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Machine learning based prediction 
for oncologic outcomes of renal 
cell carcinoma after surgery using 
Korean Renal Cell Carcinoma 
(KORCC) database
Jung Kwon Kim 1,2, Sangchul Lee 1,2, Sung Kyu Hong 1,2, Cheol Kwak 2,3, Chang Wook Jeong 2,3, 
Seok Ho Kang 4, Sung‑Hoo Hong 5, Yong‑June Kim 6, Jinsoo Chung 7, Eu Chang Hwang 8, 
Tae Gyun Kwon 9, Seok‑Soo Byun 1,10*, Yu Jin Jung 10, Junghyun Lim 11, Jiyeon Kim 11 & 
Hyeju Oh 11

We developed a novel prediction model for recurrence and survival in patients with localized renal 
cell carcinoma (RCC) after surgery and a novel statistical method of machine learning (ML) to 
improve accuracy in predicting outcomes using a large Asian nationwide dataset, updated KOrean 
Renal Cell Carcinoma (KORCC) database that covered data for a total of 10,068 patients who had 
received surgery for RCC. After data pre‑processing, feature selection was performed with an elastic 
net. Nine variables for recurrence and 13 variables for survival were extracted from 206 variables. 
Synthetic minority oversampling technique (SMOTE) was used for the training data set to solve the 
imbalance problem. We applied the most of existing ML algorithms introduced so far to evaluate 
the performance. We also performed subgroup analysis according to the histologic type. Diagnostic 
performances of all prediction models achieved high accuracy (range, 0.77–0.94) and F1‑score (range, 
0.77–0.97) in all tested metrics. In an external validation set, high accuracy and F1‑score were well 
maintained in both recurrence and survival. In subgroup analysis of both clear and non‑clear cell type 
RCC group, we also found a good prediction performance.

The incidence of renal cell carcinoma (RCC) is increasing worldwide. Approximately 76,000 new cases and 
almost 14,000 deaths from RCC were reported in the US in  20211. In Korea, we also observed the same trend 
according to the latest cancer incidence statistics from the Korea Central Cancer  Registry2. Among them, clear 
cell type RCC represents approximately 70% cases in  adults3. Estimated 5-year survival rate of localized RCC 
patients is approximately 90%. However, in about 30% of either recurrence or metastasis cases, the survival rate is 
drastically  reduced4. Thus, it is imperative to predict the high-risk group for recurrence in advance and establish 
a differentiated surveillance protocol for patients who have undergone a curative surgery.

Over the past decades, several nomograms for recurrence and/or survival of localized RCC have been devel-
oped and applied in clinical  practice5–8. Among them, the Kattan nomogram based on pathological T stage, 
nuclear grade, tumor size, necrosis, vascular invasion, and clinical presentation was the first introduced and 
widely used  model5,6. Subsequently, the Leibovich model was developed by Mayo Clinic to estimate the risk of 
metastasis or recurrence using tumor stage, regional lymph node status, tumor size, nuclear grade and histologic 
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tumor  necrosis7. The most recently developed model known as the GRANT score was based on patient age, 
nuclear grade, and pathologic T/N  stage8. However, these models were developed and validated using a small 
cohort from a single institution. In addition, they were limited to Western datasets. Moreover, their prediction 
accuracies were not as high as expected. For most models, their accuracy values were around 0.75–8.

Thus, we tried to develop a novel prediction model for recurrence and survival in patients with localized RCC 
after surgery using a large Asian nationwide dataset. We also used a novel statistical method of machine learning 
(ML) to improve accuracy in predicting outcomes.

Materials and methods
Ethics statement. The Institutional Review Board (IRB) of Seoul National University Bundang Hospital 
approved this study (approval number: B-2106-688-108). The requirement for obtaining written informed con-
sent from patients was waived by the IRB due to the retrospective nature of this study. Personal identifiers were 
completely deleted to ensure that data were analyzed anonymously. Our study was conducted according to the 
ethical standards of the 1964 Declaration of Helsinki and its later amendments.

Data sets. The KOrean Renal Cell Carcinoma (KORCC) database was first established in 2011. It had data 
from eight academic institutions  nationwide9. Recently, data of each institution were updated from March to 
June 2021. Subsequently, the updated KORCC database covered data of a total of 10,068 patients who had 
received surgery for RCC with 206 variables, including demographic, perioperative, pathologic, and survival 
information.

Model development (n = 4,829) and internal validation (n = 2,070) were performed using data from seven 
centers except data from Seoul National University Bundang Hospital (SNUBH, n = 3,169). External validation 
was performed using data from the SNUBH to assess the generality of the model performance. SNUBH was 
suitable for external validation because of its size and diverse patient population.

All study procedures were performed according to the transparent reporting of a multivariable prediction 
model for individual prognosis or diagnosis (TRIPOD)  recommendations10.

All institutions obtained IRB approvals before inputting data into the database. Unified data templates were 
used for consistent data collection at each institution. Survival data were retrospectively reviewed from medical 
records or identified from death certificate data.

Data processing and feature selection. Data pre-processing mainly included processing missing values 
to obtain a reliable set of data. The missing value imputation process was divided into three aspects: patients, 
predictors, and statistics. At first, we eliminated patients with missing basic information. Subsequently, we 
performed predictive analytics for variables including total protein, Hb, creatinine. For this method, we used 
Euclidean distance to determine the similarity between two values and replace the missing one with similar one. 
Other missing values were corrected using k-nearest neighbor (KNN)11. KNN is non-parametric and instance-
based method, and useful for datasets having both qualitative and quantitative attribute values.

After pre-processing, we performed feature selection with an elastic  net12. Before implementing elastic net 
model, we defined four default variables that had been considered as the most significant predictors for recur-
rence and survival: gender, age at surgery, smoking, and  BMI13,14. Elastic net is known as a hybrid of ridge 
regression and lasso regularization. Thus, elastic net can generate reduced models by generating zero-valued 
coefficients. Similar to the lasso, elastic net simultaneously perform automatic variable selection and continuous 
 shrinkage15. We subsequently performed a feature importance raking method (Supplemental Fig. 1). Finally, we 
extracted nine variables for recurrence and 13 variables for survival (Fig. 1).

Synthetic minority oversampling technique (SMOTE). Imbalanced data problem is a situation in 
which data are biased toward one class in applying ML classification  algorithms16. When modeling using imbal-
anced data, the ML algorithm attempts to improve the performance by predicting a large number of classes, in 
which most patients are concentrated, resulting in lower predictability of a small number of classes. Thus, imbal-
anced data problem should be solved using methods such as oversampling or underdamping. In the current 
study, we used the SMOTE to the training data set to solve the imbalance  problem17.

Statistical analysis and ML model development. We evaluated performances of the following rep-
resentative ML classification algorithms: logistic  regression18, kernel support vector machine (SVM)19, decision 
 tree20, random  forest21, naïve Bayes (NB)22, Extreme Gradient Boosting algorithm (XGBoost)23, Natural Gradi-
ent Boosting (NGBoost)24,  LightGbm25, and  CatBoost26. We adopted accuracy and F-1 score to evaluate the pre-
diction performance. The F-1 score is made up of both precision and recall metrics. It is designed to work more 
accurately on imbalanced  data27. We also performed subgroup analysis according to histologic type. Non-clear 
cell type RCC included eight types: papillary, chromophobe, collecting duct, unclassified, multilocular cystic, 
mixed, Xp11.2 translocation, and clear cell papillary. All statistical analyses were performed using commercially 
available software (IBM SPSS Statistics ver. 21.0 and Python ver. 3.7.6).

Ethics statement. The Institutional Review Board (IRB) of Seoul National University Bundang Hospital 
approved this study (approval number: B-2106–688-108).
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Informed consent to patients. The waiver of the informed consent requirement was approved by the 
local ethics committee of Seoul National University Bundang Hospital considering the retrospective study 
design involving anonymized data.

Results
Patient characteristics. Distribution of data sets before and after SMOTE for recurrence (n = 6,717) and 
survival (n = 5,730) is described in Table 1. The ratio of training set to test set was 7:3. Overall survival rates at 
3, 5, and 10 years were 94.2%, 90.6%, and 71.9%, respectively; and the recurrence-free rates were 85.2%, 78.8% 
and 45.3%, respectively.

Subsequently, we compared patient characteristics and distribution of each variable for recurrence and sur-
vival (Table 2). In a comparative analysis between recurrence and non-recurrence groups, we found several sig-
nificantly different variables except for four default variables (gender, age at surgery, smoking, and BMI): Eastern 
Cooperative Oncology Group (ECOG) performance status, symptoms at diagnosis, transfusion, pathologic T/N 

Figure 1.  Study flow and final significant variables through feature selection.

Table 1.  Distribution of data sets before and after synthetic minority oversampling technique application 
(SMOTE).

Training set 
(70%) Test set (30%)

Recurrence (n = 6717) No Yes No Yes

Total group

3-year
Before (Raw data) 3031 521

1298 233
After (SMOTE) 10,420 2605

5-year
Before (Raw data) 2281 621

987 256
After (SMOTE) 12,420 3105

10-year
Before (Raw data) 589 688

236 310
After (SMOTE) 1178 1178

Training set 
(70%) Test set (30%)

Survival (n = 5730) Alive Death Alive Death

Total group

3-year
Before (Raw data) 2871 173

1226 78
After (SMOTE) 3460 865

5-year
Before (Raw data) 2232 207

924 120
After (SMOTE) 4140 1035

10-year
Before (Raw data) 621 229

273 120
After (SMOTE) 598 598
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Table 2.  Baseline characteristics.

Recurrence Survival

Variable No (n = 5698) Yes (n = 1019) Alive (n = 5279) Death (n = 451)

Age, years, mean (SD) 55.5 (12.7) 58.3 (11.6) 54.8 (12.4) 59.5 (11.7)

Gender, male, n (%) 4024 (70.6) 754 (74.0) 3710 (70.3) 340 (75.4)

BMI, kg/m2, mean (SD) 24.8 (3.3) 23.9 (3.1) 24.9 (3.3) 23.5 (3.1)

DM, n (%) 878 (15.4) 205 (20.1) 783 (14.8) 97 (21.5)

HTN, n (%) 2336 (41.0) 463 (45.4) 2162 (41.0) 204 (45.2)

CKD, n (%) 142 (2.5) 25 (2.5) 129 (2.4) 8 (1.8)

Smoking status, n (%)

 Non-smoker 3552 (62.3) 682 (66.9) 3304 (62.6) 333 (73.8)

 Ex-smoker 1199 (21.0) 154 (15.1) 1120 (21.2) 48 (10.6)

 Current smoker 947 (16.6) 183 (18.0) 855 (16.2) 70 (15.5)

ECOG, n (%)

 0 4214 (74.0) 561 (55.1) 3980 (75.4) 169 (37.5)

 1 1012 (17.8) 262 (25.7) 892 (16.9) 123 (27.3)

 ≥ 2 472 (8.2) 196 (19.2) 407 (7.7) 159 (35.3)

Symptoms at diagnosis, n (%) 1044 (18.3) 448 (44.0) 954 (18.1) 220 (48.8)

Surgical modality, n (%)

 Open 1837 (32.2) 608 (59.7) 1594 (30.2) 339 (75.2)

 Laparoscopic 1902 (33.4) 288 (28.2) 1654 (31.4) 98 (21.7)

 Robotic 1959 (34.4) 123 (12.1) 2026 (38.4) 13 (2.9)

Transfusion, n (%)

 Intra-operative 223 (3.9) 193 (18.9) 196 (3.7) 83 (18.4)

 Post-operative 199 (3.5) 113 (11.1) 202 (3.8) 56 (12.4)

Perioperative complications, n (%) 372 (6.5) 119 (11.7) 367 (7.0) 72 (16.0)

Pathologic T stage, n (%)

 1a 3701 (65.0) 181 (17.8) 3347 (63.4) 53 (11.8)

 1b 1186 (20.8) 201 (19.7) 1095 (20.7) 91 (20.2)

 2 327 (5.7) 177 (17.4) 335 (6.3) 77 (17.1)

 ≥ 3 484 (8.5) 460 (45.1) 502 (9.5) 230 (51.0)

Pathologic N stage, n (%)

 N0/Nx 5651 (99.2) 904 (88.4) 5236 (99.2) 366 (81.1)

 N1 47 (0.8) 118 (11.6) 43 (0.8) 85 (18.9)

Positive surgical margin, n (%) 33 (0.6) 9 (0.9) 34 (0.6) 5 (1.1)

Sarcomatoid differentiation, n (%) 87 (1.5) 116 (11.4) 126 (2.4) 50 (11.1)

Necrosis, n (%) 519 (9.1) 306 (40.0) 491 (9.2) 126 (27.9)

LVI, n (%) 158 (2.8) 181 (17.8) 180 (3.4) 69 (15.3)

Histologic type, n (%)

Clear cell 4740 (83.2) 860 (84.4) 4404 (83.4) 355 (78.7)

Non-clear cell

 Papillary 439 (7.7) 72 (7.1) 389 (7.4) 40 (8.9)

 Chromophobe 385 (6.8) 25 (2.5) 358 (6.8) 13 (2.9)

 Collecting duct 9 (0.2) 17 (1.7) 11 (0.2) 11 (2.4)

 Unclassified 40 (0.7) 25 (2.5) 39 (0.7) 20 (4.4)

 Multilocular cystic RCC 26 (0.5) 1 (0.1) 24 (0.5) 0 (0.0)

 Mixed 19 (0.3) 7 (0.7) 14 (0.3) 3 (0.7)

 Xp11.2 translocation RCC 13 (0.2) 10 (1.0) 15 (0.3) 7 (1.6)

 Clear cell papillary RCC 27 (0.5) 2 (0.2) 25 (0.5) 2 (0.4)

Fuhrman nuclear grade, n (%)

 1/2 3026 (53.1) 270 (26.5) 2677 (50.7) 95 (21.1)

 3/4 2672 (46.9) 749 (73.5) 2602 (49.3) 356 (78.9)

 Recurrence, n (%) – – 408 (7.7) 79 (17.5)
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stages, sarcomatoid differentiation, necrosis, lymphovascular invasion (LVI), and Fuhrman nuclear grade (all 
p < 0.05). In terms of survival, ECOG performance status, symptoms at diagnosis, transfusion, pathologic T/N 
stages, sarcomatoid differentiation, necrosis, LVI, histologic type, Fuhrman nuclear grade, and recurrence were 
significant variables (all p < 0.05).

Prediction model performance and external validation. Diagnostic performance of several machine 
learning algorithms for the prediction of 3-, 5-, and 10-year recurrence and survival are listed in Table 3. All 
models achieved very high accuracy (range, 0.77–0.94) and F1-score (range, 0.77–0.97) in all tested metrics. 
Subsequently, external validation with a SNUBH dataset (n = 3,169) was performed using all models (Fig. 2). 
High accuracy and F1-score were well maintained in external validation in both recurrence and survival (Sup-
plemental Table 1).

Figure 2.  Compositions of database and results of (1) internal and (2) external validation for recurrence and 
survival.

Table 3.  Diagnostic performance of machine learning algorithms for the prediction of recurrence and 
survival.

Recurrence Survival

Model Method 3-year 5-year 10-year 3-year 5-year 10-year

Logistic Regression
Accuracy 0.90 0.87 0.81 0.93 0.94 0.87

F1-score 0.94 0.92 0.80 0.96 0.96 0.90

SVM
Accuracy 0.90 0.86 0.78 0.94 0.93 0.86

F1-score 0.94 0.92 0.77 0.97 0.96 0.90

Decision Tree
Accuracy 0.86 0.85 0.77 0.90 0.90 0.78

F1-score 0.91 0.90 0.78 0.95 0.95 0.82

Random Forest
Accuracy 0.88 0.84 0.78 0.93 0.92 0.84

F1-score 0.93 0.89 0.77 0.96 0.95 0.88

Naïve bayes
Accuracy 0.88 0.87 0.77 0.91 0.91 0.88

F1-score 0.93 0.92 0.77 0.95 0.95 0.91

XGBoost
Accuracy 0.89 0.86 0.79 0.94 0.93 0.86

F1-score 0.94 0.92 0.77 0.97 0.96 0.89

NGBoost
Accuracy 0.88 0.86 0.80 0.93 0.92 0.86

F1-score 0.93 0.92 0.80 0.96 0.95 0.89

LightGbm
Accuracy 0.88 0.84 0.78 0.90 0.91 0.84

F1-score 0.93 0.90 0.78 0.94 0.95 0.85

CatBoost
Accuracy 0.89 0.87 0.79 0.94 0.93 0.86

F1-score 0.94 0.92 0.78 0.97 0.96 0.89
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Subgroup analysis. In subgroup analysis according to the histologic type (clear vs. non-clear cell type 
RCC), dataset distribution before and after SMOTE for recurrence and survival is described in Supplemental 
Table 2. Consequently, we also found very high accuracy (range, 0.64–0.91) and F1-score (range, 0.72–0.94) in 
all tested metrics (Supplemental Tables 3 and 4).

Discussion
Using the original KORCC  database9, two recent studies have been  reported28,29. At first, Byun et al.28 assessed 
the prognosis of non-metastatic clear cell RCC using a deep learning-based survival predictions model. Har-
rel’s C-indices of DeepSurv for recurrence and cancer-specific survival were 0.802 and 0.834, respectively. More 
recently, Kim et al.29 developed ML-based algorithm predicting the probability of recurrence at 5 and 10 years 
after surgery. The highest area under the receiver operating characteristic curve (AUROC) was obtained from 
the naïve Bayes (NB) model, with values of 0.836 and 0.784 at 5 and 10 years, respectively.

In the current study, we used the updated KORCC database. It now contains clinical data of more than 10,000 
patients. To the best of our knowledge, this is the largest dataset in Asian population with RCC. With this dataset, 
we could develop much more accurate models with very high accuracy (range, 0.77–0.94) and F1-score (range, 
0.77–0.97, Table 3). The accuracy values were relatively high compared to the previous models, including the 
Kattan nomogram, Leibovich model, the GRANT score, which were around 0.75–8. Among them, the Kattan 
nomogram was developed using a cohort of 601 patients with clinically localized RCC, and the overall C-index 
was 74%5. In a subsequent analysis with the same patient group using an additional prognostic variables includ-
ing tumor necrosis, vascular invasion, and tumor grade, the C-index was as high as 82%30. Their prediction 
accuracies were not as high as ours yet.

In addition, we could include short-term (3-year) recurrence and survival data, which would be helpful for 
developing more sophisticated surveillance strategy. The other strength of current study was that most algorithms 
introduced so far had been  applied18–26, showing relatively consistent performance with high accuracy. Finally, 
we also performed an external validation by using a separate (SNUBH) cohort, and achieved well maintained 
high accuracy and F1-score in both recurrence and survival (Fig. 2). External validation of prediction models is 
essential, especially in case of using the multi-institutional dataset, to ensure and correct for differences between 
institutions.

AUROC has been mostly used as the standard evaluating performance of prediction  models5–8,29. How-
ever, AUROC weighs changes in sensitivity and specificity equally without considering clinically meaningful 
 information6. In addition, the lack of ability to compare performance of different ML models is another limita-
tion of AUROC  technique31. Thus, we adopted accuracy and F1-score instead of AUROC as evaluation metrics. 
F1-score, in addition to  SMOTE17, is used as better accuracy metrics to solve the imbalanced data  problems27.

RCC is not a single disease, but multiple histologically defined cancers with different genetic characteristics, 
clinical courses, and therapeutic  responses32. With regard to metastatic RCC, the International Metastatic Renal 
Cell Carcinoma Database Consortium and the Memorial Sloan Kettering Cancer Center risk model have been 
extensively validated and widely used to predict survival outcomes of patients receiving systemic  therapy33,34. 
However, both risk models had been developed without considering histologic subtypes. Thus, the predictive 
performance was presumed to have been strongly affected by clear cell type (predominant histologic subtype) 
RCC. Interestingly, in our previous study using the Korean metastatic RCC registry, we found the both risk 
models reliably predicted progression and survival even in non-clear cell type RCC 35. In the current study, after 
performing subgroup analysis according to the histologic type (clear vs. non-clear cell type RCC), we also found 
very high accuracy and F1-score in all tested metrics (Supplemental Tables 3 and 4). Taking together, these find-
ings suggest that the prognostic difference between clear and non-clear cell type RCC seems to be offset both in 
metastatic and non-metastatic RCC. Further effort is needed to develop and validate a sophisticated prediction 
model for individual subtypes of non-clear cell type RCC.

The current study had several limitations. First, due to the paucity of long-term follow-up cases at 10 years, 
data imbalance problem could not be avoided. Subsequently, recurrence-free rate at 10-year was reported only 
to be 45.3%. In the majority of patients, further long-term follow up had not been performed in case of no evi-
dence of disease at five years. However, we adopted both SMOTE and F1-score to solve these imbalanced data 
problems. The retrospective design of this study was also an inherent limitation. Another limitation was that the 
developed prediction model only included the Korean population. Validation of the model using data from other 
countries and races is also needed. In regard of non-clear cell type RCC, the current study cohort is still relatively 
small due to the rarity of the disease, we could not avoid integrating each subtype and analyzing together. Thus, 
further studies is still needed to develop and validate a prediction model for each subtypes. In addition, the lack 
of more accurate classifiers such as cross-validation and bootstrapping is another limitation of current study. 
Finally, the web-embedded deployment of model should be followed to improve accessibility and transportability.

Conclusions
A novel ML algorithm for predicting recurrence and survival in localized RCC patients after surgery was suc-
cessfully developed and validated using the updated KORCC database. This prediction model is anticipated to 
offer a differentiated surveillance protocol. It will be a useful tool for patient counseling.

Data availability
All data enquiries can be directed to the corresponding author.
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