpasses 
ViT and Swin-VIT to achieve the best average performance. We find that Vit, Swin-Vit and our method all 
achieve high accuracy on AMD. The proposed method achieves performance close to 1 in the four categories of 
AMD, CSR, DR, and MH. Combining CNN with transformers offers a viable improvement direction for local 
and global feature fusion. All in all, the proposed method takes the best performance on average results.

We compare the floating-point operations per second (FLOPs), numbers of model parameters and inference 
time of VGG16, ViT, and our methods. The FLOPS of VGG16, ViT, and our methods are 15.4 G, 1.1 G and 4.5 G 
respectively. The Parameters of the three methods are 13.8 M, 22.1 M and 27.5 M. In the inference stage, predict-
ing an image spend 2.72 ms, 5.9 ms and 12.6 ms. Although the inference time of our method is greater than that 
of VGG16 and ViT, for an OCT image, this speed is still satisfactory compared to manual reading.

Visualization. Further, we investigate the model decision-making mechanism in OCT2017. We use the 
post-hoc explanation approach Score-CAM19 to visualize the evidence of prediction. Score-CAM is a gradient-
free visual interpretation method, where the importance of activation is encoded by the global contribution of 
the corresponding input instead of the local sensitivity (gradient information). We perform an interpretation 
experiment on 968 test images to see which regions contributed the most to the neural network’s prediction 
prognosis.

Figure 5 shows confidence score maps of the prediction results in OCT2017 and OCT-C8. The heat map 
highlights the regions that are connected with the target category. The redder the color, the higher the correlation 
with the predicted category. As can be seen in this figure, the score-CAM clearly shows the regions of interest. 
We notice that lesion regions are rendered as redder in the disease OCT images, for example, the first three rows 
of Fig. 5a and b right, Fig. 5b left, i.e., abnormal regions are given higher scores. In normal images (the last row 
of Fig. 5a and b right), the model pays more attention to the whole retina. These phenomena are consistent with 
clinical diagnosis, as ophthalmologists also identify diseases by looking at abnormal regions in OCT images.

Discussion
We develop a Swin-Poly Transformer network to automatically and accurately identify retinal disease types. Using 
OCT images, we investigate the performance improvement of the Swin-Transformer model for retinal abnormal-
ity classification using multi-scale feature representation and loss optimization. Further, visual interpretation 
analysis is performed to determine whether the lesion areas of the model match the clinical diagnostic features.

In this paper, we compare the proposed method in dataset OCT2017, including ViT, Swin Transformer and 
Wen et al.17 in Table 1. ViT converts an image to several sequence tokens and then employs Multi-Head Self-
Attention to model long-range dependencies between tokens. This structure considers the image’s global infor-
mation, leading to an increase in overall accuracy, sensitivity, and specificity (Table 2). Specifically, Wen et al.17 
use the customized feature maps generated by CNN as the input of the self-attention network, exploiting local 
details from the CNN and global contextual and dynamic attention from the Transformer. In our experimental 
setting, the overall F1-score values for ViT, Swin Transformer, and Swin-Poly Transformer are 0.9907, 0.9970, 
and 0.9980 respectively. The performance of the Swin Transformer outperforms the ViT because of the utiliza-
tion of multi-scale features. Swin Transformer shifts the window partition and then builds connections between 
adjacent non-overlapping Windows, thus combining low-level and high-level features. Furthermore, the Poly 
loss further improves the performance by refining the cross-entropy loss using Taylor expansion. It modifies 
a large number of polynomial bases according to the specific task and dataset to regulate the relevance of each 
basis. In particular, the Swin-Poly Transformer shows an AUC value of 0.9999, demonstrating the effectiveness 

(19)F1− score =2 ·
precision · recall

precision+ recall
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of the proposed method. Experiments show that the accurate diagnosis provided by the proposed Swin-Poly 
Transformer can contribute to precision medicine.

We further compare the average performance of the Swin-Poly Transformer and other algorithms, includ-
ing CNN and Transformer-based networks. We explore the performance of CNNs in OCT2017 from multiple 
perspectives, including general training (Lu et al.15 and Bhadra et al.20), transfer learning (Kermany et al.21, Li at 
al.22 and Islam et al.23), multi-scale/layer-guided feature fusion  (MDFF24 and  LGCNN25), and ensemble learn-
ing (Kim and  Tran26). All results are shown in Table 2. From Table 2, we find CNN  networks24,25,43 are useful 

Table 1.  Experimental results on OCT image classification. Significant values are in [bold].

Dataset Method Class Accuracy Precision Recall F1-Score AUC 

OCT2017

LLCT17

CNV 0.9810 0.9350 0.9940 0.9760 0.9960

DME 0.9960 0.9860 0.9960 0.9950 0.9970

Drusen 0.9810 0.9960 0.9280 0.9990 0.9190

Normal 0.9960 0.9960 0.9880 0.9990 0.9590

Average 0.9885 0.9783 0.9765 0.9923 0.9678

ViT

CNV 0.9800 0.9878 1.0000 0.9938 0.9993

DME 0.9880 0.9918 0.9959 0.9938 0.9990

Drusen 0.9920 0.9917 0.9876 0.9897 0.9985

Normal 1.0000 0.9916 0.9793 0.9855 0.9999

Average 0.9900 0.9907 0.9907 0.9907 0.9992

Swin Transformer

CNV 1.0000 0.9881 1.0000 0.9940 0.9999

DME 1.0000 1.0000 1.0000 1.0000 0.9995

Drusen 0.9880 1.0000 0.9880 0.9940 0.9998

Normal 1.0000 1.0000 1.0000 1.0000 1.0000

Average 0.9970 0.9970 0.9970 0.9970 0.9998

Ours

CNV 1.0000 0.9960 1.0000 0.9980 1.0000

DME 0.9960 1.0000 0.9960 0.9980 0.9996

Drusen 1.0000 0.9960 1.0000 0.9980 1.0000

Normal 0.9960 1.0000 0.9960 0.9980 1.0000

Average 0.9980 0.9980 0.9980 0.9980 0.9999

OCT-C8

Vit

AMD 1.0000 0.9972 1.0000 0.9886 1.0000

CNV 0.8657 0.8511 0.8657 0.8584 0.9845

CSR 0.9886 0.9971 0.9943 0.9957 0.9999

DME 0.7771 0.8576 0.7743 0.8138 0.9720

DR 0.9971 0.9886 0.9886 0.9886 0.9991

Drusen 0.7429 0.7424 0.7000 0.7206 0.9543

MH 0.9914 0.9915 0.9943 0.9929 0.9995

Normal 0.7571 0.7053 0.8000 0.7497 0.9686

Average 0.8896 0.8913 0.8896 0.8898 0.9847

Swin-Vit

AMD 1.0000 1.0000 1.0000 1.0000 1.0000

CNV 0.8516 0.8493 0.9657 0.9037 0.9947

CSR 0.9821 1.0000 0.9971 0.9986 1.0000

DME 0.9122 0.9324 0.9057 0.9188 0.9933

DR 0.9836 0.9859 1.0000 0.9929 1.0000

Drusen 0.9327 0.9708 0.76 0.8526 0.9882

MH 0.9812 1.0000 0.9886 0.9943 1.0000

Normal 0.9257 0.8583 0.9514 0.9024 0.9954

Average 0.9461 0.9496 0.9461 0.9454 0.9965

Ours

AMD 1.0000 1.0000 1.0000 1.0000 1.0000

CNV 0.9489 0.9389 0.9571 0.9477 0.9937

CSR 1.0000 1.0000 1.0000 1.0000 1.0000

DME 0.9439 0.9512 0.9457 0.9484 0.9919

DR 1.0000 0.9972 1.0000 0.9986 0.9999

Drusen 0.9200 0.9580 0.9114 0.9341 0.9888

MH 1.0000 1.0000 0.9971 0.9986 0.9998

Normal 0.9563 0.9254 0.9571 0.9410 0.9958

Average 0.9711 0.9713 0.9711 0.9710 0.9962
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Table 2.  Performance of several deep learning networks for classification on OCT2017 and OCT-C8. 
Significant values are in [bold].

Dataset Method Accuracy Recall Precision F1-score

Oct2017

Inception  V342 0.9660 0.9780 0.9740 0.9760

Kermany et al.21 0.9610 0.9612 0.9610 0.9610

Kaymak et al.43 0.9710 0.9960 – –

MDFF24 0.9960 0.9960 0.9960 0.9960

LGCNN25 0.8990 – – –

Islam et al.23 0.9860 – 0.9950 –

Li et al.22 0.9860 0.9780 0.9940 0.9859

Bhadra et al.20 0.9969 0.9969 0.9969 0.9968

Kim et al.26 0.9890 0.9890 0.9960 0.9915

Saleh et al.28 0.9850 0.9700 0.9700 0.9700

LLCT17 0.9770 0.9770 0.9920 0.9844

ViT35 0.9907 0.9907 0.9907 0.9907

Swin  Transformer18 0.9970 0.9970 0.9970 0.9970

Ours 0.9980 0.9980 0.9980 0.9980

OCT-C8

Karthik et al.32 (ResNet34 based) 0.9240 0.9200 0.9300 0.9200

Karthik et al.32 (ResNet50 based) 0.9030 0.9100 0.9100 0.9100

Karthik et al.32 (ResNet101 based) 0.8450 0.8600 0.8600 0.8600

Subramanian et al.33 (VGG16 based) 0.9721 0.9725 0.9713 0.9725

ViT 0.8896 0.8913 0.8896 0.8898

Swin-Transformer 0.9461 0.9496 0.9461 0.9454

Ours 0.9712 0.9713 0.9713 0.9710

Figure 5.  Confidence score maps on (a) OCT2017 and (b) OCT-C8 of proposed Swin-Poly Transformers.
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algorithms for OCT image classification, achieving satisfactory results in OCT2017. Among the CNN-based 
algorithms, Bhadra et al.20 achieve the best performance with an accuracy of 0.9969, a recall of 0.9969, a preci-
sion of 0.9969 and an F1-score of 0.9968. These phenomena prove that with enough samples, CNNs are able to 
capture the subtle differences in each category of fundus OCT images in real  scenes44. For Transformer-based 
backbones, the Swin Transformer outperforms the ViT on four metrics, suggesting the effectiveness of extract-
ing multi-scale features using a multi-scale hierarchical strategy. Finally, the proposed method achieves the best 
performance with accuracy, recall, and precision of 0.9980, which indicates that the combination of multi-scale 
features and Poly loss benefits the performance improvement. We show the loss and accuracy curves in Fig. 6a. 
In the figure, the training loss first decreases gradually and then reaches equilibrium, indicating that the Swin-
Poly Transformer has been fitted on the training data.

Furthermore, we verify the effectiveness of the Swin-Poly Transformer on another dataset, OCT-C8. All 
results are shown in Table 2. The proposed Swin-Poly Transformer exceeds the three ResNet-based models pro-
posed by Karthik et al32. Moreover, the proposed Swein-Poly transformer achieves comparable performance to 
Subramanian et al.29 and further improves the interpretability of the model. Particularly, the proposed method 
exceeds the classical ViT in four evaluation indexes respectively. In addition, the accuracy, recall, accuracy, and 
F1 scores of Swin-Transformer using vanilla were 0.9461, 0.9496, 0.9461, and 0.9454, respectively. The proposed 
Swin-Poly Transformer achieves an accuracy of 0.9712, a recall of 0.9713, a precision of 0.9713, and an F1-score of 
0.9710, which are 2.52%, 1.17%, 2.49% and 2.56% higher than Swin Transformer, respectively. The performance 
of the proposed method on OCT-C8 proves that the Swin-Poly Transformer is an effective algorithm for OCT 
image recognition. We show the training and validation accuracy curves in Fig. 6b. It can be found in the figure 
that Swin Transformer converges faster than ViT. The proposed Swin-Poly Transformer and Swin Transformer 
have comparable performance on the validation set. Furthermore, the accuracy of the Swin-Poly Transformer is 
higher than that of the Swin Transformer on test data. Additionally, in the first 50 epochs, the accuracy curve of 
the Swin-Poly Transformer is smoother than Swin Transformer on the training set. These phenomena suggest 
that using Poly loss contributes to boosting the generalization and robustness.

Observing intermediate layers facilitates revealing learned features and understanding the mechanism of 
decision-making45. Vision interpretability is an evolving area with the potential to help the developer and medi-
cal participant better understand how models work and gain new insights into revealing predictive  failures46. 
In this paper, the gradient-free interpretation method Score-CAM is used to visualize the region of interest. We 
discover that the suggested model highlights abnormal areas of the image. The confidence score map displays 
the region around the anomaly in addition to the lesion of interest, indicating that contextual information about 
the immediate environment may be useful for prediction. The model appears to focus on the entire retinal layer 
for normal images, demonstrating its flexibility in learning complicated and representative features. Overall, 
these visualization results are remarkable and intuitive, confirming that the proposed model can appropriately 
identify regions of interest.

In this work, we propose an effective Swin-Poly Transformer for identifying normal OCT images and retinal 
abnormities. The Swin-Poly Transformer network has the potential to transform the currently limited classifica-
tion model into a more analytical and flexible system, combing radiographic imaging, biological data and clinical 
reports. These approaches contribute to augmenting other emerging technologies, such as liquid biopsy; provid-
ing complementary information to guide clinical decision-making. However, despite the promising progress, the 
challenge of effectively integrating these computer-assisted diagnostic tools into regular practice remains. Perhaps 
most pressing is the need for extensive data sharing to build large, well-labeled datasets to develop a robust and 
scalable model. In future work, on the one hand, we expect to utilize complementing information from several 
modalities to simulate real diagnostic scenarios by combining multi-tasking or collaborative learning. On the 
other hand, we believe that intra- and inter-institutional data sharing will encourage models to perform better 
in real situations.

Figure 6.  (a) The loss and accuracy curves of the proposed model in OCT2017. (b) The accuracy curves of 
different models on OCT-C8.
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Data availability
The dataset analyzed during the current study is available in the Kaggle at https:// www. kaggle. com/ pault imoth 
ymoon ey/ kerma ny2018.
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