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On taylor correlation functions 
in isotropic turbulent flows
Wei Chen 

A turbulent flow can be characterized by Taylor correlation functions which are obtained empirically, 
understood by statistical mechanics and regarded as universal. Here, we show that Taylor correlations 
are analytically derived by hypothesizing turbulence as a phenomenon of superfluids at resonance. 
Leveraging from a recent study on heat transfer at the speed of sound, we derived and fitted the 
longitudinal and lateral turbulent velocities in an isotropic, turbulent flow. The concept of the 
boundary of the second law helps to specify the integration constants in the solution. From the 
velocity profiles, Taylor’s correlation functions are analytically determined. From the linearity of the 
eigenfunction, we introduce amplitude and frequency factors. These factors are curve-fitted with 
two experimental dataset. Additional experimental datasets in the public domain are compared to 
the correlations, which shows that the theory agrees with experiments very well in isotropic flows. 
The analytical correlation functions help to elucidate observations that experiments and statistical 
mechanics have challenges to explain.

In dealing with practical, turbulent flow problems, empirical correlations and coefficients are inevitable regardless 
of whether computational or analytical methods are  used1–5. Taylor correlation functions are probably the first 
used to characterize the structures in turbulent flows and are considered to be  universal2,4,6–8. In this work, by 
hypothesizing that a turbulent flow is a generic problem of superfluid at resonance, we analytically derive and 
validate these correlations with experimental data.

Fundamentally, turbulence is an interdisciplinary topic since it has been observed in fluid  flows4, electromag-
netic  fields9 and ballistic heat  transfer10. Turbulence in these different subjects must share a common fundamental 
physics. Revelation of such physics should provide a key to the solutions of all turbulence problems. In a turbulent 
flow, one of the most striking attributes is elevated sound  generation11,12. A recent study on heat transfer at the 
speed of sound established the connection between superfluid and sound by thermodynamics, not only at low 
 temperatures13. In a fluid domain, superfluid is dynamically and isentropically formed locally and temporarily. 
Moreover, the resonant superfluid generates the first and the second sound. Hence, sound is the proxy of resonant 
superfluid universally. The study hypothesizes that a viscous fluid locally turns into a superfluid where the excess 
entropy reaches zero in a periodic motion. The excess entropy, δs = sND − sD , is defined as the subtraction of 
the mass density of entropy of a dissipative fluid, sD , from that of a non-dissipative fluid, sND . Here, the terms of 
viscous, dissipative and regular fluids are interchangeable, as are superfluid and non-dissipative fluids.

An important finding in that study is that when excess entropy becomes zero at any given time or location, 
there is a change in the thermodynamic state from entropic to isentropic. Correspondingly, isentropic flows 
follow the Euler equations instead of the Navier-Stokes equations. Since the occurrences of the isentropic state 
in a viscous fluid are due to the constraint of the second law, those special time periods and spatial domains 
are called on the boundary of the second law  by13. The physics revealed by the excess entropy is far beyond the 
fluid dynamics and implies that any dissipative dynamics has corresponding non-dissipative dynamics. While 
we continue to make progress in understanding the scope of this physics, it becomes clear that the entire family 
of the consistent fundamental physics on isentropic motion has been overlooked. Such an attainment indicates 
that the quasi steady state solutions at  interfaces13 and the spontaneity of helium  flows14 share a class of solu-
tions across disciplines. Similarly, the work in this manuscript on the transient velocities of resonant superfluid 
establishes the method on how to define boundary conditions and solve the transient resonant super state in 
physics, chemistry, biology, electromagnetism and geology etc.

The boundary of the second law has the same function as any physical boundary. It separates superfluid from 
a regular fluid, has different governing equations on both sides and allows the exchange of mass, momentum 
and energy to maintain conservation. On the other hand, it is unique since its existence depends on the motion 
and happens on whether the constraint of the second law is reached. To emphasize these properties, it is called 
the boundary of the second law in a flow field where the excess entropy reaches zero.
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Local and repetitive occurrences of superfluid lead to the resonance of the entire flow system. With the 
elimination of nonlinear terms, the study derived the governing equations of resonant  superfluids13, where the 
resonance was determined by the Jacobian matrix, a technique from  Landau15 given in Supplement:

where ρ,u , T, p, c1 = c1i + c1j and c2 = c2i + c2j are the density, velocity vector, temperature, pressure, the first 
and second sound vectors and i and j are the unit vectors. The plus and minus sign indicates that sound can 
propagate in both directions.

In this manuscript, we first solve the differential equations of the momentum conservation (Eq. 2) for super-
fluid at resonance. Owing to the constant speed of sound, the derivative of the velocity of the superfluid depends 
linearly on time and space variables through the eigenfunction of Eq. (2). This linear dependence greatly sim-
plifies the mathematics in searching for solutions and permits the casting of velocities in time only. With the 
assumption of isotropic turbulence, the boundary conditions are used to specify the constants in the general 
solution of velocities on the boundary of the second law. Since the concept of the boundary of the second law is 
new, we go into fair detail to demonstrate how to apply them. In the determination of boundary conditions, we 
introduce the Dirac comb to quantitatively represent impulses at the transition of thermodynamic states. The 
solution of superfluid at resonance consists of two parts: transient and quasi steady-state. At resonance, the quasi 
steady state motion immediately participates in resonance and loses its identity of impulses. Hence, we focus 
on the transient velocity fields, which are the turbulent velocities. The longitudinal and lateral correlations are 
derived from the turbulent velocity fields. Since it does not alter the characteristics of velocities due to the linear-
ity of eigenfunctions, we introduce the amplitude factors and frequency factors to recover the experimental data. 
We quantify the coefficients of the correlations from the experimental data available. Then, we compare these 
correlations to the experimental data from other sources. In particular, we compare the longitudinal correlation 
to a dataset with spatial measurements. In that comparison, we use the same factors to calculate the correlation 
on the negative spatial parameter. The theory produces good agreement in spatial and time delays. Additional 
benefits of curve fitting are the availability of velocity distributions, and we discuss velocity distributions and 
explain some phenomena that statistical mechanics falls short. The conclusion summarizes the key findings and 
our perspective for future work.

Equations of motion
The goal of this section is to derive a general velocity field in an isotropic turbulent flow. An isotropic turbulent 
flow field such as these behind grid flow can be treated as a two-dimensional flow, where the longitudinal velocity 
in the x-axis is in the main flow direction and the lateral velocity in the y-axis represents other two directions. 
The differential equations are readily available from Eq. (2) for the positive characteristic velocity, c1,

where u and v are the longitudinal and lateral turbulent velocities, respectively. p and ρ are the pressure and den-
sity, respectively. Since it does not depend on the lateral velocity, we can focus on the longitudinal velocity first. A 
superfluid at resonance has two velocity components, transient and quasi-steady state and we are more interested 
in the solution of the transient part. By assuming constant speed of sound, the first order,linear partial different 
equations can be represented by the superposition of homogeneous and inhomogeneous parts, u = uh + up

16. 
The homogeneous differential equation of Eq. (4) is given

Denote uh = A(x)B(y)C(t) for the separation method to Eq. (6),

Divide Eq. (7) by uh,

(1)
Dρ

Dt
+ ρ∇ · u = 0

(2)ρ

(

∂u

∂t
± c1 · ∇u

)

= −∇p

(3)ρ

(

∂T

∂t
± c2 · ∇T

)

= 0

(4)
∂u

∂t
+ c1

(

∂u

∂x
+

∂u

∂y

)

= −
1

ρ

∂p

∂x

(5)
∂v

∂t
+ c1

(

∂v

∂x
+

∂v

∂y

)

= −
1

ρ

∂p

∂y

(6)
∂uh

∂t
+ c1

(

∂uh

∂x
+

∂uh

∂y

)

= 0

(7)AB
∂C

∂t
+ c1BC

∂A

∂x
+ c1AC

∂B

∂y
= 0



3

Vol.:(0123456789)

Scientific Reports |         (2023) 13:3859  | https://doi.org/10.1038/s41598-023-30825-3

www.nature.com/scientificreports/

Since each term in Eq. (8) is the sole function of x, y, t, Eq. (8) can be written as

where ni , i = 1, 2, 3 are complex eigenvalues and are constants for time, x, and y, respectively. The eigenfunction 
(Eq. 9) has many useful and important properties. In this work, we benefit from three of them. First, the linear 
dependence of velocity on time and space variables simplifies the velocity fields and allows us to solve velocity 
fields on time only. Second, Eq. (9) can be multiplied by any nonzero constant without changing the nature of 
velocity fields, which helps to curve-fit correlations. Third, the complex eigenvalues yield two independent, 
equivalent eigenfunctions for real and imaginary parts. With this property, we can treat the transient part of 
the solution as the turbulent field, where the eigenvalues for real parts are not zero. The quasi steady state part 
sustains the resonance since its eigenvalue for the real part is zero and does not decay.

The separation method yields the general homogeneous solution,

where we use the shorthand N and its summation to replace the double summation on the real and imagi-
nary parts separately and A0,n2 , B0,n3 and C0,n1 are integration constants to be determined by boundary con-
ditions. Since the flow is dominated in x direction, the pressure is assumed a linear function longitudinally 
p = e−n1t(α0x + β0) for convenience. We obtain the inhomogeneous solutions,

where α0 is a constant determined by the pressure drop of the given viscous flow and b0 is the coefficient of the 
series to be determined by the boundary conditions. The solution of the transient part is arrived at

where φn1 =
1
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(
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e
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)

 . If one only focus on the temporal component, the real part of Eq. (12) 
becomes

where T1,k and T2,k are the real coefficients to be determined by boundary conditions and k and K are real as well. 
Similarly, we can obtain the lateral velocity

where U1,l and U2,l are the real coefficients to be determined by boundary conditions and l and L are real as well, 
which are generally not equal to k and K. Here, it should be noted that the quasi steady state solution has the 
eigenvalues of n1 = k + 0i , which yields the solution  in13 of

where c1 is the speed of the first sound and us and vs are steady state velocities and can be expressed by sinusoidal 
waves,
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where T3,k , T4,k and U3,l and U4,l are the coefficients to be determined by resonance and steady state boundary 
conditions. Here, we want to clarify the difference between superfluid at resonance and turbulence, where super-
fluid at resonance includes both transient and steady state velocity fields but a turbulent flow is only the transient 
portion. At its generation, the quasi steady state portion loses its identity from Eq. (4) and becomes the part of 
resonance. Since we only consider turbulence, we will only focus on the transient portion of the solution in this 
manuscript. We obtain the turbulent velocity Eqs. (13) and (14) and may employ frequency instead of angular 
frequency for convenience,

In summary, we obtained the turbulent velocities in an isotropic, multi-dimensional field. Although a tur-
bulent field is three-dimensional, we can express them in time only because of the isotropic nature of the field. 
Both longitudinal and lateral solutions of superfluid at resonance have two parts. A transient part represents the 
response to the impulses and the decay with time, and a quasi-steady state part sustains the resonance. A turbu-
lent flow field takes only the transient part of the superfluid at resonance. To derive the Taylor correlation func-
tions for turbulence, we will solve these coefficients in the transient part Eqs. (18) and (19) in the next section.

Boundary of second law
The purpose of this section is to determine the integration constants in the general solutions of turbulent veloci-
ties. Since it arises in a regular fluid, a superfluid is surrounded by the regular fluid, and the interface between the 
regular fluid and superfluid is the boundary. Therefore, the boundary condition must be established between the 
superfluid and the regular fluid. In this section, we quantitatively establish this new kind of boundary condition 
through the concept of the boundary of the second law. In the transition of thermodynamic states, the physi-
cal process begins when the excess entropy becomes zero, which means that at that very short and ephemeral 
moment, a fluid parcel experiences isentropic flow. Since an isentropic flow is non-dissipative, this fluid parcel at 
that particular moment appears to have no viscosity and becomes superfluid, similar to the “fixed” and “movable” 
spots  by17. Consequently, we must supply the Euler equations to describe the motion of this fluid parcel, not the 
Navier-Stokes equations. Since this instant is so short that the representation of this change is best described by an 
impulse. If these instants occur continuously, we will have a row of impulses, which is mathematically called the 
Dirac comb. In this section, we use the Dirac comb as a tool to determine the integration constants step by step.

The theory of excess entropy relies on the second law of thermodynamics, which states that a non-dissipative 
process does not incur any loss due to viscosity. This law holds anywhere and any moment, and there is no excep-
tion infinitesimally. Then, we should be able to describe it by the differential equations of fluid motion. Since the 
excess entropy is the difference of entropy between the dissipative motion, sD , to a non-dissipative motion, sND,

If the excess entropy is zero in space or time, the flow becomes non-dissipative at that instant. Hence, at 
that instant, the flow appears to have no viscosity and no thermal conductivity and follows the Euler equations. 
Derived from the energy equation, the excess entropy can be calculated by the differential equation below:

where u† is the velocity vector in the regular fluid and ∇ · q denotes the divergence of heat flux and ε = τ : ∇u , 
dissipation due to viscosity. τ = −µ

(

∇u + (∇u)T
)

− (ζ − 2
3µ)(∇ · u)I is the stress tensor, ζ is bulk viscosity 

and µ is molecular viscosity. If we assume that there is no heat conduction, to guarantee that excess entropy 
equals zero, the dissipation term must be zero.

For an isotropic turbulent flow, we also assume the regular fluid side can be described by a two-dimensional 
flow and explicitly write (Eq. 22) on the velocity gradient with constant viscosity,

If we assume that there is a small perturbation in velocity, they are
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where ni , i = 1, 2, 3 are the harmonics of the perturbations and u†0 and v†0 are the amplitudes of the longitudinal 
and lateral perturbation velocities, respectively. The functions, φ(x, y) and π(x, y) and coefficients an and bn are 
chosen such that they satisfy the continuity equation. Bring Eqs. (24) and (25) to (23), (22) becomes

where S1 = 2
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+
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− 2

3

(
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+ 2
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3
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∂φ
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only spatial functions. In an isotropic turbulent field, the boundary of the second law is obtained by

Although Eqs. (27)–(29) show three sets of conditions being on the boundary of the second law, there is only 
one contributing to the boundary conditions. This can be explained by Fig. 1, where we plot 4 curves. The solid 
heavy curve is the longitudinal perturbation, u† = u†0 sin 2π t , and other three curves are on the boundary of 
the second law. The light solid curve is the condition (Eq. 27) αβ = u†0v

†
0 sin 2π t cos 2π t , and both short and 

long dash curves are Eqs. (28) and (29). For Eq. (27), there are five zero points along time t, and three of them 
collapse at the same zero locations with the perturbation. Hence, only two of them are effective at approximately 
t = 0.25 and 0.75 s. At t = 0.25 s, a positive impulse is produced and at t = 0.75 s, a negative impulse is observed 
and both are represented by heavy lines with arrows. Because at the moment of changing thermodynamic state, 
the positive impulse is created on the positive peak u†0 and the negative impulse is produced on the negative peak 

(24)
u† = u†0

N
∑

n,n1,n2=1

an sin 2πn1x sin 2πn2y sin 2πnt

= φ(x, y)α(t)

(25)
v† = v†0

N
∑

n,n1,n2=1

bn sin 2πn1x sin 2πn2y cos 2πnt

= π(x, y)β(t)

(26)ε = S1α
2
+ S2β

2
+ S3αβ

(27)S3αβ = S3 sin 2πnt cos 2πnt = 0

(28)S1α
2
= S1 sin 2πnt sin 2πnt = 0

(29)S2β
2
= S2 cos 2πnt cos 2πnt = 0

Figure 1.  Illustration of the boundary of the second law and impulses in a dirac comb.
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−u†0 of u†0 sin 2π t . The other two dash curves have to be zero to guarantee (22), where (29) falls to zero at t = 0.25 
and 0.75 s as shown in Fig. 1 and (28) relies on the spatial term S1 = 0 at t = 0.25 and 0.75 s.

As the motion (Eq. 24) continues, the impulses are continuously generated on the boundary of the second 
law. This array of impulses can be mathematically described by a so-called Dirac  comb18, which is denoted for 
the sinusoidal function in Fig. 1 as

where Eq. (30) is the Dirac comb for the positive impulses and Eq. (31) is for the negative impulses, where the 
period is assumed 1 and k is the period of interest. Equations (30) and (31) represent continuous impulses with 
time at intervals of period k. The Fourier transformation of Eqs. (30) and (31) are readily available for a Dirac 
comb as

Hence, the coefficients of Fourier transformation of the Dirac combs Eqs. (30) and (31) are

The independent coefficients of Fourier transformation of Eq. (18) equate to those of Eqs. (34) and (35), 
which produces

Since T1,k and T2,k are not the function of time, rearrange (Eq. 36)

where

Solve Eq. (37) and assume u0 = u†0 . We obtain the longitudinal velocity,

Similarly, we can derive the lateral turbulent velocity,
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Again, the turbulent velocities Eqs. (38) and (39) only represent the transient component of superfluid at 
resonance since they keep the identities of impulses, which diminish after a short period. On the other hand, 
the quasi steady state velocities sustain resonance and do not relate to the transient process as soon as they are 
generated. The turbulent velocities Eqs. (38) and (39) are expressed in series, where each term consists of sine and 
cosine functions and exponential functions. Although they are only a function of time, the turbulent velocities 
are also a function of spatial excitation. Such dependence still remains through the relationship of eigenvalues 
in Eq. (9). During validation, we will show that with small adjustments of the frequency and amplitude factors, 
the effects of spatial excitation can be included.

In summary, we derive the turbulent velocities in a multidimensional isotropic turbulent flow. When the 
inevitable, small perturbations, represented by the Fourier series, are used in the differential equation of the 
excess entropy, we can find the boundaries of the second law. In this section, we showed that it is impossible to 
keep the perturbations from “touching” the boundary of the second law. These contacts of the thermodynamic 
boundary create a set of impulses that turn a regular fluid into a superfluid at resonance. From the differential 
equations (4) and (5), we are able to determine the turbulent velocities Eqs. (38) and (39), which are used to 
derive the Taylor correlation functions in the next section.

Correlation functions
In this section, we derive the correlation functions from the velocity distributions Eqs. (38) and (39). The cor-
relation functions will be validated by experimental data in the next section.

Before we proceed in the derivation of the correlation functions, we examine whether the mean and mean 
square of velocities are consistent with observations. By definition, the mean velocity is calculated by 

u = 1
K

K
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T

∫ T
0 ukdt , and uk = 2πu0k(3 cos 2πkt − 4 sin 2πkt) e−2πkt . From Eq. (38), the following 

expression for the mean velocity is calculated:

From the longitudinal velocity (Eq. 38), the mean squared velocity can be derived
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is used. Similarly, we have the mean squared lateral velocity,

where v′ is the conventional lateral turbulence intensity. The mean squared turbulent velocities are constant 
proportional to the perturbation velocity squared, which is consistent to experimental observations and the 
general convention in turbulent  flows4–7.

Taylor correlation functions have been referred to by different names, such as the Taylor one-dimensional 
energy spectrum, Taylor hypothesis or the two-point second-order moment. Nevertheless, Taylor correlation 
functions represent turbulent flows with the most succinct form and are reproduced consistently in many experi-
ments of turbulent flows. In fact, the simple relation of the correlations with turbulent velocities attracted the 
attention of researchers such  as5,19,20 and many others. However, no such velocity is available so far in public 
domain, and known to the author. Here, the emphasis is the physics that leads to velocities Eqs. (38) and (39) 
and the subsequent correlation functions. Acoustics and turbulent flow are two common phenomena and share 
the same fundamental physics at various stages. When a motion takes place isentropically, superfluid, sound and 
turbulence will occur. Without the introduction of this physics, it will be difficult to circumvent the longitudinal 
and lateral velocity distributions.
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where U is the longitudinal velocity of the mean flow and x is the distance between two points where turbulent 
velocity is measured and xU  has the unit of time, and xU  can be replaced by any variable equivalent to time, for 
example, time delay τ21 or any nondimensional variable of time such as Uτ

M
22. The integration of Eq. (43), similar 

to obtaining the mean square velocity in Eq. (41), yields the following expression:

Similarly, the lateral correlation function can be obtained from Eq. (44) as follows

where both correlation functions are identical in form. The difference between the longitudinal and lateral cor-
relations lies in the fact that since the axial flow dominates, the amplitude of longitudinal velocity is much higher 
than that of lateral velocity; as the result, the decay of the lateral velocity is much faster. According to (9), the 
wave composition of the lateral velocity is influenced by the summation of temporal and axial mode shapes and 
is likely different from either one of them.

Briefly, by utilizing velocity distributions, we analytically derived the correlation functions and basic statisti-
cal properties observed experimentally. In the next section, we determine the amplitude and frequency factors 
of these correlations and validate them with experimental data.

Validation
In this section, the validation is organized into three parts. First, we demonstrate that the formulas can be curve 
fitted to the desired precision with two selected experimental datasets, which shows that the theory and formulas 
phenomenologically describe a turbulent flow. Second, we compare the longitudinal correlation with other known 
experimental datasets. The comparison shows that the formulas capture the key features of those experiments 
and that there are appreciable variations between experiments. Third, we apply the longitudinal correlation to 
a spatial evolution dataset and show that the theory describes the correlation in the ranges of both positive and 
negative eigenvalues in space. Although the amplitude and frequency factors are curve-fitted in the range of 
positive eigenvalues, the comparison shows good agreement in the negative eigenvalue region, especially near the 
peak. The good agreement between the experimental data and theory solidifies the confidence in the theory. In 
the next section, we use the turbulent velocities and correlations to gain insights into the physics of turbulence. 
As complex as turbulence, one must recognize that no validation can possibly be accomplished by one manu-
script. With that in mind, we concede that the validation here is just the beginning of the process and is limited.

It is known that a turbulent flow is a formidable problem in complexity and difficulty. There will be little argu-
ment on the fact that we have to solve it in multiple steps. As well, it is almost sure that as we understand more, 
the convoluted process to obtain Eqs. (45) and (46) will be simplified but for now, it has taken a big portion of 
the manuscript. As soon as we had access to Eqs. (45) and (46) and the experimental data  from2,21,23–25, it was 
the natural reaction for us to curve-fit this universal correlation function. We have to remember that Eqs. (45) 
and (46) are systematically derived, whose realization by the curve fitting is based on their universality. During 
the fitting process, we have also learnt significantly the properties of them. Especially, there are many combina-
tions of coefficients that can produce the same correlation functions, which is the fundamental reason that the 
Taylor correlation functions are universal. In order to solve these coefficients, we immediately started to work 
on the mode shapes and spatial distribution, which, we believe, will lead the determination of these coefficients 
analytically. Soon, we found that the work on the spatial eigenfunctions is so extensive that it should be kept in a 
separate manuscript. More importantly, we discovered that the solutions from the negative eigenvalues produce 
the correlation functions on the negative axis, which is equivalent to validate the correlation functions on the 
negative axis with a blind comparison. Such a comparison has much higher fidelity than a curve-fitting.
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Considerations and findings above make us decide to check in with the general community and experts in 
turbulence and turbulent flow and appreciate the feedbacks and directions that we will be offered during and 
after the publishing process.

Beyond the considerations above, we believe that there are several benefits for the general scientific and 
engineering community if we check in right now. A function form of the correlation functions may be valuable 
for some disciplines so that a reader can apply them to approach the theoretical and technical challenges that 
one is facing. A scientist, engineer or technician can use the conclusions on the negative eigenvalues to check 
the instrumentation or software that conducts such computation and correct them if necessary. It promotes the 
experiments or publishing data on a much wider range of the time delay so that we can learn more about turbu-
lence from the theory and experiments since the current datasets are limited to small time delays.

With the property of scalable eigenvalues in Eqs. (9), we assume that the turbulent velocities can be multiplied 
by two constants on real and imaginary parts, and they are the amplitude and frequency factors,

Similarly, we can derive the lateral turbulent velocity,

where αk and αl are amplitude factors and βk and βl are frequency factors, which allow the correlation functions 
to tolerate small variations from experiments and mode shapes. The derivation of the correlation functions with 
these factors is identical to obtaining Eqs. (45) and (46), which are given as follows:

where ϕ and ψ are from Rx(0) and Ry(0) to normalize Rx and Ry,

and α1 andβ1 are amplitude factors and frequency factors at k = 1 and l = 1 , respectively, which are the same as 
these given in Eqs. (47) and (48). When αk = 1 and βk = 1 , Eq. (49) is reduced to Eq. (45) as expected.

We compare Eqs. (49) and (50) with several known experimental datasets in the public  domain2,21–25. In 
general, calculations from Eqs. (49) and (50) agree very well with data. As pointed out  by21, correlations from 
each dataset are slightly different from each other despite having the same appearances and trends due to the 
phase angles of data collected. The small disparity is due to the dependence of the eigenfunctions on spatial mode 
shapes through Eq. (9). Hence, we allow the frequency and amplitude factors to float slightly and report them 
along the comparisons presented here.

The longitudinal correlation is curve-fitted to the experimental data  by22 and the lateral correlation to the 
experimental data  by25. They are both wind tunnel after-grid turbulence. The longitudinal correlation data  from22 
have a very wide range of x/U from 0 to more than 100, and the curve-fitting here uses the data from 0 to 70 
due to the quality of data beyond 70. To avoid choosing the experimental data from the same source and the 
preference for the latest dataset, the later experimental data  by25 are selected for the curve-fitting for the lateral 
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correlations. For each correlation, we use two series with 6 terms or terms to curve fit. The error is calculated by 
the sum of the differences between experimental data and theory, the desired and calculated errors of all curve 
fits are less than 1 % , and there is no visual difference between 6 terms and 10 terms, as illustrated in Fig. 2. The 
amplitude and frequency factors from curve fit are given in Table 1 for these 6 terms and Table 2 for these 10 
terms. It is interesting to observe that although the errors are very low, these factors from 6 terms are different 
from those in 10 terms. When the range of the data is larger, the differences between these factors are larger, for 
example, in the longitudinal correlation. Although it has a small range in the lateral data, there are some appreci-
able differences between the factors in 6 terms and 10 terms. The variation in these factors is observed in the trials 
of curve fitting. With the same level of errors, these factors can change slightly here and there without changing 
the shape of the curves. This suggests that there are infinite combinations of these factors to yield the same or 
slightly different correlation functions. In other words, the functions and forms of the correlations Eqs. (49) and 
(50) will not change regardless of variations in these factors. In physics, such observation is also consistent with 
the observation that the Taylor correlation functions vary slightly from one test to another. Additionally, it was 
explained previously that these factors are functions of the mode shape and the spatial distribution of nodes and 
antinodes. A vivid presentation of this kind of phenomena is the Chladni pattern, where at the same resonance 
frequency, there are many different patterns due to many radial and angular modes in a solid plate.

Figure 2.  Curve-fitting of longitudinal and lateral correlations. Experimental data  from22 for the longitudinal 
correlation  andfrom25 for the lateral correlation.

Table 1.  Amplitude and frequency factors by curve-fitting 6 term correlations.

k, l

Longitudinal Factors Lateral Factors

αk βk αl βl

1 1.2569E−1 2.6979E−3 7.8901E−1 3.3731E−3

2 4.5120E−5 1.9547E−1 7.0859E−3 1.5318E−1

3 7.8979E−3 7.9215E−3 5.2742E−2 4.0467E−2

4 6.5119E−3 2.3032E−2 1.1903E−1 0.000E+0

5 8.7398E−3 1.5176E−2 1.2666E−2 2.7643E−2

6 5.3438E−2 2.4766E−2 1.8769E−2 2.8635E−2
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In Fig. 3, we compare the 6-term correlation functions with several experimental datasets in public domain. 
We included the dataset where the original correlation functions were discovered. Since the physics and deriva-
tions indicate that both lateral and longitudinal correlations bear the same fundamentals, in Fig. 3, we included 
the comparison of the longitudinal correlation with the experimental data only. On the correlation curve, we 
add 20% error bars to visualize the spread, and the scattering of data has the same trend as the error bars. Higher 
correlation coefficients also have larger errors. The correlations by Taylor’s  data2,23 are consistently higher and 
those by Stewart and Townsend are consistently  lower21, while those from Frenkiel and  Klebanoff24 are in good 
agreement with the theory and Favre et al.22 and Atta and Chen’s experimental  data25. The longitudinal correla-
tion crosses the abscissa at some points and becomes negative and then returns to positive again. When the 
longitudinal correlation reaches the first zero at approximately 2.9 and the lateral correlation at approximately 
1.0, the experimental datasets are coherent themselves, and the theory agrees with these datasets very well. Taylor 
and Simmons’ data do not cross the abscissa, while Stewart and Townsend’s data cross at lower values. Since the 
delay parameter is defined with certain freedom, it is unclear whether those having larger variations are due to 
the choices of correlation parameter or other uncertainties.

In Eq. (9), it is possible that the eigenvalue of the temporal component is negative, which is also a legitimate 
solution of turbulent velocities. In that case, the velocities of negative eigenvalues have the forms of

where u− and v− are velocities with negative eigenvalues of Eqs. (47) and (48). When we correlate Eq. (47) with 
Eqs. (51) or (48) with Eq. (51), we find the correlation functions in the negative parameter as follows:
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Table 2.  Amplitude and frequency factors by curve-fitting 10 term correlations.

k, l

Longitudinal Factors Lateral Factors

αk βk αl βl

1 3.4288E−1 2.6621E−3 7.0778E−1 0.000E+0

2 7.7780E−5 2.0097E−1 2.0471E−3 7.9155E−1

3 4.7935E−3 2.9699E−2 5.4469E−2 1.3868E−2

4 8.4886E−3 2.8787E−2 1.8617E−1 1.7235E−4

5 5.4795E−3 1.3648E−2 1.2544E−2 2.5580E−2

6 1.9209E−2 3.3624E−2 1.9570E−2 2.9885E−2

7 1.2720E−2 2.5283E−3 1.9888E−2 2.5985E−2

8 2.0450E−3 4.4791E−3 2.0271E−2 2.1731E−2

9 1.2401E−2 5.9460E−4 2.0877E−2 1.1414E−2

10 2.7720E−4 1.0524E−3 3.5836E−2 1.4326E−2
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where for convenience a transformation of k = −k and l = −l has made for Eqs. (53) and (54) and ϕ and ψ are 
the same in Eqs. (49) and (50). The correlations Eqs. (53) and (54) only exist in the negative axis, xM < 0 . In the 
dataset, the corresponding factors in Eqs. (49) and (50) should hold. In Fig. 4, we compare the results from Eqs. 
(49) and (53) to the experimental dataset  by22. The experiments were supposed to demonstrate the time and space 
delay simultaneously. The time parameter VTM  has velocity V, time T, and mesh size M for turbulence generation, 
and xM is the space parameter. Since they are dimensionless, the space and time delay can be plotted on the same 
scale. Each peak represents a time delay at a given space X/M, except for the top dataset. At each peak, the curve 
on the right is calculated from the correlation of Eq. (49), and the curve on the left is from Eq. (53) by opposing 
correlation, where asymmetricity is visible. For all peaks, the correlations on both sides from the theory agree 
very well with the experimental data. At turning regions, the negative-side correlation does not have as sharp an 
elbow as the data, although it meets the data again further away. Since in the curve fitting, we purposely blind 
the knowledge of the negative-side correlation, the good agreement in Fig. 4 is very encouraging.

In summary, we compared calculations from Eqs. (49), (50) and (53) to experimental data in isotropic tur-
bulent flows. We obtained two sets, 6 terms and 10 terms, of amplitude and frequency factors by curve fitting to 
two different data sources. These factors are tabulated in Tables 1 and 2, and the curve fitting of all correlations 
is less than 1 % error. We then compare the correlations to other datasets. When the first zeros of the experimen-
tal data are consistent, the agreements are very good, and a large deviation is observed when the first zeros are 
off. We also evaluated the evolution of the turbulent distribution in space and compared the calculation to the 
experimental dataset. The correlation between velocities with the opposite eigenvalues makes up the negative 
axis and is axisymmetric to the correlation on the positive axis. The correlations from both positive and negative 
parameters agree very well with the experimental data in space and time delay. We are very encouraged by the 
results, and the validation work will continue beyond this manuscript.

For convenience, we tabulate various velocities, their physical meaning and the equation numbers where 
they appeared in Table 3.

Discussion
In this section, we discuss the essential elements and the results developed through the manuscript. Our discus-
sions focus on three aspects that, we believe, are significant. They are the fundamental physics, correlations and 
turbulent velocities. The hypothesis that turbulence is the transient part of superfluid at resonance is a fair new 
concept, where further discussion will help to clarify more. Since we have an analytic representation of the Taylor 
correlation functions, we can explore the certain specifics in the correlations that were inaccessible. Through 

Figure 3.  Comparisons of longitudinal and lateral correlations with experimental data. Experimental data from 
Refs. 2,23 for Taylor, Ref. 22 for Favre et al., Ref. 25 for Atta and Chen, Ref. 21 for Stewart and Townsend, and Ref. 24 
for Frenkiel and Klebanoff.
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validation, the turbulent velocities are also determined, which provides an opportunity to learn the properties 
of turbulent velocities.

The fundamental premise of the theory is that in a body of fluid, the physics of fluid motion is different from 
that in a viscous fluid when it does not momentarily change the entropy. The excess entropy is defined to quantify 
the temporal and spatial conditions in Eq. (20)

where sD and sND are the mass density of entropy of a dissipative fluid and a non-dissipative fluid, respectively. 
In this framework, a regular or viscous fluid turns into a superfluid when excess entropy is zero. A superfluid 

(20)δs = sND − sD

Figure 4.  Comparisons of longitudinal correlation and experimental data with both time and space delays. 
Experimental data is  from22. VT

M
 refers to time delay, and x

M
 refers to space delay. Each peak is measured at a 

specific x
M

 and the correlation is plotted with curves on both sides as positive and negative time delay by VT
M

.

Table 3.  Velocity, physical meaning and equations appeared.

No. Symbol Physical meaning Equations

1 u Velocity vector of superfluid (1)

2 u, v Velocities of resonant superfluid (4), (5)

3 uh Homogeneous solution of resonant superfluid (6)

4 up Nonhomogeneous solution of resonant superfluid (11)

5 us , vs Steady-state velocity of resonant superfluid (15)–(17)

6 u† , v† Perturbation velocity of regular fluid (24), (25)

7 u†0 , v
†
0

Amplitudes of perturbation (24), (25)

8 ⋔1 , ⋔2 Dirac comb in positive and negative directions, positive and negative impulses (30),(31)

9 ū Arithmetic mean velocity (40)

10 u′
2 , ū2 Longitudinal mean squared velocity of turbulent flows (41)

11 v′
2 , v̄2 Lateral mean squared velocity of turbulent flows (42)

12 U Longitudinal velocity of the mean flow (43)

13 u− , v− Longitudinal and lateral velocities of resonant superfluid with negative eigenvalues (51), (52)
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is a fluid at a special thermodynamic state, the isentropic state. The excess entropy can be calculated by the dif-
ferential equation derived from energy conservation:

If there is no conduction and the dissipation rate ǫ becomes zero, at that moment or instance, the fluid is 
locally superfluid. Because of the second law of thermodynamics, at that moment, the motion is isentropic, which 
has no viscous dissipation or thermal conduction. Therefore, at that moment, the governing equations are the 
Euler equations, not the Navier–Stokes equations. In an oscillatory motion, a parcel of fluid is repetitively in the 
isentropic state, which drives the fluid into resonance, which describes the differential equations for superfluid 
at resonance:

and for negative eigenvalues

It is necessary to note that the velocities with negative eigenvalues are not negative velocities and can be 
in the same direction as those with positive eigenvalues. The asymmetric nature of correlations between posi-
tive–positive eigenvalues and positive–negative eigenvalues shows us that a complete set of velocity solutions 
should include both positive and negative eigenvalues, which are usually ignored in practice. In Figs. 5 and 6, 
the significance of negative eigenvalues becomes evident. In Fig. 5, we plot the longitudinal velocity with the 
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Figure 5.  Normalized longitudinal turbulent velocity with positive and negative eigenvalues with 6 and 10 
terms.
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amplitude and frequency factors in 6 terms and 10 terms. Along with the positive eigenvalues, we also plot the 
longitudinal velocity with the negative eigenvalues. Differences between the heavy and light solid lines are from 
the different numbers of terms for the longitudinal velocity with positive eigenvalues. Differences between the 
heavy and light broken lines are for the negative eigenvalues. Although there is no visual difference in correla-
tion functions with 6 or 10 terms, the differences are larger in velocities between 6 or 10 terms, which indicates 
that the correlations are less sensitive to the variations in velocity. However, the differences between positive 
and negative eigenvalues are more pronounced than those from the number of terms. The disparity between 
the velocities with positive or negative eigenvalues shows the significance of velocity with negative eigenvalues. 
In Fig. 6, we plot similar information for the lateral velocity, and the number of terms makes little difference in 
the velocities with either positive or negative eigenvalues. However, the difference due to positive or negative 
eigenvalues is substantial.

In Fig. 5, the longitudinal velocity is at its maximum at t = 0 due to the impulse from regular fluid. After 
approximately half sec, the negative impulse acts on the same parcel fluid and accelerates the velocity decay. 
After approximately 2 s, the longitudinal velocity becomes zero momentarily (by the heavy solid line) and turns 
negative, which means that the longitudinal turbulent velocity moves in the opposite direction. The velocity 
turns positive again between 7 and 8 s. The physical mean of the correlation function is the summation of the 
magnitude in one profile in Fig. 5 multiplied by the magnitude in another profile at a given distance of x/U. 
When the second velocity profile moves into the negative velocity range of the first velocity profile, the summa-
tion can become zero or negative, which results in a negative region at approximately 2.9 in Fig. 2 for the longi-
tudinal correlation. In that negative region, the velocity of one fluid parcel is moving in the opposite direction 
of the other. The lateral velocity has a much lower amplitude; hence, the occurrence of the zero point is much 
earlier (Fig. 6), where the lateral velocity reaches zero at approximately 0.76 s while the longitudinal velocity is 
at approximately 2 s.

When we plot them, the contribution from each term of the longitudinal velocity can be analyzed individually 
in Fig. 7. In a 6-term longitudinal velocity, the term from k = 6 has the largest variation, and the term of k = 2 
has the smallest contribution due to its extremely low amplitude factor ( 4.5E − 5 ). At approximately t = 2 s, 
terms 1 and 3 are almost equivalent to the sum of terms 4, 5 and 6, where zero velocity is observed. Although 
these factors change with mode shapes and frequencies, which will change the composition of these terms, the 
structure and characteristics of turbulent velocities and correlations made of elemental functions will not change.

Figure 6.  Normalized lateral turbulent velocity with positive and negative eigenvalues with 6 and 10 terms.
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Conclusions
In this manuscript, we analytically derived, fitted and validated Taylor correlation functions by assuming turbu-
lence as a phenomenon of superfluids at resonance.

A recent study showed that the motion of a regular fluid can experience a different thermodynamic state and 
be excited locally when an oscillation persists. At these excitation sites, the change in the governing equations 
in velocity leads to the theory of turbulence formation in this manuscript. From the differential equations of 
superfluids at resonance, we derived the distribution of longitudinal and lateral velocities in a three-dimensional 
isotropic turbulent flow.

By assuming a small sinusoidal perturbation in the longitudinal direction on the regular fluid side, we 
obtained the Dirac combs of velocity impulses on the boundary of the second law. Through Fourier integration 
and coefficients, these Dirac combs close the boundary conditions in longitudinal and lateral turbulent velocities. 
These velocity profiles produce mean velocity and root mean square velocities that are consistent with those from 
statistics and experimental data. Taylor correlation functions for longitudinal and lateral velocities are subse-
quently derived. The correlation functions are represented by series, and each term in the series consists of two 
elementary functions: trigonometric and exponential functions. The trigonometric functions are attributed to 
small negative regions repeated along the temporal or spatial distances observed experimentally. The exponen-
tial function dominates the behavior of correlation functions and results in descending power laws, reported in 
various forms. The fundamental reason that any turbulence fits Taylor’s 1D correlation lies in the fact that they 
are in resonance, and therefore, all spatial and temporal variables can be expressed linearly in an eigenfunction. 
Here, we want to emphasize that there is no compromise on the nonlinearity of Reynolds stresses since the lin-
earity of the governing equations of resonant superfluid does not change the nature of Reynolds stresses at all.

Through validation, it is found that the solutions of negative eigenvalues are different from those of positive 
eigenvalues. Experimental data and theory suggest that a complete solution shall include these from the nega-
tive eigenvalues.

In Eqs. (47), (48), (49), (50), (51), (52), (53), and (54), turbulent velocities and correlation functions are 
presented in fairly simple form as a function of time only, although they relate to complicated mode shapes in 
space. This complexity is observed through the fact that Taylor correlation functions vary somewhat from one test 
to another. The nodes, antinodes and amplitudes of excitation are dependent on geometry, fluid properties and 
boundary conditions. However, once we cast them into the function of time as we have done in this manuscript, 
the general formulas of turbulent velocities and correlation functions are analytically determined.

Figure 7.  Contributions of each term to longitudinal velocity with 6 terms.
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As soon as we adopt the concept of the boundary of the second law, a completely new physics dealing with 
non-dissipative processes unfolds, which covers nearly all subjects of science and provides consistent solutions 
for many outstanding problems. The examples of solving the steady-state problems in non-dissipative dynam-
ics are given in the previous work on interface thermal resistance and spontaneous thermodynamic cycles. The 
work presented in this manuscript exemplifies the mathematics on the boundary conditions and solutions of 
turbulence, disorder, transient dynamics and their correlation functions, in addition to the practical applications 
of those correlation functions.

Data availability
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tion, the datasets used and/or analyzed during the current study are available from the corresponding author 
on reasonable request.
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