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Differentially expressed 
discriminative genes and significant 
meta‑hub genes based key genes 
identification for hepatocellular 
carcinoma using statistical machine 
learning
Md. Al Mehedi Hasan 1,2, Md. Maniruzzaman 1,3 & Jungpil Shin 1*

Hepatocellular carcinoma (HCC) is the most common lethal malignancy of the liver worldwide. 
Thus, it is important to dig the key genes for uncovering the molecular mechanisms and to improve 
diagnostic and therapeutic options for HCC. This study aimed to encompass a set of statistical and 
machine learning computational approaches for identifying the key candidate genes for HCC. Three 
microarray datasets were used in this work, which were downloaded from the Gene Expression 
Omnibus Database. At first, normalization and differentially expressed genes (DEGs) identification 
were performed using limma for each dataset. Then, support vector machine (SVM) was implemented 
to determine the differentially expressed discriminative genes (DEDGs) from DEGs of each dataset 
and select overlapping DEDGs genes among identified three sets of DEDGs. Enrichment analysis 
was performed on common DEDGs using DAVID. A protein‑protein interaction (PPI) network was 
constructed using STRING and the central hub genes were identified depending on the degree, 
maximum neighborhood component (MNC), maximal clique centrality (MCC), centralities of 
closeness, and betweenness criteria using CytoHubba. Simultaneously, significant modules were 
selected using MCODE scores and identified their associated genes from the PPI networks. Moreover, 
metadata were created by listing all hub genes from previous studies and identified significant 
meta‑hub genes whose occurrence frequency was greater than 3 among previous studies. Finally, 
six key candidate genes (TOP2A, CDC20, ASPM, PRC1, NUSAP1, and UBE2C) were determined by 
intersecting shared genes among central hub genes, hub module genes, and significant meta‑hub 
genes. Two independent test datasets (GSE76427 and TCGA‑LIHC) were  utilized to validate these key 
candidate genes using the area under the curve. Moreover, the prognostic potential of these six key 
candidate genes was also evaluated on the TCGA‑LIHC cohort using survival analysis.

Hepatocellular carcinoma (HCC) is the 3rd leading cause of cancer deaths  globally1. Globally, more than of 
80% liver cancers are responsible for  HCC2 and its prevalence is high in males compared to  females3. It usually 
occurs in people aged 30–50  years3. Different factors such as hepatitis B or hepatitis  C4,5, alcohol abuse, smok-
ing, obesity, and type 2 diabetes (T2D) were significantly associated with  HCC6. Among them, Hepatitis B is 
one of the prominent risk factors for the development of HCC, responsible for 50% of  cases7. Despite various 
treatment approaches, namely radiotherapy, chemotherapy, and target therapy have been commonly used to 
improve the prognosis and recurrence of HCC. Nevertheless, the survival rate of HCC patients is still  low8. As 
a result, the risks of cancer death are still increased due to the lack of early detection and diagnosis of genes and 

OPEN

1School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Fukushima 965-8580, 
Japan. 2Department of Computer Science and Engineering, Rajshahi University of Engineering & Technology, 
Rajshahi 6204, Bangladesh. 3Statistics Discipline, Khulna University, Khulna 9208, Bangladesh. *email: 
jpshin@u-aizu.ac.jp

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-30851-1&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2023) 13:3771  | https://doi.org/10.1038/s41598-023-30851-1

www.nature.com/scientificreports/

limited treatment facilities. Therefore, it is essential to develop a system for identifying the key or core genes for 
early detection and better prognosis of HCC.

Recently, bioinformatics analysis has been widely utilized to determine the key prognostic genes or biomarkers 
as well as their associated molecular pathways for multiple cancers, including  HCC8–58. Zhou et al.35 identified 
15 prognostic biomarkers as well as their associated gene ontology (GO) enrichment and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway using bioinformatics analysis. Chen et al.39,59,60 also identified 11 potential 
biomarkers that can play crucial roles in the development and progression of HCC patients. Qiang et al.40 pro-
posed five core genes which were significantly associated with early diagnosis and poor prognosis of HBV-HCC. 
Wang et al.41 identified 36 hub DEGs and illustrated that 10 candidate genes out of the 36 have significant effect 
on the tumorigenesis and progression of HCC. Among them, eight candidate genes were inversely related to 
the survival rate of HCC patients. Dai et al.61 proposed a prognostic model for predicting the prognosis of HCC 
patients. They identified 17 genes that were potentially associated with the prognosis of HCC patients. These 17 
genes were used to make a prognostic model using the Cox hazard regression model and validated its perfor-
mance using the TCGA and GSE14520 datasets. They showed that six genes were involved in the prognosis of 
HCC patients. Most researchers simply used hub genes derived from the PPI network to identify the key or core 
genes. One of the major challenges in studying genetic data was the identification of relevant biomarkers or genes. 
Recently, machine learning (ML)-based techniques have gained more attraction to address this  problem59,60,62–66. 
Despite the fact that several studies have been carried out for the identification and development of potential 
candidate genes for  HCC8–58,67, it remains a challenging issue and still has some scope for more research for the 
identification of potential genes as well as understanding molecular mechanisms for the development, pathog-
enies, and progression of HCC.

In this work, we used three microarray gene expression (MGE) datasets as training sets to determine the key 
or core candidate genes for HCC. First, we selected individual DEGs for three datasets. Secondly, support vector 
machine (SVM) with radial basis function (RBF) was implemented on the identified DEGs from each of the three 
datasets and calculated the classification accuracy of each DEG. We selected the DEGs from each of the three 
datasets that provided a classification accuracy of more than 80.0%. At the same time, the overlapping or shared 
DEGs were identified from three datasets. These overlapping or shared DEGs were called differentially expressed 
discriminative genes (DEDGs). Thirdly, DAVID was used to perform enrichment analysis on common DEDGs. 
Fourthly, PPI networks were constructed using STRING and visualized using Cytoscape. Then the hub genes 
were identified using degree, maximum neighborhood component (MNC), maximal clique centrality (MCC), 
closeness, and betweenness on the basis of cytoHubba. After that, the central hub genes were determined by over-
lapping or shared hub genes from the degree, MNC, MCC, centralities of closeness, and betweenness. Molecular 
Complex Detection (MCODE) was performed for cluster or module analysis and determined the important or 
significant modules as well as their associated genes. Moreover, the significant meta-hub genes were determined 
from meta-hub genes, which were extracted from existing studies. The key or core candidate genes were deter-
mined among the central hub genes, potential module hub genes, and significant meta-hub genes, which can 
be easily discriminated against in HCC patients compared to healthy controls. Furthermore, we used another 
two independent test datasets for the validation as well as to show the discriminative power of the key candidate 
genes. We also performed a survival analysis of the identified key candidate genes for HCC patients. Therefore, 
the overall flowchart of our proposed system to determine key candidate genes for HCC is presented in Fig. 1.

Results
Identification of DEGs from each dataset. We implemented limma for identifying DEGs from each 
of the three GEO datasets (GSE36376, GSE39791, and GSE57957). Using the threshold of |log2FC|> 1 , and 
adj.p-value < 0.01, we identified 699 (up-regulated: 431 vs. down-regulated: 268), 428 (up-regulated: 88 vs. 
down-regulated: 340 DEGs), and 413 DEGs (up-regulated: 107; down-regulated: 306) DEGs between HCC and 
healthy controls from GSE36376, GSE39791, and GSE57957 datasets and their volcano plots and heatmap were 
presented in Fig. 2.

Identification of common DEDGs using SVM. SVM with RBF kernel was applied on the identified 
DEGs (699 DEGs for GSE36376; 428 DEGs for GSE39791; and 413 DEGs for GSE57957) of each dataset in order 
to identify the DEDGs of HCC patients. Then, the classification accuracy was computed per gene for DEGs from 
each dataset. The calculation procedure is clearly discussed in the methodology section. The classification accu-
racies of all DEGs for individual datasets were ordered in descending order of magnitude, which is presented in 
Fig. 3. As shown in Fig. 3, we observed that a total of 502 from GSE36376, 169 from GSE39791, and 242 from 
GSE57957 DEGs were selected as DEDGs because their classification accuracy was more than or equal to 80.0%. 
Furthermore, 75 common DEDGs were determined among the identified DEDGS from GSE36376, GSE39791, 
and GSE57957 datasets, which is shown in Fig. 4.

Enrichment analysis of common DEDGS. Enrichment analysis was conducted on 75 shared or overlap-
ping DEDGs clearly grasp the mechanism and development of HCC. The functional characteristics of DEDGs 
were explored using GO and KEGG pathway analysis. The GO analysis was partitioned into three groups: bio-
logical process (BP), cellular component (CC), and morphological component. Using p-values (< 0.05) , we 
identified the significant GO and KEGG pathways, and chose the top five prominent GO terms and KEGG 
pathway. The top five GO terms, including BP, CC, and MF, are presented in Table 1.

For BP-based GO terms, the common DEDGs were strongly enriched with retinol metabolic process, cel-
lular response to cadmium ion, retinoid metabolic process cellular response to copper ion, and steroid catabolic 
process. Moreover, the extracellular region, extracellular exosome, extracellular space, high-density lipoprotein 
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particle, and apical plasma membrane were found to be top CC, which were significantly enriched with common 
DEDGs. As shown in Table 1, MF group GO terms, including retinol dehydrogenase activity; oxidoreductase 
activity; androsterone dehydrogenase activity; androstan-3-alpha,17-beta-diol dehydrogenase activity; and ster-
oid dehydrogenase activity, were mainly enriched with common DEDGs.

The study of the KEGG pathway for common DEDGs is displayed in Table 2. As shown in Table 2, the com-
mon DEDGs were significantly associated with multiple pathways such as retinol metabolism, metabolic path-
ways, tryptophan metabolism, steroid hormone biosynthesis, and drug metabolism-cytochrome P450.

PPI network construction and central hub genes identification. STRING was utilized to build a 
PPI network to show the significant connections between proteins encoded by common DEDGs. Cytoscape was 
used to show the PPI network, which had 51 nodes and 144 edges (see Fig. 5a). Five hub gene-based identifica-
tion algorithms, including the degree of connectivity, MNC, MCC, closeness, and betweenness in the Cytoscape 
plug-in cytoHubba, were implemented to determine the hub genes from PPI networks. Then we chose the top 30 
hub genes from each algorithm. We made a Venn diagram among the five algorithms, which is shown in Fig. 5b. 
As shown in Fig. 5b, eight overlapping central hub genes were identified among these algorithms. These eight 

Figure 1.  Flowchart of proposed system for the identification of key candidate genes for HCC.
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Figure 2.  Volcano plot and heatmap of DEGs for each GEO dataset were generated using “ggplot2” version 
3.3.6  package110 ( https:// cran.r- proje ct. org/ packa ge= ggplo t2) and “NMF” version 0.24.0  package111 (https:// 
cran.r- proje ct. org/ packa ge= NMF) in R . (a) Volcano plot and (b) heatmap of GSE36376 dataset; (c) Volcano 
plot and (d) heatmap of GSE39791 dataset; (c) Volcano plot and (d) heatmap of GSE57957. Dodger blue 
represents down-regulated, gray represents no significant genes, and fire brick represents up-regulated DEGs.

https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=NMF
https://cran.r-project.org/package=NMF
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central hub genes were NUSAP1, TOP2A, CDC20, PRC1, UBE2C, ASPM, PNPLA7, and MT1E, which were 
utilized to determine the key or core genes for HCC.

Hub modules and its associated genes identification. Module or cluster analysis was performed 
using MCODE to determine the prominent modules. Three clusters or modules were generated using MCODE 
and provided 3–6 MCODE scores. We chose the prominent modules that provided the MCODE scores of ≥ 5 
and the number of nodes ≥ 5 . Finally, we chose module 1 as a prominent hub module that contained 6 nodes and 
30 edges with the highest MCODE scores of 6 and their PPI networks were displayed in Fig. 6. The correspond-
ence six genes were treated as hub module genes.

Identification of significant meta‑hub genes from metadata. We reviewed 52 existing studies 
related to gene identification of HCC  patients8–58. We listed their hub genes in order to make metadata which 
were presented in Table 3. To make metadata, we extracted 10 hub genes from Maddah et al.9, 5 hub genes from 
Yan et al.10, 20 from Zhao et al.11, 7 from Zhao et al.12, 10 from Liu et al.13, 11 from Meng et al.14, 42 from Rosli 
et al.15, 5 from Zhang et al.8, 5 from Li et al.16, 8 from Li et al.17, 5 from Tian et al.18, 12 from Wan et al.19, 10 from 
Zhu et al.20, 10 from Wang et al.21, 9 from Zhou et al.22, 10 from Zhang et al.23, 18 from Mou et al.24, 8 from Wu 
et al.25, 9 from Gui et al.26, 10 from Wang et al.27, 28 from Lu and  Zhu28, 6 from Bhatt et al.29, 10 from Zhang 

Figure 3.  Classification accuracy of individual genes using SVM for three GEO datasets: (a) GSE36376; (b) 
GSE39791, and (c) GSE57957.
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Figure 4.  Identification of common or overlapping DEDGs among DEDGs from GSE36376, GSE39791, and 
GSE57957 datasets.

Table 1.  GO analysis of common DEDGs in terms of BP, CC, and MF. Top 5 items were selected.

Category GO ID Descriptions Count p-value

BP

GO:0042572 Retinol metabolic process 7 3.41× 10
−8

GO:0071276 Cellular response to cadmium ion 5 1.38× 10
−5

GO:0001523 Retinoid metabolic process 4 1.35× 10
−4

GO:0071280 Cellular response to copper ion 4 1.51× 10
−4

GO:0006706 Steroid catabolic process 3 1.88× 10
−4

CC

GO:0005576 Extracellular region 19 3.79× 10
−4

GO:0070062 Extracellular exosome 18 0.00173

GO:0005615 Extracellular space 16 0.0031

GO:0034364 High-density lipoprotein particle 3 0.004

GO:0016324 Apical plasma membrane 6 0.011

MF

GO:0004745 Retinol dehydrogenase activity 5 5.81× 10
−7

GO:0016491 Oxidoreductase activity 9 2.46× 10
−6

GO:0047023 Androsterone dehydrogenase activity 3 3.56× 10
−4

GO:0047044 Androstan-3-alpha,17-beta-diol dehydrogenase activity 3 4.56× 10
−4

GO:0016229 Steroid dehydrogenase activity 3 0.001

Table 2.  KEGG pathway analysis of common DEDGs. Top five items were selected.

Pathway ID Descriptions Count p-value

hsa00830 Retinol metabolism 6 3.28× 10
−5

hsa01100 Metabolic pathways 21 7.24× 10
−5

hsa00380 Tryptophan metabolism 4 0.001

hsa00140 Steroid hormone biosynthesis 4 0.004

hsa00982 Drug metabolism-cytochrome P450 4 0.007



7

Vol.:(0123456789)

Scientific Reports |         (2023) 13:3771  | https://doi.org/10.1038/s41598-023-30851-1

www.nature.com/scientificreports/

et al.30, 13 from Jiang et al.31, 20 from Zhang et al.32, 12 from Wu et al.33, 5 from Nguyen et al.34, 15 from Zhou 
et al.35, 6 from Yu et al.36, 10 from Kakar et al.37, 10 from Ji et al.38, 11 from Chen et al.39, 10 from Qiang et al.40, 
10 from Wang et al.41, 10 from Zhang et al.42, 14 from Kim et al.43, 10 from Zhang et al.44, 14 from Sha et al.45, 
10 from Chen et al.46, 4 from He et al.47, 10 from Zhang et al.48, 4 from Hu et al.49, 9 from Zhang et al.50, 15 from 
Li et al.51, 5 from Cao et al.52, 7 from Yang et al.53, 5 from Wang et al.54, 9 from Jiang et al.55, 16 from Li et al.56, 
15 from Xing et al.57, 10 from Zhu W et al.58, and 20 from Dai et al.61. Now, we took the union of extracted hub 
genes and got 214 hub genes as meta-hub genes. At the same time, we also computed the frequency of each 
meta-hub gene depending on how many studies got that gene as hub gene and selected 52 significant meta-hub 
genes because their frequency was more than 3. These selected 52 significant meta-hub genes were utilized for 
the determination of key genes.

Figure 5.  PPI network and Venn diagram for common DEDGs and central hub genes. (a) PPI network of 
common DEDGs with 51 nodes and 144 edges which was generated by Cytoscape 3.9.1118 (www. cytos cape. org); 
(b) identification of central hub genes among five methods (Degree, MNC, MCC, Closeness, and Betweenness 
based HGs). Here, HGs represent the hub genes.

Figure 6.  PPI network of module 1 with 6 nodes and 30 edges which was generated by Cytoscape 3.9.1118 
(www. cytos cape. org).

http://www.cytoscape.org
http://www.cytoscape.org
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Table 3.  Formation of metadata by listing hub genes from existing studies.

SN Authors NHG Associated hub genes SN Authors NHG Associated hub genes

1 Maddah et al.9 10 BUB1, CDCA8, DLGAP5, ASPM, POLQ,CENPE, 
WDHD1, HELLS, TRIP13, DEPDC1 27 Nguyen et al.34 5 TOP2A, RRM2, NEK2, CDK1, CCNB1

2 Yan et al.10 5 CCNA2, PLK1, CDC20, UBE2C, AURKA 28 Zhou et al.35 15
DTL, CDK1, CCNB1, RACGAP1, ECT2, NEK2, 
BUB1B, PBK, TOP2A, ASPM, HMMR, RRM2, 
CDKN3, PRC1, ANLN

3 Qian et al.11 16
ADNP, CASP2, CBX1, CPSF6, DHX9, HCFC1, ILF3, 
RCC2, KANSL1, NAA40, NCOA6, RALGAPB, SENP1, 
SMARCD1, YEATS2

29 Yu et al.36 6 TOP2A, MAD2L1, CDC6, CHEK1, UBE2C, CCNB1

4 Zhao et al.12 7 CCNA2, CCNB1, CDK1, MAD2L1, TOP2A, RRM2, 
NDC80 30 Kakar et al.37 10 CDK1,CCNA2, CCNB1, CCNB2, BUB1, NDC80, 

BUB1B, NCAPG, MAD2L1, CDC20

5 Liu et al.13 10 CYP3A4, UGT1A6, AOX1, UGT1A4, UGT2B15, 
CDK1, CCNB1, MAD2L1, CCNB2, CDC20 31 Ji et al.38 10 CDK1, CCNB1, CCNB2, PBK, ASPM,NDC80, 

AURKA, TPX2, KIF2C, CENPF

6 Meng et al.14 11 CDK1, CCNB2, CDC20, CCNB1, TOP2A, 
CCNA2,PBK, MELK, TPX2, KIF20A, AURKA 32 Chen et al.39 11 RRM2, NDC80, ECT2, CCNB1, ASPM, CDK1,PRC1, 

KIF20A, DTL, TOP2A, PBK

7 Rosli et al.15 42

CDK1, PPAP2B, CCNA2, SQLE, CCNB1,SULTIA3, 
NUSAP1, MAD2L1, LCAT, TOP2A, CETP, CCNB2, 
CFP, KIF11,FOS, NCAPG, CDK1, CDC20, TOP2A, 
TTK, C7, AURKA, C6, RRM2, NDC80, ACLY, MSH2, 
ESR1, CENPA, NDC80, MELK, CXCL12, PBK, DTL, 
NR1I2, IGF1, BUB1B, HBA1, PRC1, SPTBN2, KIF2C, 
CYP1A2

33 Qiang et al.40 10 CDK1, CCNB2, CDC20, BUB1, BUB1B, CCNB1, 
NDC80, CENPF, MAD2L1, NUF2

8 Zhang et al.8 10 GMPS, ACACA, ALB, TGFB1, KRAS, ERBB2, BCL2, 
EGFR, STAT3, CD8A 34 Wang et al.41 10 CDKN3, TOP2A, UBE2C, CDC20, PBK, ASPM, 

KIF20A, NCAPG, CCNB2, CYP3A4

9 Li et al.16 5 SPP1, COL1A2, IGF1, LGALS3, LPA 35 Zhang et al.42 10 CCNB1, AURKA, TOP2A, NEK2, CENPF, ASPM, 
KIF20A, NCAPG, CCNB2, CYP3A4

10 Li et al.17 8 BUB1, BUB1B, CCNA2, CCNB1, CDC20, CDK1, 
MAD2L1, CCNB2 36 Kim et al.43 14

ANLN, ASPM, BUB1B, CCNB1, CDK1, CDKN3, 
ECT2,HMMR, NEK2, PBK, PRC1, RACGAP1, RRM2, 
TOP2A

11 Tian et al.18 5 CDC20, TOP2A, RRM2, UBE2C, AOX1 37 Zhang et al.44 10 CCNB1, CDC20, CCNB2, CDK1, SPC24, CENPW, 
ZWINT, PTTG1, AURKA, UBE2C

12 Wan et al.19 12 GF1, IGF2, NDC80, CDK1, CENPF, CDCA8, CCNB1, 
BIRC5, NCAPG, SPC25, CDCA5, CENPU 38 Sha et al.45 14

TOP2A, HMMR, DTL, CCNB1, NEK2, PBK, RAC-
GAP1, PRC1, CDK1, RRM2, ECT2, BUB1B, ANLN, 
ASPM

13 Zhu et al.20 10 CDK1, TOP2A, CCNB1, CDC20, PLK1, BIRC5, 
CCNB2, FOS, AURKA, AURKB 39 Chen et al.46 10 TOP2A, CCNB2, PRC1, RACGAP1, AURKA, CDKN3, 

NUSAP1, ASPM, CDCA5, NCAPG

14 WANG et al.21 10 TOP2A, CDK1, ITGA2, PLK1, ESR1, CCNB2, 
AURKA, BUB1, CCNA2, BUB1B 40 He et al.47 4 CDK1, PBK, RRM2, and ASPM

15 Zhou et al.22 9 ASPM, AURKA, CCNB2, CDKN3, MELK, NCAPG, 
NUSAP1, PRC1, TOP2A 41 Zhang et al.48 10 NEK2, ANLN, TOP2A, CENPF, ASPM, CDC20, 

CDK1, CCNB1, ECT2, CCNB2

16 Zhang et al.23 10 CDK1, CCNB1, AURKA, CCNA2, KIF11, BUB1B, 
TOP2A, TPX2, HMMR, CDC45 42 Hu et al.49 4 JUN, EGR1, MYC, CDKN1A

17 Mou et al.24 18
TOP2A, FOS, TK1, CDC20, ESR1, CCNB2, CXCL12, 
FOXO1, HMMR, VWF, ACSM3, COL4A1, ZIC2, 
RFC4, TXNRD1, GNAO1, CYP3A4, RAP2A

43 ZHANG et al.50 9 ALDH2, PPTG1, CYP2C8, ADH4, ADH1B, CYP2C8, 
CDC20, TOP2A, CCNB2

18 Wu et al.25 8 CDKN3, CDK1, CCNB1, TOP2A, CCNA2, CENPE, 
KCCNB2, PRC1, RRM2 44 Li et al.51 15

TOP2A, CDK1, CCNB1, BUB1, CENPF, CCNB2, TTK, 
KIF2C, HMMR, MELK, CENPE, KIF20A, KIF4A, 
PBK, DLGAP5

19 Gui et al.26 4 MT1X, BMI1, CAP2, TACSTD2 45 Cao et al.52 5 MCM3, CHEK1, KIF11, PBK, S100A9

20 Wang et al.27 10 TOP2A, CDK1, NDC80, CCNB1, HMMR, CENPF, 
AURKA, CDKN3, FOXM1, PTTG1 46 Yang et al.53 7 PITX2, PNCK, GLIS1, SCNN1G, MMP1, ZNF488, 

SHISA9

21 Lu28 28

NDUFC2, NDUFS7, NDUFB1, NDUFB9, NDUFA2, 
NDUFB7, NDUFA11, NDUFAF6, NDUFS6, NDUFB8, 
MRPS28, MRPS18A, MRPL14, MRPL12, MRPL54, 
MRPL55, MRPL52, MRPL13, MRPL27, MRPL24, 
NUF2, DSN1, GADD45GIP1, CHCHD1, STAG2, 
PPP1CC, CKAP5, ZWINT

47 WANG et al.54 5 CDK1, CCNB1, CCNB2, MAD2L1, TOP2A

22 Bhatt et al.29 6 MSH3, DMC1, ALPP, IL10, ZNF223, HSD17B7 48 Jiang et al.55 9 ANLN, BIRC5, BUB1B, CDC20, CDCA5, CDK1, 
NCAPG, NEK2, TOP2A

23 Zhang et al.30 10 CDC20, CCNB1, EIF4A3, H2AFX, NOP56, 
RFC4,NOP58, AURKA, PCNA, FEN1 49 Li et al.56 16

BIRC5, BUB1, CCNB2, CDC20, CDC25C, CDK1, 
CEP55, CXCL12, FOS, PRC1, KIF20A, NUSAP1, 
KIF2C, RACGAP, SPC24, TOP2A

24 Jiang et al.31 13 TLR1, TLR4, TLR7, TLR8, RIPK2, YWHAZ, FOS, 
FOSL2, HIF1A, FASLG, CCL4, CDK1A, DDIT3 50 Xing et al.57 15

TOP2A, PCNA, CCNB2, AURKA, CDKN3, BUB1, 
RFC4, CEP55, DLGAP5, MCM2, PRC1, RACGAP1, 
TPX2, CDC20, MCM4

25 Zhang et al.32 20
CDK1, CCNB1, CCNB2, CDC20, CCNA2, AURKA, 
MAD2L1, TOP2A, BUB1B, BUB1, ESR1, IGF1, FTCD, 
CYP3A4, SPP2, C8A, CYP2E1, TAT, F9, CYP2C9

51 Zhu et al.58 10
UBE2C, CDK1, TK, NCAPG, TOP2A, AURKA, 
MAD2L1, TOP2A, BUB1B, BUB1, RAD51AP1, ASPM, 
PBK, DLGAP5, NUSAP1

26 Wu et al.33 12 TTK, NCAPG, TOP2A, CCNB1, CDK1, PRC1, RRM2, 
UBE2C, ZWINT, CDKN3, AURKA, RACGAP1 52 Dai et al.61 20

ANLN, DLGAP5, NDC80, NUSAP1, RACGAP1, PBK, 
ZWINT, BUB1B, TOP2A, NUF2, CCNB1, RRM2, 
DTL, KIF20A, CDKN3, HMMR, PRC1, CCL20, 
NPY1R, CXL12
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Key candidate genes identification. Eight central hub genes were identified from five methods (degree 
of connectivity, MNC, MCC, closeness, and betweenness), 6 hub module genes from potential hub modules, 
and 52 significant meta-hub genes from meta-hub genes. Six overlapping genes were identified using the Venn 
diagram from these three gene identification methods, which is presented in Fig. 7. These six genes (TOP2A, 
CDC20, ASPM, PRC1, UBE2C, and NUSAP1) were considered as key genes, which can be easily classified into 
the subjects as HCC and healthy.

Validation of key candidate genes. Discriminative power analysis using ROC curve. Six key or core 
genes (TOP2A, CDC20, ASPM, PRC1, UBE2C, and NUSAP1) were validated using AUC, computed from ROC 
curves. We compared the performance of two independent test datasets (GSE76427 and TCGA-LIHC) with one 
of our train datasets (GSE57957) in order to show the precision of the selected key candidate genes. The ROC 
curves of six key genes as well as their heatmap for both training and independent test datasets were illustrated 
in Fig. 8.

The ROC curve of six key candidate genes with their AUC values for the training dataset (GSE57957) was 
displayed in Fig. 8a: TOP2A (AUC: 0.936, 95% CI 0.871–1.000), CDC20 (AUC: 0.917, 95% CI 0.838–0.996), 
ASPM (AUC: 0.919, 95% CI 0.851–0.987), PRC1 (AUC: 0.938, 95% CI 0.871–1.000), UBE2C (AUC: 0.803, 95% 
CI 0.703–0.904), and NUSAP1 (AUC: 0.930, 95% CI 0.895–1.000). As displayed in Fig. 8c, the AUC values of 
six key or core genes were more than almost 0.780. The AUC values of six key or core genes for the GSE76427 
dataset were: TOP2A (AUC: 0.900, 95% CI 0.851–0.949), CDC20 (AUC: 0.887, 95% CI 0.883–0.941), ASPM 
(AUC: 0.893, 95% CI 0.844–0.942), PRC1 (AUC: 0.931, 95% CI 0.889–0.975), UBE2C (AUC: 0.792, 95% CI 
0.723–0.863), and NUSAP1 (AUC: 0.881, 95% CI 0.831–0.933).

Similarly, the ROC curves of six key candidate genes with their AUC values for the TCGA-LIHC-independent 
test dataset were presented in Fig. 8e. As presented in Fig. 8e, it was observed that six key candidate genes 
were provided the AUC values of more than 0.900 and their individual AUC values were as follows: TOP2A 
(AUC: 0.961, 95% CI 0.939–0.984), CDC20 (AUC: 0.968, 95% CI 0.949–0.986), ASPM (AUC: 0.960, 95% CI 
0.938–0.983), PRC1 (AUC: 0.967, 95% CI 0.948–0.987), UBE2C (AUC: 0.965, 95% CI 0.946–0.985), and NUSAP1 
(AUC: 0.919, 95% CI 0.889–0.949). Therefore, these six key genes (TOP2A, CDC20, ASPM, PRC1, UBE2C, and 
NUSAP1) showed strong discriminative power to classify HCC patients from healthy controls. These validations 
would be supported our findings and provided them more robust.

Survival analysis. In this work, we adopted survival analysis of six key candidate genes (TOP2A, CDC20, 
ASPM, PRC1, NUSAP1, and UBE2C) using univariate Cox regression in R and its results are presented in Fig. 9. 
As shown in Fig. 9, we observed that our identified six key candidate genes for HCC patinets such as TOP2A, 
CDC20, ASPM, PRC1, NUSAP1, and UBE2C were strongly associated with the survival status of HCC patients 
( p < 0.05 ). So, the over-expression levels of TOP2A, CDC20, ASPM, PRC1, NUSAP1, and UBE2C had poor 
survival periods compared to lower expression levels of that key candidate genes.

Figure 7.  Identification of key candidate genes of HCC from central hub genes, hub module genes, and 
significant meta-hub genes.
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Discussion
In this work, we assessed three datasets, namely GSE36376, GSE39791, and GSE57957, to detect the DEGs for 
HCC patients. We determined 699, 428, and 413 DEGs using “limma” from the GSE36376, GSE39791, and 

Figure 8.  Validation of the six key candidate genes using AUC and heatmap: (a), (b) GSE57957-based training 
dataset; (c), (d) GSE76427-based independent test dataset; and (e), (f) TCGA-LIHC based independent 
test dataset. Whereas, ROC curves were generated using pROC version 1.18.0  package121 and heatmap was 
generated using “NMF” version 0.24.0 package in  R111.
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GSE57957 datasets, which were illustrated in Fig. 2. Moreover, we implemented SVM to determine the DEDGs 
from individual datasets (see in Fig. 3) and selected overlapping or shared 75 DEDGs among the identified 
DEDGS from GSE36376, GSE39791, and GSE57957 datasets, which were clearly shown in Fig. 4. At the same 
time, enrichment analysis was executed on overlapping or shared DEDGs to clear understand their better explo-
ration and molecular mechanism (see in Table 1). We found that the potential BP functional categories were 
strongly related to the development and progression of HCC patients. Retinol and retinoid metabolic processes 
have been linked to a variety of liver diseases, including fatty liver disease, which leads to  HCC68,69. The rest of the 
BP categories were also enriched with common DEDGs, which also coincided with existing studies, like cellular 
response to cadmium  ion42,57,70, cellular response to copper  ion36,70, and steroid catabolic  process42.

The top 5 GO terms were significantly enriched with common DEDGS, which were also consistent with previ-
ous results, such as extra cellular  region35,37,38,57, extracellular  exosome37,38, extracellular  space37,38,57, high-density 
lipoprotein  particle57, and apical plasma  membrane53. In the case of MFs, common DEDGs were also enriched 
with top five GO terms. Existing studies supported these enrichment factional categories, including retinol dehy-
drogenase  activity14, and oxidoreductase  activity37,38,42. We also analyzed KEGG pathways and chose five pathways 
that were closely related to our overlapping DEDGs (see in Table 2). Different existing studies supported our 
findings, such as retinol  metabolism35,37,38,40,43,70, metabolic  pathways37,38, tryptophan  metabolism38,42,70, steroid 
hormone  biosynthesis42,70, and drug metabolism-cytochrome  P45035,42,70.

A PPI network was built with shared DEDGs using Cystoscape (see in Fig. 5a and then eight central hub 
genes (NUSAP1, TOP2A, CDC20, PRC1, UBE2C, ASPM, PNPLA7, and MT1E) were identified from five hub 
gene selection methods, which were presented in Fig. 5b. The potential modules were identified using MCODE 
scores and module 1 was identified due to having the highest MCODE scores. We selected six hub module genes 
from module 1 as well as constructed their PPI network (see in Fig. 6). In addition, we examined 52 papers and 
took the hub genes from earlier  studies8–58 in order to make metadata. At the same time, we listed 214 meta-hub 
genes by taking the union of extracted hub genes, which were presented in Table 3. We selected 52 significant 
meta-hub genes from the list of meta-hub genes whose frequency was greater than 3. Finally, we identified the 
six shared genes (TOP2A,CDC20, ASPM, PRC1, UBE2C, and NUSAP1) by intersecting central hub genes, hub 
module genes, and significant meta-hub genes, extracted from the earlier studies, known as key relevant or 
candidate genes, which were clearly depicted in Fig. 7. We validated these key relevant or candidate genes using 

Figure 9.  Survival analysis of six key candidate genes for HCC: (a) TOP2A; (b) CDC20; (c) ASPM; (d) PRC1; 
(e) NUSAP1; and (f) UBE2C. The horizontal axis (x-axis) represents the time to event (in days) and the vertical 
axis (y-axis) represents survival probability. The HCC patients were divided into two groups: high-risk and low-
risk and assigned a color. The red line designates the samples with high risk, and the green line represents the 
samples with low risk. p < 0.05 indicates a statistically significant difference in mortality between groups. The 
survival plots were generated using the “Survfit” package in  R122.



12

Vol:.(1234567890)

Scientific Reports |         (2023) 13:3771  | https://doi.org/10.1038/s41598-023-30851-1

www.nature.com/scientificreports/

AUC for one training and two independent test datasets (see Fig. 8). We observed that these six key relevant or 
candidate genes had high discriminative power for the differentiation of HCC patients.

TOP2A is a cell cycle-related gene that encoded a DNA topoisomerase which controls and alters the topologic 
states of DNA during transcription. TOP2A overexpression has been identified as a core or potential biomarker 
for ovarian  cancers71,  glioma72, and lung  cancers73. A study showed that TOP2A overexpression in HCC patients 
was significantly correlated with progression and poor  prognosis74,75. In the case of our study, TOP2A was also 
considered as a key or core gene for the progression and development of HCC. This finding was coincided with 
previous  studies12,14,15,18,20–25,27,32–36,39,41–43,45,46,48,50,51,54–58,61.

CDC20 is a vital regulator of cell division in  humans76,77. Overexpression or high expression of CDC20 has 
also been linked to lung  cancer78, colorectal  cancer79, breast  cancer80,81, and other cancers. Moreover, CDC20 was 
strongly correlated with poor prognosis in gastric  cancer82, bladder  cancer83, and breast  cancer84. A study revealed 
that CDC20 over-expression was significantly associated with  HCC85. Another recent study demonstrated that 
there existed a strong relationship between CDC20 overexpression and the prognosis of  HCC86. Our findings also 
showed that CDC20 was a potential key biomarker that played an crucial or essential role for the development 
and progression of HCC. Different existing studies also supported our  findings10,13,14,17,18,20,24,30,32,37,40,41,44,48,50,55–57.

ASPM is a protein that have a major influence in the development of HCC. ASPM is located on chromosome 
1 and band 1q31 and consists of 28 exons and 3477 amino-acid  proteins87. Lots of studies have identified ASPM 
as a hub gene or key biomarker for multiple  cancers88–90. Zhang et al.90 reported that ASPM can be a promising 
therapeutic target for liver. Moreover, ASPM overexpression was strongly correlated with bladder cancer and 
consiered as promising  predictor91. Our findings also illustrated that ASPM was a novel key biomarker for HCC, 
which was supported by the existing  studies9,22,35,38,39,41–43,45–48,58.

PRC1 is an essential protein that is the regulator of  cytokinesis92. The higher expression level of PRC1 was 
found among HCC patients than healthy controls. The overexpression of PRC1 was associated with a poor 
prognosis for HCC  patients93. Our work also indicated that PRC1 was a promising or key biomarker for the 
development of HCC, which coincided with previous  studies15,22,25,33,35,39,42,43,45,46,56,57,61.

Similarly, we proposed UBE2C as a key or core predictor for development of HCC, which was supported by 
various existing  studies10,18,33,36,41,44,58. Xiong et al.94 suggested UBE2C as a potential biomarker or gene for HCC. 
High expression of UBE2C was also found in HCC than healthy  subjects95. UBE2C is not play a crucial role HCC 
but also in variety of cancers: lung cancer, gastric  cancer96,97.

NUSAP1 is a protein associated with the nucleolar-spindle that have a vital role in spindle microtubule 
 organization98. overexpression of NUSAP1 was found in a variety of malignancies, including  HCC58,99, colon 
 cancer100,101, prostate  cancer102,103, and cervical  carcinoma104. Moreover, overexpression of NUSAP1 was strongly 
linked with poor prognosis of prostate  cancer103 and colon  cancer101. Another study revealed that NUSAP1 is 
related to  HCC105. Roy et al.105 illustrated that NUSAP1 expression might rise in HCC samples with low expres-
sion levels of miRNA 193a-5p, and that this overexpression was strongly associated with a shorter patient survival 
time. Our findings also illustrated that NUSAP1 was one of the key candidate genes that the highest expression 
levels were found in HCC subjects compared to healthy subjects. These findings were consistent with existing 
 studies15,22,46,56,58,61.

Moreover, two independent test datasets were also used to validate these six key candidate genes using AUC. 
A survival analysis was also performed of these six candidate genes for HCC patients. In both cases, our identified 
six key candidate genes (TOP2A, CDC20, ASPM, PRC1, UBE2C, and NUSAP1) showed significant association 
with the development and progression of HCC. This finding will provide evidence and new insight to physicians 
and readers in determining the diagnosis of HCC as well as the correlated pathway of HCC.

Materials and methods
Data acquisition and preprocessing. In this work, three publicly available microarray gene expres-
sion datasets with GEO accession:  GSE3637666,  GSE39791106, and  GSE57957107 with GPL10558 [Illumina 
HumanHT-12 V4.0 expression bead chip] were used to determine the key candidate genes. Another two inde-
pendent test datasets were used to validate key candidate genes. One independent dataset was taken from the 
GEO database with accession number: GSE76427 with GPL10558  platform102 and another independent test 
dataset was taken from the Cancer Genome Atlas (TCGA) database. Microarray gene expression datasets were 
downloaded from the GEO database (www. ncbi. nlm. nih. gov/ geo/) and TCGA-liver hepatocellular carcinoma 
(TCGA-LIHC) dataset was downloaded from the TCGA database (https:// portal. gdc. cancer. gov/). The datasets 
underwent a log2 transformation and quintile normalization. Although these datasets were taken from the pub-
licly available GEO repository, being human data, all methods were performed in accordance with the relevant 
guidelines and regulations. Table 4 presents a summary of the utilized datasets.

Identification of DEGs from each dataset. To identify the DEGs between HCC and healthy controls, 
each of the selected datasets was analyzed using the “limma”  package108 in R-software with version 4.1.2. We 
computed the |log2FC| and adj. p-value of each gene from the selected dataset. “Bioconductor annotation”109 
package was used to convert microarray data probes into gene symbols. If multiple probes were matched with a 
gene symbol, take the gene with their associated expression values that provided the lowest or minimum adjusted 
p-value. The DEGs between HCC and healthy controls were identified with a cutoff of point: |log2FC| > 1 and 
adj.p− value < 0.01 (false discovery rate). The volcano plot of DEGs was generated using the “ggplot2 version 
3.3.6” package in  R110. Moreover, a heat map of the expression of DEGs was generated with the “NMF” version 
0.24.0 package in  R111.

http://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
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SVM‑based identification of DEDGs from DEGs for each dataset. The main purpose of SVM is to 
identify a hyperplane in a high dimensional  space112,113 that can easily discriminate HCC patients from healthy 
control patients using the following discriminate function:

where, b is the bias term.
In this study, we have used radial basis kernel, which is defined as follows:

We set the different values of cost (C) and gamma (γ ) and tuned these values using a grid search method and 
select the optimal value of C and (γ ) to improve classification accuracy. In this current study, we adopted SVM 
as a gene selection method, and its identification procedure is described as follows:

Step 1 Select one gene from a list of identified DEGs.
Step 2 Trained SVM-based model with five-fold cross-validation (CV) protocols.
Step 3 Calculate the classification accuracy for this selected gene.
Step 4 Repeat Step 2 to Step 3 for all identified DEGs.
Step 5 Sort the classification accuracy of all DEGs in descending order of magnitude.
Step 6 Choose the genes that will produce a classification accuracy of more than 80.0.

Identification of common DEDGs. After selecting differentially expressed discrimination genes 
(DEDGs) using SVM, we identified the shared or overlapping or common DEDGs among three datasets using 
the following formula:

where, r is the number of utilizing GEO dataset (here, r = 3).

Enrichment analysis of common DEDGs. To better understand the mechanism and progression 
of HCC patients, we obtained enrichment analysis, including GO and KEEG  analysis114,115 on DEDGs using 
DAVID version 6.8  tools116 (david.ncifcrf.gov). A p-value < 0.05 was considered for significant.

PPI network analysis and central hub gene identification. The STRING version 11.5 software 
(www. string- db. org) was utilized to obtain the potential interactions among common  DEDGs117. A protein-
protein interaction (PPI) with a confidence score of > 0.70 and a maximum number of interactors of 0 was pre-
served and loaded into Cystoscape version 3.9.1118 to build a PPI network. The degree of connectivity, maximum 
neighborhood component (MNC), maximal clique centrality (MCC), centralities of closeness, and betweenness 
were computed using  cytoHubba119. Then, we sorted the values of degree of connectivity, MNC, MCC, centrali-
ties of closeness, and betweenness in descending order of magnitude and chose the top 30 DEDGs, known as 
hub genes. The central hub genes were selected by overlapping hub genes, which were computed from the degree 
of connectivity, MNC, MCC, centralities of closeness, and betweenness. Mathematically, it is defined as follows:

where, hg is the number of hub gene identification methods (Here, hg=5).

Hub modules and its associated genes identification. MCODE was used to determine the most 
closely connected modules from the PPI  network120. We analyzed the modules with the following cutoff points: 
degree =2, cluster finding =haircut, nodes score =0.2, K-score =2, and max depth =100, respectively. We deter-

(1)f (x) =

n∑

i=1

αiK(xi , xj)+ b

(2)K(xi , xj) = exp(−γ �xi − xj�
2)

(3)Common DEDGs =

r⋂

i=1

Identified DEDGs from GEO Datasetsi

(4)Central Hub Genes=

hg⋂

i=1

Hub Genes from Identification Methodsi

Table 4.  Summary of utilized HCC datasets.

Datasets Platform Total samples HCC Control

GSE3637666 GPL10558 433 240 193

GSE39791106 GPL10558 144 72 72

GSE57957107 GPL10558 78 39 39

GSE76427102 GPL10558 167 115 52

TCGA-LIHC – 424 374 50

http://www.string-db.org


14

Vol:.(1234567890)

Scientific Reports |         (2023) 13:3771  | https://doi.org/10.1038/s41598-023-30851-1

www.nature.com/scientificreports/

mined the potential modules that provided the MCODE with scores of ≥ 6 and the number of nodes of ≥ 6 . 
Then, the hub module genes were identified using the following formula:

where, hm is the number of significant modules.

Significant meta‑hub genes identification from metadata. We reviewed some existing studies 
related to HCC-based gene identification. To make metadata, we listed their identified hub genes for HCC, called 
“meta-hub genes,” which can be written as follows:

where, m is the number of studies obtained from obtaining hub genes (here, m = 52).
We also counted the frequency of each meta-hub gene depending on how many studies identified that gene as 

a hub gene. Finally, we identified significant meta-hub genes from meta-hub genes whose frequency was greater 
than or equal to 3, which can be written as follows:

where, gi ∈ meta-hub gene and n is the number of meta-hub genes whose frequency is ≥ 3

Key candidate genes identification. To identify the key candidate genes, we selected the central hub 
genes from the PPI network, hub module genes from significant modules, and significant meta-hub genes from 
existing studies. Therefore, we identified the key candidate genes for HCC using the following formula:

where, k is the number of significant gene identification methods (Here, k = 3). In this work, central hub genes, 
hub module genes, and significant gene selection methods will be considered “Important Gene Identification 
Methods”.

Validation of key candidate genes. Discriminative power analysis using ROC curve. In this work, we 
used two independent test datasets in order to validate the key candidate genes. One independent test dataset 
(GSE76427) was taken from the GEO database, and another independent dataset was taken from the TCGA 
database. The description of these independent test datasets is more clearly explained in Table 4. We validated 
the selected key candidate genes using the area under the curve (AUC), computed from the receiver operating 
characteristic curve (ROC). In ROC analysis, first, we selected one gene and class label, and then we adopted lo-
gistic regression with the leave-one-out CV protocol. We computed AUC values using the “pROC” R-package121. 
Moreover, we also compared the performances of independent test datasets with one of our training datasets 
(GSE57957) in order to show the precision of the selected key candidate genes.

Survival analysis. In this work, we used TCGA-LIHC dataset for survival analysis in order to show prognostic 
status of key candidate genes. We classified HCC patients into high-risk and low-risk groups on the basis of 
median expression level of each key candidate gene. We performed survival analysis of our identified key candi-
date genes using the “Survfit” package in R  language122. A p-value < 0.05 was considered statistically significant 
(“Supplementary information”).

Data availability
The datasets generated and/or analyzed during the current study are available in the Gene Expression Omnibus 
(GEO) repository with accession numbers: GSE36376, GSE39791, GSE57957, and GSE76427 with GPL10558 
platforms. One can easily download these datasets from the link: www. ncbi. nlm. nih. gov/ geo/.
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