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Modelling daily plant growth 
response to environmental 
conditions in Chinese solar 
greenhouse using Bayesian neural 
network
Gadelhag Mohmed 1,2*, Xanthea Heynes 1, Abdallah Naser 2, Weituo Sun 1,3, 
Katherine Hardy 1, Steven Grundy 1 & Chungui Lu 1*

Understanding how plants respond to environmental conditions such as temperature, CO2, humidity, 
and light radiation is essential for plant growth. This paper proposes an Artificial Neural Network 
(ANN) model to predict plant response to environmental conditions to enhance crop production 
systems that improve plant performance and resource use efficiency (e.g. light, fertiliser and water) 
in a Chinese Solar Greenhouse. Comprehensive data collection has been conducted in a greenhouse 
environment to validate the proposed prediction model. Specifically, the data has been collected 
from the CSG in warm and cold weather. This paper confirms that CSG’s passive insulation and 
heating system was effective in providing adequate protection during the winter. In particular, the 
CSG average indoor temperature was 18 ◦ C higher than the outdoor temperature. The difference 
in environmental conditions led to a yield of 320.8g per head in the winter after 60 growing days 
compared to 258.9g in the spring experiment after just 35 days. Three different architectures 
of Bayesian Neural Networks (BNN) models have been evaluated to predict plant response to 
environmental conditions. The results show that the BNN network is accurate in modelling and 
predicting crop performance.

Climate change is the biggest challenge to global food security. Protected cultivation can protect crops from 
extreme weather conditions, reduce the incidence of pests and diseases, and ensure that food is provided all year 
round. Globally, using a greenhouse environment is the most popular way to produce horticultural crops, with 
an estimated 496,800 hectares (ha) in 2019, with total production worth 20 billion US dollars in 20201. China 
has become the world’s largest economy in protected horticulture, with 3.3 million ha (polytunnels included) 
and a total output of 1.43 trillion Chinese Yuan in 2019, and after polytunnels (45%), Chinese solar greenhouses 
(CSG) (30.5%) are the second most popular choice of greenhouse structure across China (Institute of Protected 
Agriculture AoAPaE, 2020). However, in cooler climates, the heating energy demand in a commercial greenhouse 
is responsible for 65-85% of total the greenhouse energy demand2.

CSGs employ a passive thermal recycling system to reduce the energy consumption needed through active 
heating, and external meteorological factors and control mechanisms determine the internal microclimate of a 
greenhouse (e.g., ventilation openings, exhaust fans, heaters, and evaporative cooling systems)3. However, they 
have significant structural differences compared to greenhouses in the Netherlands, Israel, and Spain4,5 regarding 
the cover, envelope and structure. A CSG has three thermal storage walls along the structure’s north, east, and 
west sides. The north wall, a core feature of the CSG, plays an essential role in thermal storage, heat preservation, 
and heat insulation6. The cambered south roof, north wall, and thermal blanket enable the CSG to perform well 
on daylight access, heat storage and insulation, as shown in Fig. 1. During the day, the greenhouse captures heat 
from the sun, storing it within the thermal mass of the walls, which is then released, at night, as a passive heating 
source. During the night, an insulating sheet closes over the transparent plastic sheet to reduce heat loss from 
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the greenhouse. This passive solar heating strategy employed by CSGs enables huge energy savings compared 
to the heating required to heat a glass greenhouse. A study in Manitoba, Canada, showed that the supplemental 
energy required to maintain temperatures above 10 ◦ C at all times was 43 times less for the CSG compared to 
a glass greenhouse7.

Until recently, many approaches have been taken to optimise microclimate control performance and have 
considered the following environmental factors individually; light, temperature, humidity, ambient CO2 con-
centration, soil type, water, and nutrient availability. However advancements in environmental sensor technol-
ogy which can record real-time fluctuations in microclimate, combined with data-driven machine learning 
approaches, offer the potential to resolve the highly complex relationship between these numerous factors which 
influence plant growth and development. For example, cultivation season can significantly impact plant growth 
and development, even when using an indoor greenhouse environment. Reduced light intensity and photo-
period experienced during winter reduces the physiological responses of plants (i.e., rate of photosynthesis and 
stomatal conductance), which negatively affects overall biomass yield, nutritional value, and is also attributed to 
increased nitrate content8,9. In this scenario, sensor technology could effectively record these real-time fluctua-
tions, highlighting the requirement for an appropriate adaptation to improve the growing conditions of the CSG. 
Temperature, relative air humidity and CO2 concentration regulation in greenhouse environments must also be 
carefully considered. Whilst evaporative systems can be controlled by opening/closing the roof windows, this 
could adversely cause fluctuations in vapour pressure deficit (VPD)10, reducing a plant’s net CO2 assimilation 
rate11. A recent study analysed the plant growth characteristics of greenhouse lettuce grown under drastically 
fluctuating VPD conditions (1.63 kPa for 6 min and 0.63 for 3 min) and moderately fluctuating VPD conditions 
(1.32 kPa for 7 min and 0.86 kPa for 3 min), concluding dry shoot weight and leaf area was 15 and 29% lower in 
lettuce grown under drastically fluctuating conditions10. Temperature is also critically important environmental 
variable for maximising crop yield and productivity. The relationship of temperature and crop development often 
shows a sigmoidal relationship, where growth and development cease below a critical temperature threshold at 
both extremes, but a linear positive correlation exists between the two extreme thresholds. Regression analysis 
of time to harvest of field grown Romain Lettuce in South Carolina grown over multiple years identified that for 
every 1 ◦ C decrease in growing season mean (GSM) minimum or maximum temperatures from the optimum 
values, days to harvest increased by 5 days with a 5 ◦ C increase in GSM min or GSM max temps, total days to 
harvest increased 50%12. By dividing complex environmental data into elements, their effects on crop growth 
could be quantified, enabling an accurate prediction of the impact of fluctuating environmental conditions on 
plant growth.

The development of predictive models for plant growth in protected horticulture will allow for the optimisa-
tion of microclimate control strategies to maximise crop yield while reducing energy consumption. Currently, 
most CSG climate solutions are controlled manually based on experience, resulting in poor performance on 
greenhouse production. Many research works have been conducted to analyse and predict plant growth per-
formance using many different Artificial Intelligence (AI) approaches to predict the environmental conditions, 
mainly ambient temperature13. Hence, there is currently no data model for lettuce growth in CSGs which incor-
porates climate management control including the effects of air temperature, humidity, CO2 concentration, and 
radiation under CSG scenarios, where environmental conditions are usually not within the optimal range for 
crop growth and development due to the limited climate control ability. Currently, AI is mainly employed for 
indoor and outdoor agriculture to enhance plant productivity by finding the most suited conditions for plant 
growth in terms of soil management, crop management, weed management and disease management. For indoor 
agriculture, the main concept of using AI is its flexibility, high performance, accuracy, and cost-effectiveness. 
Regulation of environmental components in greenhouses is crucial for better plant growth and many studies 
support that this can be achieved through employing Artificial Intelligence (AI) systems over manual control 
methods14,15. DL has also been applied to greenhouse yield prediction, although this has predominantly focused 
on tomato crops. A Dynamic Artificial Neural Network (DANN) is implemented in16, to predict tomato yield 
using phenotypic parameters including CO2 fixation, transpiration, as well as environmental parameters such as 
solar radiation and past yield. While CO2 fixation was found to be the most important variable, a high degree of 
predictive accuracy (R=0.917) was found with external parameters alone. Alhnaity et al (2019) evaluated several 
Machine Learning (ML) and Deep Learning (DL) techniques to achieve high predication accuracy in plant yield 
and growth within greenhouse environments using two different plants; ficus and tomato. The study specifically 

Figure 1.   Cross-section of the Chinese solar greenhouse (CSG). The envelope consists of a north wall, side 
walls, and a back roof. The south roof is covered by transparent material.
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focused on ficus growth and the variation in stem diameter throughout their development, and tomato yield 
measurements, in combination with environmental measurements17. Recent research work by Gong et al. (2021) 
exhibited that DL based on a LSTM model achieved high prediction accuracy for both problems, outperforming 
classical ML approaches. This was achieved through applying artificial neural networks to predict tomato yield in 
a greenhouse environment based on historical yield and environmental data. Based on statistical analysis of the 
RSME, deep learning approaches outperformed classical models, with a combined tempo- ral convolutional net-
work (TCN) with recurrent neural network (RNN) model providing the most accurate tomato yield predictions18.

These studies provide examples of how the development of predictive models for plant growth in protected 
horticulture will allow for the optimisation of microclimate control strategies to maximise crop yield while reduc-
ing energy consumption. Model predictive control has a large potential to provide higher control efficiency. As 
the basis, a crop model responding to greenhouse climate is needed. DL has demonstrated how it can be used as 
a powerful tool for yield prediction, however its application in a greenhouse environment has focused primarily 
on tomatoes grown in European style greenhouses. These approaches are utilised for dealing with the randomness 
and complexity of agricultural data including data that obtained from CSG. To give a better understanding of the 
data-driven approaches proposed for agricultural data processing, this paper grouped the data-driven methods 
into three main groups: Deterministic Methods, Stochastic Methods, and Machine Learning (ML) methods19. 
In this paper, an ML method, called BNN, has been utilised to enhance the crop productivity through predicting 
plant response to environmental conditions in CSG. The rationale behind using an ML approach, in particular, 
BNN is to overcome the limitations of stochastic and deterministic methods, e.g., deterministic methods can not 
deal with high random distribution data, which likely to accrue in agricultural environment20. While stochastic 
method, e.g., Markov Chain Model, Hidden Markov Model (HMM), and entropy, is a promising approach in 
agricultural applications due to its computational and time efficiency21. The potential randomness measure of 
agricultural data can be analogous plant growth response.

The main aim of this study is to generate a predictive model to understand the effect of environmental condi-
tions on lettuce yield in CSG’s to enhance plant performance and resource-use efficiency. This will be achieved 
through the following objectives: (1) collect temperature, light, CO2 and humidity data across a warm and cold 
season to train the ANN structures, (2) determine the most effective structure based on the data generated from 
these environmental parameters.

This section has introduced the study and provided an overview of the related works. The rest of this research 
paper is organised as follows; the experimental setup is presented in section Experimental setup, including 
data collection, data pre-processing and the proposed models. The results from the proposed Bayesian neural 
network-based model are presented and discussed in section Results and discussion including an evaluation of 
the following environmental benefits: temperature, light, CO2, and humidity. This section also includes a discus-
sion on the evaluation of seasonal difference in plant performance and modelling daily plant growth response 
to environmental conditions using BNN. Finally, a conclusion is drawn in section Conclusion with suggestions 
for future work provided.

Experimental setup
To evaluate the performance of the proposed approach, two different datasets were collected from a CSG during 
warm and cold seasons. In particular, the BNN, explained previously, is employed with the collected datasets 
to observe the effect of different environmental conditions on lettuce growth. Specifically, the lettuce cultivar 
(41–27) Tiberius RZ (produced by RIJK ZWAAN, the Netherlands) was selected for experimental trials. In the 
following sections, the collected datasets are explained in detail, as well as the BNN based model for modelling 
lettuce growth, based on the datasets collected from a Chinese Solar Greenhouse.

Data collection.  The data used in this research was collected from a CSG located in Beijing, China. The 
CSG is oriented east-west, consisting of the north wall, side walls, south roof, and back roof, as well as the two 
controllable structural components of thermal blankets and vents. No climate conditioning equipment was used 
during the experiments. Water and fertiliser management, as well as pest control, were assumed to be ideal.

Environmental conditions including temperature, CO2, relative humidity and light radiation were measured 
inside and outside of the CSG using a complex sensor module. Five temperature, humidity, and CO2 sensors and 
three radiation sensors were placed at different locations throughout the CSG. 6–18 lettuce plants were randomly 
harvested for each sample. When conducting the lettuce experiments during warm and cold seasons, two differ-
ent datasets were collected to comparatively measure the indoor and outdoor environmental conditions of the 
CSG whilst simultaneously collecting plant response data for the lettuce plants.

The first dataset was collected during a warm season (April 9 to May 14, 2020). The CSG used for the warm 
weather experiment has a floor area of approximately 577 m 2 , with a width of 7.4m and a length of 78m. The 
lettuce seedlings were transplanted to soil inside the experimental CSG when they had 11 fully developed leaves. 
The plant density is 5.30 plants/m2 (floor area).

Following this, the second dataset was collected during a cold season, from November 24, 2020 to January 23, 
2021. The CSG used for the cold weather experiment has a floor area of approximately 686 m 2 , with a width of 
7.95m and a length of 86.3m. The lettuce seedlings were transplanted to soil inside the experimental CSG when 
they had 5 fully developed leaves. The plant density 4.91 plants/m2 (floor area).

The sensors measured environmental parameters every 5 minutes. The real-time of measuring the environ-
mental conditions were also used for training the model. The main focus of this paper was to collect indoor data 
from a Chinese Solar Greenhouse and lettuce plant response data through measuring Shoot fresh weight, Root 
fresh weight, Shoot dry weight, Root dry weight and leaf area, in accordance with the measured environmental 
conditions. Table 1, shows the average of each environmental parameter measured indoor and outdoor of the 
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CSG. To improve the training efficiency of the BNN, data normalisation and augmentation techniques were used 
with the collected environmental conditions data. 10082 and 17282 samples were measured for each indoor and 
outdoor parameter during warm and cold seasons, respectively. A total of 27,364 data points for each environ-
mental parameter was collected from CSG during both the seasons.

Data pre‑processing.  BNN has been trained using both of the collected datasets illustrated in Fig. 2 and 
Table 1. The datasets represent both indoor and outdoor environmental conditions (temperature, CO2, relative 
humidity and light radiation), in addition to the daily yield measurements and growth rate (Shoot fresh weight 
(g), Shoot dry weight (g), Root fresh weight (g), Root dry weight (g) and leaf area cm2 . The recorded data repre-
senting the environmental conditions were measured every 5 minutes, followed by being averaged on an hourly/
daily basis. Simultaneously, the yield measurement growth data was recorded every 5 days. To deal with these 

Figure 2.   The collected data representing the environmental variation across the “warm” late spring and “cold” 
early winter experiments, (a) the collected data during experiment 1 for 35 days, (b) the collected data during 
experiment 2 for 60 days.



5

Vol.:(0123456789)

Scientific Reports |         (2023) 13:4379  | https://doi.org/10.1038/s41598-023-30846-y

www.nature.com/scientificreports/

data characteristics, the data augmentation technique was performed, through interpolation of days’ data, result-
ing in daily data measurements. An hourly average for the environmental parameters was also performed to 
achieve a similar daily representation that matched the yield measuring observations. Moreover, to deal with the 
missing information in the obtained dataset, the missing observations data were replaced by the moving average 
interpolation of the latest neighbouring time series data.

The response of lettuce growth to changes in environmental conditions can be categorised as a long response 
that can be identified on a daily basis. Therefore, resampling or aggregation of time series data is applied. This 
includes data being resampled on a daily basis using the averaging procedure to identify the growth response 
and the daily growth rate.

Bayesian neural network‑based model.  In this study, Bayesian Neural Networks (BNNs)22 have been 
used for modelling and predicting lettuce plant growth in CSG based on the back-propagation algorithm23,24. 
The primary aim of the utilised network is to find the relationship between the network inputs (temperature, 
CO2, relative humidity, day and light radiation) and the network outputs (the biomass measurements (dry and 
fresh weight) for the plant shoot, root matter, and leaf area). Various neuron numbers in the hidden layer have 
been examined, including, 10, 20 and 25 neurons.

Table 1.   Information about the collected datasets including measured parameters, measuring unit and average 
for each measured parameter during the experiment period. EX1 data is the dataset collected during the warm 
season for 35 days. EX2 data is the dataset collected during the cold season for 60 days.

Measuredparameter

Ave 
temperature (C◦

) Ave CO2 (ppm)

Ave 
RelativeHumidity 
(%)

Ave Light Rad-
iation (W m −2)

Ave Wind 
speed (m 
s −1)

EX1 EX2 EX1 EX2 EX1 EX2 EX1 EX2 EX1 EX2

Inside CSG 22.96 10.9 405.12 559.2 51.30 81.75 179.5 63.88 – –

Outside CSG 17.2 − 7.11 406.5 457.7 49.5 58.7 244.1 100.47 1.59 0.78

Figure 3.   A simple block diagram of the Bayesian inference framework for updating probability distribution 
over the weights with multi-inputs and single output. Back-propagation in neural network structure for 
modelling lettuce growth is used in this framework. The network has three layers; input layer for the 
environmental conditions inside and outside of the CSG, one hidden layer and one output layer for the plant 
growth.
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Figure 3 shows the architecture of the proposed approach using Bayesian neural network for modelling and 
predicting the lettuce growth in CSG. The BNN structure, used in this study, consists of three layers: input, hid-
den, and output layers. To obtain a high performance of modelling and lettuce growth , a feedback loop procedure 
was applied to produce time-series historical data for the input and output datasets. This was achieved by using 
a time delay operator with the inputs and outputs during the training mode.

To increase the ability of the designed BNN for modelling lettuce growth in the CSG with sufficient accu-
racy, the two collected datasets representing the warm and cold seasons were combined together and randomly 
split into three independent subsets: training, validation, and testing. The training dataset is the sample of data 
used for learning the BNN algorithm to fit the model. The validation dataset is used during the training mode 
consisting of the trained model and to regularise the early stopping training iterations to prevent the issue of 
model overfitting when generalisation was not improving25. The testing dataset is used to test the model after the 
training mode is done to evaluate the model performance. This means that the training and validation dataset D 
is (70%), and the testing set W is (30%). The training and validation datasets include Dx and Dy for the training 
input parameters and training labels, respectively.

As the structure of the used BNN model is significant in the performance of the model, the model param-
eters, consisting of the prior distribution, the likelihood function and the number of neurons in the hidden 
layer, needed to be determined. Therefore, the model parameters and the achieved results are determined using 
a Mean Absolute Error (MAE) for comparing the different used networks to determine the optimal structure.

Results and discussion
Real-time environmental data was collected from indoor and outdoor of CSGs during two experiments per-
formed in a warm season and cold season, and plant performance was measured throughout. This data provides 
insight into the performance of the CSG and has also been used to develop a predictive crop growth model 
using BNN from the environmental and plant performance data. It is becoming increasingly prominent that AI 
and human–machine learning can improve our understanding of how input features can influence behaviours 
in volatile environments; simultaneously improving prediction accuracy and reliability, which are important 
components of Agriculture26. Based on observations from the collected datasets, and the responses of lettuce 
growth, the daily growth rate of the lettuce represents the accumulation of plant weight over time. The growth 
rate observed after analysing the fresh and dry weights of the lettuce plants, measured the sensitivity of the 
change in biomass to the change in environmental conditions, over time. This means, the dynamic effect of the 
environmental conditions on the lettuce growth weight can be identified more clearly by using a growth rate 
variable, rather than using the normal change in the growth. Thus, the daily growth rate of lettuce weight was 
chosen as the main output for the developed BNN modelling and prediction model.

Evaluation of the environment benefits of CSG.  Temperature.  Temperature has a profound effect on 
crop growth, with every 1 ◦ C divergence from the optimum growing season mean daily temperature was found 
to greatly influence both head yield and cultivation time of lettuce grown in a moderate climate12. As would be 
expected due to the geographical location of the trial and time of year, the average temperature varied greatly 
between experiment 1 in the spring and experiment 2 in the early winter, with average outside temperatures of 
17.2 ◦ C and −7.11

◦ C, respectively. The average temperature within the CSG was 22.96 ◦ C during the “warm” 
experiment and 10.9 ◦ C in the “cold” experiment, with the temperature difference inside the CSG relative to the 
outside environment in the warm season being 5.7 ◦ C and 18 ◦ C in the winter. The 18 ◦ C difference in average 
temperature inside the CSG compared to the out outside temperature show that the CSG is capable of providing 
an effective passive insulating and heating system during harsh winter conditions. Furthermore, comparison of 
the average daily minimum temperature in the winter experiment show the coldest temperature reached was 
−0.98

◦ C in the CSG compared to −23
◦ C outside, a difference of 22.02 ◦ C Critically, these results show that 

the thermal insulation and passive heating of the CSG is reducing the crop exposure to cold stress which would 
drastically increase productivity and profitability.

Light.  Light is a critical environmental variable as photosynthetically active radiation is absorbed by plants to 
drive photosynthetic carbon fixation needed to fuel plant growth. A 58.8% seasonal difference in average light 
radiation was recorded in the outside environment in the winter relative to the late spring experiment. In the 
winter conditions, the average light radiation inside the CSG were 179.5 W/m2 in experiment 1 and 63.88 W/
m2 in experiment 2. According to27, light was a limiting factor below 130 W/m2 on the yield of lettuce grown in 
a controlled environment under optimal temperatures, indicative that light could be a limiting factor between 
the two experiments but especially in the warm experiment which had more favourable growing conditions. The 
percentage light lost between inside compared to outside the CSG was 26% in the late spring and 36% in the 
winter, likely explained by the seasonal difference solar elevation angle affecting transmission of light through 
the south roof.

CO2.  CO2 concentration was also measured as it is an important environmental factor elevated CO2 causes 
increased photosynthesis in plants through increasing the efficiency of carbon fixation, which leads to greater 
production of carbohydrates and biomass. The average CO2 concentration inside the CSG was substantially 
elevated in the winter compared to the spring experiment by 144 ppm. In the winter, to retain heat windows and 
vents are generally closed which reduces the ventilation in the glasshouse and can lead to elevated CO2 caused 
by respiration from workers and soil respiration. Previous research from has shown CO2 concentration gener-
ally increases crop yield, however, this was dependent on light radiation, since both CO2 and light be limiting 
factors inhibiting photosynthesis and therefore plant growth28. Therefore, increased CO2 during the winter may 
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improve photosynthetic performance, plant growth and yield. Given the large variation between environmental 
factors in the two experiments, this should provide a robust dataset for accurately modelling lettuce growth in 
CSG.

Humidity.  Humidity was also measured as stomata tend to close in dry air to reduce water loss which indirectly 
affects photosynthesis and therefore biomass accumulation due to reduced intracellular CO2 concentrations 
lowering the efficiency of photosynthetic carbon fixation. Average humidity did not vary greatly seasonally as 
measured from outside the CSG, with 51.3% in the late spring compared to 58.7% in th winter. In the warm 
experiment as the CSG is well ventilated during this time, the inside RH was only marginally increased to 51.3%. 
However, in the winter, when windows are closed to reduced heat loss, the inside RH was elevated to 81.75%, a 
39% increase compared to the outside average RH. Slightly increased RH in the winter will improve the water 
use efficiency by reducing the evaporative water demand on the stomate while also improving photosynthetic 
performance29.

Evaluation of seasonal difference in plant performance.  The plant phenotypic traits measured 
throughout both experiment 1 and 2 are presented in Fig. 4. Cultivation time between experiments differed 
greatly between experiment 1 and 2, with time to harvest 35 days in the warm season and 60 days during the 
winter. Shoot fresh weight, which is equivalent to yield in lettuce as the entire above-ground plant material is 
harvested, was 320.8g per head in the winter after 60 growing days compared to 258.9g in the spring experi-
ment after 35 days. If the yield of the crop is considered relative to the harvest time then the warm season head 
a greater fresh weight per day compared to the winter season, with 7.4g per day compared to 5.3g per day in 
the winter season, a 38% increase. Shoot dry weight, is a biomass measurement that indicates the net primary 
production and growth rate of the plant excluding difference in water content. Dry shoot weight was also higher 
in the winter experiment, with 13.8g compared to 11.8g in the warm experiment. However, if compensating for 
cultivation time the rate of dry weight at harvest normalised for growing time was increased by 47% in the warm 
season relative to the winter season. The leaf area at harvest was 3085cm2 in the warm experiment compared 
to 6545cm2 in the winter experiment. While the CSG offers substantial passive thermal heating to improve the 
growing conditions relative to the outside environment, during the winter the mean daily temperature and light 
intensity fall well below ideal range as reported by other studies12,27. The sub-optimal growing conditions in the 
winter necessitate an increased cultivation time which reduces the number of crop cycles which can be obtained 
in annually, decreasing the productivity of the CSG and leaving the potential for improvement.

Modelling daily plant growth response to environmental conditions using BNN.  The lettuce 
growth performance in CSG, as determined by the environmental conditions, was then identified by using dif-
ferent structures of back-propagation neural network algorithm that employed Bayesian inference framework 
for modelling and predicting the lettuce fresh and dry weights growth rate was developed. The performance of 
the used BNN models was evaluated by comparing the predicted values (BNN models outputs) with the actual 
observed values (target). Figure 5, shows the comparison of the predicted estimated dynamic response of the 
fresh and dry weights and the leaf area that was calculated by using three different structures of BNN models and 

Figure 4.   The overall growth performance and the daily growth rate responses of lettuce dry and fresh weights 
and leave area during experiment 1 and 2.
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the actual observed response for the daily growth rate of the lettuce plant. The used three different structures for 
the number of neuron units in the hidden layer are 10, 20 and 25 neurons.

Figure 5 illustrates the difference between the predicted estimated dynamic response of the fresh and dry 
weights and the leaf area that was modelled by using three different structures of BNN models and the actual 
observed response for the daily growth rate of the lettuce plant to find the optimum required number of neurons 
to predict the daily plant grown in CSG. The three different structures for the number of neuron units used in the 

Figure 5.   The results of the BNN models performance based on the number of neuron units in the hidden layer 
for predicting the daily growth rate; (a) shoot fresh weight, (b) shoot dry weight, (c) leaf area in the CSG.
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hidden layer are 10, 20 and 25 neurons. The diversity of modelled and predicted outputs of the monitored plant 
response parameters are different in each BNN structure once they were tested and evaluated using validation 
and test datasets. Lettuce shoot fresh and dry weights and leaf area are considered to observe the ability of the 
designed BNN models for modelling and predicting the growth response in this research study. There is a minor 
difference between the actual observed response with the predicted results when the BNN with 20 neuron units 
in the hidden layer was employed for predicting plant biomass (dry weight) and fresh weight, which indicates 
the high accuracy of this BNN structure is used to model and predict the plant biomass CSG. However, when the 
same designed BNN model was employed to model and predict the leaf area, the accuracy of the achieved result 
was a bit less compared with the results achieved for predicting the plant dry and fresh weights. These achieved 
results demonstrate the remarkable capability of the BNN to model and predict the diversity of plant growth 
responses. It is be seen that the BNN with 20 neuron units in the hidden layer design is followed the trend of the 
actual plant response parameters and showed its ability for modelling and predicting the temporal nature of the 
given data compared to the 10 and 25 neuron units in the hidden layer designs.

Mean absolute error rate is calculated for the obtained results from the three different used BNN structures 
to be compared with the observed response for the daily growth rate of plant response as it is shown in Fig. 6. In 
this evaluation technique, n is the number of errors in the observation samples, xi and x are the targets and the 
BNN achieved results values. Evaluation of the best fitting BNN designed network to optimise the most accurate 
BNN model structure was done by calculating the MAE values. This evaluation aims to maximise the coefficient 
of determination and minimise the MAE values. To minimise the MAE and achieve accurate modelling and 
predicting results, three different structures of back-propagation neural network algorithms that employed a 
Bayesian inference framework were used during the training phase for training the models.

The optimal BNN model structure is determined by the model parameters, which are a combination of envi-
ronmental condition inputs (temperature, CO2, relative humidity and light radiation) and the number of neuron 
units in the hidden layer to find the best performance of the identified model. The effect of these combined input 
parameters was investigated. This effect is determined in Fig. 5 by calculating the mean absolute error (MAE). 
As it is shown in Table 2, it was found that the MAE is reached to its minimal value by 0.18, 0.02 and 1.32 when 
20 neuron units are used in the hidden layer of the BNN for predicating the shoot fresh and dry weights and leaf 
area, respectively. Therefore, the foregoing suggests that the neural network structure with 20 neuron units in 
the hidden layer h is useful for modelling and predicting such a dataset.

Prediction of plant growth via BNN and other ML techniques could perform better due to its ability to handle 
unseen and high random data30. Subsequently reducing farm costs, energy use, and potential environmental 
damage. Incorporating IoT big data with machine learning techniques can deliver profitable, accurate and reli-
able outcomes, such as plant recognition and crop type classification, detection of plant and leaf diseases, fruit 
counting and forecasting soil moisture content31. Saravi et al.32 employed a DL technique for modelling crop 
yield using different weather scenarios and varying environmental variables combined with random irriga-
tion applications to create 10,000,000 possible scenarios. Results showed that a simpler Bayesian-based DNN 
model with a structure of 10 neurons in 5 layers performed just as well (78.6% accuracy) when examining crop 
productivity, comparable to a DNN crop model with 400 neurons in 10 layers, despite the size of the neural 
network reducing 80-fold. Whilst machine taught crop models are becoming more extensively used to predict 
crop productivity, input requirements and biomass yield, existing models are complex, requiring thousands of 
variables to produce accurate results. DL modelling techniques and Bayesian methods present an opportunity 
to remedy these limitations. Khan et al.28 used three different DNN methods to analyse and predict the produc-
tion output of major fruits based on data taken from the National Bureau of Statistics of Pakistan. The study 
found the Bayesian regularisation back propagation (BR) method (76.3% accuracy) to be most efficient—the 
Levenberg-Marquardt optimisation method (LM) and the scale conjugate gradient back propagation (SCG) 
method achieved 65.6% and 70.2% accuracy, respectively. Successfully adopting cross-disciplinary integration 
between the application of big data technology, IoT, DL techniques and our agricultural production systems is 
crucial for Agriculture 4.0 development. Widespread problems experienced in the agricultural field encompass 
crop diseases, poor pesticide control, inefficient irrigation, and ineffective weed management: all could be bet-
ter controlled and remedied through automized farming practices. For food security, using such techniques for 
the prediction of crop yield and food availability on a national level would be influential for agricultural policy 
and assist in market forecasting. Additionally, AI investment can strongly influence the attainment of Sustain-
able Development Goals, particularly in emerging economies where a component of poverty reduction can be 
achieved through revolutionizing agriculture education33.

In this research, three different structures, in terms of the number of neurons in the hidden layer, of the BNN 
approach for improving modelling and prediction daily crop yield growth performance using data gathered 
from CSG based on sensory devices. Considering the results obtained from the conducted experiments, it can 
be concluded that the 20 neurons in the hidden layer model exhibit a high score for accuracy and the minimum 
mean absolute error (MAE) when its performance is tested for predicting the daily growth performance of the 
shoot fresh and dry weights and leaf area separately. Also, the overall modelling growth performance, when it is 
over the whole system, demonstrates the effectiveness of the proposed approaches. The BNN model shows more 
robust and reliable performance once applied to a larger dataset that (e.g., dataset A and B) represent warm and 
cold seasons. In particular, when this dataset is mixed randomly together. Our findings show that DL approaches 
can accurately predict plant performance using environmental factors in CSGs. Modelling crop yield for CSGs 
offers the potential to develop better management strategies to maximise performance and profitability, allowing 
economic analysis of the benefit of supplemental heating, lighting, or CO2 enrichment.
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Conclusions and future work
This paper confirms that the Chinese Solar Greenhouse (CSG) design is an energy-saving and low-cost design 
technology that combines solar energy input and appropriate heat sinks. This design allows the CSG to provide 
a better crop growth environment, especially in the winter, which significantly influences the greenhouse micro-
climate and enhances crop productivity and sustainability. It can be concluded from this paper that the Bayesian 

Figure 6.   The mean absolute error values for the achieved results of using 10, 20 and 25 neuron units in the 
hidden for predicting the daily growth rate of (a) shoot fresh weight, (b) shoot dry weight, (c) leaf area in the 
CSG.
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Neural Networks (BNNs) are effective in modelling and predicting plant growth in response to the temperature, 
CO2, humidity, and light radiation conditions in CSG across cold and warm seasons.

Future work can be undertaken to empirically compare this paper’s results with an array of scenarios across 
different growing environments and crop varieties to conclude the best intelligent crop simulation models and 
algorithms. This future research direction will potentially improve yield performance estimation and achieve 
energy-saving modelling strategies.

Data availibility
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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