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A mathematical model 
for COVID‑19 considering waning 
immunity, vaccination and control 
measures
Subhas Kumar Ghosh 1* & Sachchit Ghosh 2

In this work we define a modified SEIR model that accounts for the spread of infection during the 
latent period, infections from asymptomatic or pauci‑symptomatic infected individuals, potential loss 
of acquired immunity, people’s increasing awareness of social distancing and the use of vaccination 
as well as non‑pharmaceutical interventions like social confinement. We estimate model parameters 
in three different scenarios—in Italy, where there is a growing number of cases and re‑emergence 
of the epidemic, in India, where there are significant number of cases post confinement period and 
in Victoria, Australia where a re‑emergence has been controlled with severe social confinement 
program. Our result shows the benefit of long term confinement of 50% or above population and 
extensive testing. With respect to loss of acquired immunity, our model suggests higher impact for 
Italy. We also show that a reasonably effective vaccine with mass vaccination program are successful 
measures in significantly controlling the size of infected population. We show that for a country like 
India, a reduction in contact rate by 50% compared to a reduction of 10% reduces death from 0.0268 
to 0.0141% of population. Similarly, for a country like Italy we show that reducing contact rate by half 
can reduce a potential peak infection of 15% population to less than 1.5% of population, and potential 
deaths from 0.48 to 0.04%. With respect to vaccination, we show that even a 75% efficient vaccine 
administered to 50% population can reduce the peak number of infected population by nearly 50% in 
Italy. Similarly, for India, a 0.056% of population would die without vaccination, while 93.75% efficient 
vaccine given to 30% population would bring this down to 0.036% of population, and 93.75% efficient 
vaccine given to 70% population would bring this down to 0.034%.

In December 2019, an outbreak occurred in Wuhan, China involving a zoonotic coronavirus, similar to the 
SARS coronavirus and MERS  coronavirus1. Subsequently, the virus has been named Severe Acute Respiratory 
Syndrome Coronavirus 2 (SARS-CoV-2), and the disease caused by the virus has been named the coronavirus 
disease 2019 (COVID-19). Since then the ongoing pandemic has seen emergence and spread of the Alpha B.1.1.7, 
Beta B.1.351, Gamma P.1, Delta B.1.617.2, and Omicron B.1.1.529, BA.1, BA.1.1, BA.2, BA.3, BA.4 and BA.5 
VOCs as waves of infection with varied infectivity and so far the pandemic has infected more than 600 million 
people and has caused more than 6 million deaths worldwide.

Patients with SARS-CoV-2 infections have mild to severe respiratory illness with symptoms such as fever, 
cough and shortness of breath. For majority of the patients, these symptoms appear 2–14 days after exposure, 
and for majority the symptoms are not life threatening. However, it has been reported that there are patients 
who are diagnosed by a positive RT-PCR test but are either asymptomatic or minimally  symptomatic2–6. There 
are reasonable evidence to consider that such asymptomatic or minimally symptomatic individuals have longer 
duration of viral shedding than the symptomatic individuals and can spread the virus to susceptible  group6. 
Hence, it is possible that the spread of SARS-CoV-2 is much higher and such undetermined transmission has 
been playing an important role in sustaining the community spread.

Mathematical modelling plays an important role in understanding the trajectory of epidemic and design 
effective control measures under set of  assumptions7–9. Here, we propose a new deterministic compartmental 
model for the COVID-19 epidemic that extends the classical SEIR (susceptible, exposed, infectious, recovered) 
model. We define the model and its parameters to address three different scenarios—in Italy, where there is a 
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growing number of cases and re-emergence of the epidemic, in India, where there are significant number of 
cases post confinement period and in Victoria, Australia where a re-emergence has been controlled with severe 
social confinement program. In our model we also consider long term scenarios including re-emergence, re-
infection, and control measures like mass vaccination program. Other than simulating these scenarios, another 
important distinction of our model is that we use parametric functions for contact rate, testing and vaccination.

Compartmental models that involve non-linear dynamical systems based on some combination of 
susceptible/S, infected/I, recovered/R together with some additional compartments have been utilized to pre-
dict the initial evolution of this  pandemic9–12,13. Earlier models also include questions on effectiveness of using 
masks in  public14. With the progress on efficacious vaccines being developed by late 2020, these models needed 
to include the vaccination rates, its effectiveness and possibility of waning immunity acquired from infection 
or  vaccination15. In an earlier version of this  work16 we have considered vaccination rates, its effectiveness and 
possibility of waning immunity. Waning immunity was modelled considering asymptomatic and symptomatic 
 compartments17. Optimal control based strategies in minimizing number of infections over a time horizon has 
been considered including economic  aspects18. Since early 2021, it became important to model and understand 
emergence of increasingly contagious mutations to design effective mitigation  policy19. Non-linear coupled 
dynamical system is introduced  in20. To understand probability of emergence and establishment of a vaccine-
resistant strain an extended SIR model with initial stochastic dynamics was  presented21, where every individual 
infected with a strain there is a small probability that a vaccine-resistant strain emerges in that individual. An 
alternative model using mutation probability of nucleotides was presented  in22. A model with continuous emer-
gence of new strains with a rate that is dependent on number of infected individuals was  presented23. Emergence 
and spread of the Alpha B.1.1.7, Delta B.1.617.2, and Omicron B.1.1.529 VOCs including cross infection across 
age restricted compartmental model was presented  in24.

In this work, we use a deterministic compartmental model that is an extension of the SEIR  model8,25 in which 
we include current experience with SARS-CoV-2. We partition the total population into susceptible individu-
als (S(t)), exposed individuals (E(t)), Asymptomatic, undetected and infected individuals (A(t)), Symptomatic, 
undetected, and infected individuals (I(t)), Asymptomatic, diagnosed and infected individuals (Q(t)), Sympto-
matic, diagnosed, and infected individuals (H(t)), individuals with acute symptoms and in critical care (C(t)), 
and recovered (R(t)) and deceased (D(t)), see Fig. 1.

The transmission dynamics of COVID-19 in the basic model is given by the following deterministic system 
of non-linear differential Eqs. (1)–(10):

(1)
dE

dt
=β(t)(I + κA+ ωQ + ρH)

S

N
− σE,

(2)
dI

dt
=ασE + νA− (η + θ + �)I ,

(3)
dA

dt
=(1− α)σE − (ε(t)+ ν + γ )A,

Figure 1.  The model consists of following compartments: susceptible S(t),, exposed E(t), asymptomatic A(t), 
symptomatic I(t), quarantined Q(t), isolated H(t), deceased (D(t) and recovered R(t) individuals in a population 
of N(t) = S(t)+ E(t)+ A(t)+ I(t)+ Q(t)+H(t)+ R(t)+ D(t) individuals.
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where,

is the total population.

Susceptible individuals: S(t). In our model, the susceptible individuals gets exposed to infection, and 
move to exposed group E(t), from coming in contact with an infected individual, who may be symptomatic, 
asymptomatic, quarantined, or isolated. β(t) is the baseline infectious contact rate, which can vary with time or 
assumed constant for the analysis of our baseline model. We assume that a person who is infected with symptom, 
and is not isolated, has the basic transmission coefficient of β(t) , that is changing over time. Based  on14,26, we 
define β(t) to have a value β0 till time t0 and then as a decreasing function with respect to time t, to reaching βmin.

We would like to note that in certain countries, stringency measures were in place at an earlier stages of the 
epidemic and was relaxed over time leading to a higher contact rate. Under such scenario, we use an increasing 
function for β(t) after an initial phase of reaching or nearing βmin as

We assume that the asymptomatic individuals infect with a lower contact rate ( κ < 1 ) than the symptomatic 
individuals. Once someone symptomatic is diagnosed, they can only infect healthcare workers and this lower 
contact rate is captured by the parameter ( ρ < 1 ). Similarly, quarantined individuals have much lower contact 
rate of ( ω < 1 ). Overall rate of change for the susceptible population is thus defined by Eq. (9).

Exposed individuals: E(t). Individuals in compartment E, are exposed to the virus, and are not conta-
gious during a period of latent time. An individual in E becomes infectious, and moves to compartment A as 
asymptomatic or to I as symptomatic. We assume that σ is the transition rate from exposed to infectious, and a 
fraction α of them show symptoms. It is important to note that following ideas from other extended SEIR model 
e.g.14,17,27–29 we have extended standard SEIR model to include symptomatic and asymptomatic classes, and the 
fact the in SARS-CoV-2, it has been observed that asymptomatic classes can infect susceptible  individuals28. 
Overall rate of change for the exposed population is thus defined by Eq. (1).

Symptomatic individuals: I(t). Symptomatic individuals can get diagnosed ( θ ) and be isolated, or show 
acute symptoms and be hospitalized ( � ), or can recover at the rate η . It has been observed that η ≥ γ , where 
symptomatic individuals recover at faster rate than asymptomatic individuals, and asymptomatic individuals 
have longer duration of viral  shedding6. Overall rate of change is given by Eq. (2).

Asymptomatic individuals: A(t). Asymptomatic individuals can eventually show symptoms and move to 
I at rate ν or can have a positive diagnosis and move to quarantine. We model testing of asymptomatic population 
as a function of time as the community testing process ramps up. Testing rate has been captured as ε(t) . Finally, 
they can recover at the rate γ . Overall rate of change is given by Eq. (3). A note on testing rate is in order. We 
model it as following:

(4)
dQ

dt
=ε(t)A− (ϕ + µ)Q,

(5)
dH

dt
=θI + ϕQ − (τ + ψ)H ,

(6)
dC

dt
=τH + �I − (δ + ζ )C,

(7)
dD

dt
=δC,

(8)
dR

dt
=(ηI + γA+ µQ + ψH + ζC),

(9)
dS

dt
=− β(t)(I + κA+ ωQ + ρH)

S

N
,

(10)N(t) = S(t)+ E(t)+ A(t)+ I(t)+ Q(t)+H(t)+ R(t)+ D(t),

(11)β(t) =

{

β0 t < t0
βmin + (β0 − βmin)e

−r(t−t0) t ≥ t0

(12)β(t) =







β0 t < t0
βmin + (β0 − βmin)e

−r(t−t0) t0 ≤ t < t1
βnew − (βnew − βmin)e

−u(t−t1) t ≥ t1
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Here, we set the testing rate as an increasing function of time, because of the increasing production of detection 
kits and the improvement of detection techniques. Where, 1/ε0 can be thought of waiting time for an individual 
to get tested in the start of an outbreak and 1/εmax is the reduced waiting time at a later point during the epidemic. 
In other words, limt→∞ ε(t) = εmax ≥ ε0.

Quarantined individuals: Q(t). Quarantined individuals are asymptomatic population after diagnosis 
and they have very low contact rate ( ω < 1 ). This is mostly by infecting the other family members or by breach 
of protocol. They however, may develop symptoms and move to H or recover. Overall rate of change is given by 
Eq. (4).

Isolated individuals: H(t). Isolated individuals are showing symptoms and has been either home isolated 
or has been hospitalized. They can pass the infection to a limited number of health care professional or caregiver 
( ρ ). They can become critical and require treatments in intensive care ( τ ), and a large number of them recover 
( ψ ). Overall rate of change is given by Eq. (5).

Critical, recovered and deceased individuals: C(t), R(t), D(t). These counters collect information 
on population that are critical, recovered or have deceased. Overall rate of change is given by Eqs. (6)–(8). We 
assume that in the base model, recovered individuals possess lasting immunity against SARS-CoV-2 over the 
period of simulation, however, we extend the model to consider the possibility of re-infection in later section of 
this paper.

Results
Italy. For the COVID-19 epidemic in Italy, we estimate the model parameters based on data from 24th Febru-
ary 2020 (day 1) to 5th March 2022 (day 740) and show the effects of social confinement that is in effect since 
9 March 2020, in controlling the spread of the epidemic, and subsequently easing the restriction from 4th May 
2020 has again increased contact rate leading to re-emergence. We also model possible longer-term scenarios 
illustrating the effects of different countermeasures, including social distancing, population-wide testing, vac-
cination to contain SARS-CoV-2, as well as possible effects of re-infection and loss of immunity.

Model simulation compared to real data is shown in Fig. 2. We have estimated R0 according to Eq. (eqn:Rnot). 
In our estimate R0 = 4.09 in the beginning and then reduces to 0.779 after 45 days, and to 0.18 after 90 days. 
Subsequently, after 110 days it starts increasing and reaches a value 1.67 on day 186.

In Fig. 3, we show both short term and long term evolution after fitting the model to data. Result shows 
that without any control measure in long term a significant portion of population getting infected. Hence, we 
consider the effect of continued social distancing, awareness and confinement measures by sensitivity analysis 
of contact rate parameter β(t) . We consider reducing β(t) by 50%, 40%, 30%, 20% and 10% from current contact 
rate. Figure 4, indicates that reducing contact rate by half can reduce a potential peak infection of 15% popula-
tion to less than 1.5% of population, and potential deaths from 0.48 to 0.04%.

Subsequently, we also consider the effects of testing and rate of detection of latent cases ε(t) . We consider 
changing the current testing rate by 2, 4, 6, 8 and 10 times the current rate. Figure 5, the simulation of the model 
after fitting current data indicates that an increased testing rate by 10 times will reduce potential peak infection 
rate from 18% of population to 14%, deaths from 0.48 to 0.42%. Our model confirms that extensive testing cam-
paigns can reduce the infection peak (as the diagnosed population enters quarantine and is therefore less likely 
to affect the susceptible population) and help end the epidemic more quickly. However, it can be observed that 
sensitivity of contact rate is much more significant than testing. This is also due to that fact that in our model we 
have considered ε as a parameter that impacts how asymptomatic cases are moved to quarantine, while infection 
from asymptomatic cases are lower compared to symptomatic cases.

India. India had one of the most strict stay home order across the country in first phase of the lock-down 
between 25 March 2020 and 14 April 2020 (21 days), where an entire population of 1.3 billion people was put 
under restricted movement. Overall the lock-down had multiple phases, second phase was from 15th of April 
2020 to 3rd of May 2020, and third phase was 4th of May to 17th of May, 2020.

We use data from Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). We 
use data from 9nd March 2020 (Day 1) to 4th August 2021 (Day 514). Figure 6 compares the fitted model with 
actual data. From August 2021 onwards recovery data is not available and hence we could not compare the model 
with actual number of currently active cases to which we fit our model for parameter estimation. Based on our 
estimate, initial value of R0 was 1.762, which reduces to 1.68 after a month when lockdown as in place. At the 
end of lockdown phases it is about 1.5, and finally after 194 days it reaches 1.03. These values are comparable 
with findings  in30,31.

We have simulated the long term evolution of the epidemic for India after estimating the parameters as shown 
in Fig. 7. Simulation suggested that peak in India for the first wave reached around 275 days from 2nd March 
2020 with about 2.6% population getting infected.

Simulation studies on impact of reducing contact rate and testing is captured in Figs. 8 and 9 respectively. 
From the simulation we can observe that the sensitivity to contact rate is higher compared to increased testing. 

(13)ε(t) =

{

ε0 t < t2
εmax − (εmax − ε0)e

−s(t−t2) t > t2
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A reduction in contact rate by 50% compared to a reduction of 10% can reduce death from 0.0268% to 0.0141% 
of population.

Victoria, Australia. For Victoria, Australia we use data from 11th March, 2020 (day 1) to 13th January, 
2022 (day 650). Figure 10 compares the fitted model with actual data. Consistent with other places Victoria had 
initial outbreak during March and April 2020—which was effectively controlled. Control measures were relaxed 
during June 2020 to revive economic activities. Based on our estimate R0 in Victoria was 2.72 in the beginning 
of July. A stricter confinement was placed in selected localities on 1 July 2020, which was extended to the whole 
of metropolitan Melbourne and Mitchell Shire on 8 July. We have simulated the long term evolution of the 
epidemic for Victoria, after estimating the parameters as shown in Fig. 11. Estimated by our model, R0 was 2.86 
at that time. However, the restriction was effective to bring down R0 to 1.13 by 30, July, 2020. We note that our 
findings are similar  to32.

Methods
Baseline mathematical models. Baseline epidemiological parameters. In this section we describe the 
estimated values of various parameters based on the current literature. It has been noted in the literature that 
the clinical course of the disease is typically quite long. Average total duration of illness has been estimated to be 

a b

c d

e f

Figure 2.  Model simulation compared to real data (Italy)—Comparison between the official data 
(histogram) and the results with our model. Description of panels: (a) Number of currently active cases, 
(Q(t)+H(t)+ C(t)) , (b) number of reported recovered individuals. 

∫ t

0
(µQ(s)+ ψH(s)+ ζC(s))ds , (c) 

number of reported infected with life-threatening symptoms, admitted to ICU, C(t), (d) Number of deceased 
individuals D(t), (e) number of reported infected with no (or mild) symptoms, who are quarantined at home. 
Q(t) , (f) number of reported infected with symptoms, who are hospitalized. H(t).
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three weeks  in33. Parameter β0 is strongly dependent on the population behaviour. We select a default value that 
has been estimated  in34 for pre-lockdown period. Baseline values for various parameters are listed in the Table 1.

The basic reproduction number for baseline model. The basic reproduction number is calculated for the special 
case when we have β(t) = β0, ε(t) = ε0 . In following we explore the local stability of the disease-free equilib-
rium (DFE) using the next generation operator  method40,41.  Following41, we define the system of Eqs. (1)–(10), 
in more compact form as:

where, X = (E, I ,A,Q,H ,C,D,R, S)t , and F (X) containing rate of appearance of new infections defined as:

and, V (X) capturing the movement between the compartments, with V−(X) as the rate of outward transfer, 
and V+(X) as the rate of inward transfer for each compartment, we have,

(14)Ẋ = f (X) = F (X)−V (X),

(15)F (X) =

























β0(I + κA+ ωQ + ρH) S
N

0
0
0
0
0
0
0
0

























,

a b

c d

Figure 3.  Model simulation compared to real data (Italy)—Epidemic evolution predicted by the model based 
on the available data. Description of panels: (a,c) The short-term epidemic evolution obtained by reproducing 
the data trend with the model, (b,d) Long term epidemic evolution over 700 days. Plots refers to all cases of 
infection, both diagnosed and non-diagnosed, predicted by the model, although non-diagnosed cases are of 
course not counted in the data. Note that not all panels are in the same scale.



7

Vol.:(0123456789)

Scientific Reports |         (2023) 13:3610  | https://doi.org/10.1038/s41598-023-30800-y

www.nature.com/scientificreports/

We also define Xs , as the set of all possible disease free states. In order to directly apply the results  in41, following 
shall hold for equation Ẋ = f (x) = F (X)−V (X) : 

1. Functions F (X) , V−(X) and V+(X) , are all non-negative, when X > 0.
2. If X ∈ Xs , then V−(x) = F (x) = V

+(x) = 0 for x ∈ {E, I ,A,Q,H ,C,D,R}.
3. Let Df (X0) be the Jacobian matrix evaluated at DFE X0 , and defined as the partial derivative [∂f /∂x] for 

x ∈ {E, I ,A,Q,H ,C,D,R, S} . If F (X) = 0 , then all eigenvalues of Df (X0) has negative real parts.

(16)

V (X) = V
−(X)−V

+(X)

=

























σE
(η + θ + �)I
(ε0 + ν + γ )A
(ϕ + µ)Q
(τ + ψ)H
(δ + ζ )C

0
0

β0(I + κA+ ωQ + ρH) S
N

























−

























0
ασE + νA
(1− α)σE

ε0A
θI + ϕQ
τH + �I

δC
(ηI + γA+ µQ + ψH + ζC)

0

























V (X) =

























σE
(η + θ + �)I − ασE − νA
(ε0 + ν + γ )A− (1− α)σE

(ϕ + µ)Q − ε0A
(τ + ψ)H − θI − ϕQ
(δ + ζ )C − τH − �I

−δC
−(ηI + γA+ µQ + ψH + ζC)

β0(I + κA+ ωQ + ρH) S
N

























a b c

d e f

Figure 4.  Sensitivity of β(t) with 50%, 40%, 30%, 20% and 10% reduction from current contact rate (Italy). Note 
that not all panels are in the same scale.
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We note that each function represents a directed transfer of individuals, and they are all non-negative. (1) and 
(2), can be observed from the Eqs. (15) and (16). For (3), setting F (X) = 0 , we consider linearized system 
Ẋ = −DV (X0)(X − X0) , near DFE. From Eq. (17) we observe that eigenvalues corresponding to Df (X0) has 
zero eigenvalues of multiplicity 3 with associated eigenvectors in the directions of D, R, S. The results  in41 still 
holds for our system for stability in the directions of the susceptible and recovered compartment (note that )as 
D is a counting compartment), this however, has no consequence in the meaning of the threshold R0 . In fact 
this technicality can be resolved by adding natural birth and death rates proportional to the compartments S 
and R that is arbitrarily small and positive. Let X0 ∈ Xs be a DFE. Then X0 = (0, 0, 0, 0, 0, 0, 0, 0, S0) , and with 
S0/N0 = 1 we have,

With,

Similarly, we have

DF (X0) =

























0 β0 κβ0 ωβ0 ρβ0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

























=

�

F 0
0 0

�

F =











0 β0 κβ0 ωβ0 ρβ0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











a b c

d e f

Figure 5.  Sensitivity of ε(t) with changed rate of testing by 2, 4, 6, 8 and 10 times the current rate (Italy). Note 
that not all panels are in the same scale.
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With,

and,

(17)

DV (X0) =
























σ 0 0 0 0 0 0 0 0
−ασ (η + θ + �) − ν 0 0 0 0 0 0

−(1− α)σ 0 (ε0 + ν + γ ) 0 0 0 0 0 0
0 0 − ε0 (ϕ + µ) 0 0 0 0 0
0 − θ 0 − ϕ (τ + ψ) 0 0 0 0
0 − � 0 0 − τ (δ + ζ ) 0 0 0
0 0 0 0 0 − δ 0 0 0
0 − η − γ − µ − ψ − ζ 0 0 0
0 β0 κβ0 ωβ0 ρβ0 0 0 0 0

























=

�

V 0
J3 J4

�

V =











σ 0 0 0 0
−ασ (η + θ + �) − ν 0 0

−(1− α)σ 0 (ε0 + ν + γ ) 0 0
0 0 − ε0 (ϕ + µ) 0
0 − θ 0 − ϕ (τ + ψ)











a b

c d

Figure 6.  Model simulation compared to real data (India)—Comparison between the official data 
(histogram) and the results with our model. Description of panels: (a) Number of currently active cases, 
(Q(t)+H(t)+ C(t)) , (b) number of reported recovered individuals. 

∫ t

0
(µQ(s)+ ψH(s)+ ζC(s))ds , (c) 

Number of deceased individuals D(t).
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Defining ρ(A) = max {|�1|, . . . , |�n|} as the spectral radius of an n× n matrix A, with eigenvalues �1 . . . �n , 
and ||̇ denoting absolute values. According  to41, basic reproduction number R0 associated to the system can be 
computed as R0 = ρ(FV−1) . Hence, based on the discussion above, for the baseline model we have,

where, r1 = (η + θ + �) , r2 = (τ + ψ) , r3 = (ε0 + ν + γ ) , and r4 = (ϕ + µ) . When the epidemic is over, we 
will have the condition that Ē = Ī = Ā = Q̄ = H̄ = C̄ = 0, D̄ ≥ 0, R̄ ≥ 0, S̄ ≥ 0 , with D̄ + R̄ + S̄ = 1 . That is, 
only the susceptible, the recovered and the deceased individuals are eventually present.

Proposition 1 The system of equation with susceptible population S̄ is asymptotically stable if and only if

V−1 =















1
σ

0 0 0 0

− αν−αr3−ν
r1r3

1
r1

ν
r1r3

0 0

− α
r3
+ 1

r3
0 1

r3
0 0

− αε−ε
r3r4

0 ε
r3r4

1
r4

0

− αεr1ϕ+ανr4θ−αr3r4θ−εr1ϕ−νr4θ
r1r2r3r4

θ
r1r2

εr1ϕ+νr4θ
r1r2r3r4

ϕ
r2r4

1
r2















(18)
R0 = β0

(

α

r1
+

ν(1− α)

r1r3

)

+ κβ0

(

1− α

r3

)

+ ωβ0

(

ε0(1− α)

r3r4

)

+ ρβ0

(

αθ

r1r2
+

(1− α)ε0ϕ

r2r3r4
+

(1− α)νθ

r1r2r3

)

S̄ ≤ S̄∗ =
1

R0

a b

c d

Figure 7.  Model simulation compared to real data (India)—Epidemic evolution predicted by the model based 
on the available data. Description of panels: (a,c) The short-term epidemic evolution obtained by reproducing 
the data trend with the model for 90 days, (b,d) Long term epidemic evolution over 700 days. Plots refers to all 
cases of infection, both diagnosed and non-diagnosed, predicted by the model, although non-diagnosed cases 
are of course not counted in the data. Note that not all panels are in the same scale.
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Proof The dynamical system matrix of the linearized system near a DFE is given by:

Where r1 = (η + θ + �) ,  r2 = (τ + ψ) ,  r3 = (ε0 + ν + γ ) ,  r4 = (ϕ + µ) .  and r5 = (δ + ζ ) .  Using 
det(sI −M) = 0 , we have the characteristic polynomial of M having following form: s3(r5 + s)p(s) . Hence, 
the matrix has three null eigenvalues, one eigenvalue of −(δ + ζ ) , and five eigenvalues that are roots of the 
polynomial p(s), where,

with,

and,

M =

























−σ β0S̄ κβ0S̄ ωβ0S̄ ρβ0S̄ 0 0 0 0
ασ − r1 ν 0 0 0 0 0 0

(1− α)σ 0 − r3 0 0 0 0 0 0
0 0 ε0 − r4 0 0 0 0 0
0 θ 0 ϕ − r2 0 0 0 0
0 � 0 0 τ − r5 0 0 0
0 0 0 0 0 δ 0 0 0
0 η γ µ ψ ζ 0 0 0
0 − β0S̄ − κβ0S̄ − ωβ0S̄ − ρβ0S̄ 0 0 0 0

























p(s) = D(s)− S̄N(s)

D(s) =

s5 + s4(r1 + r2 + r3 + r4 + σ)+

s3(r1r2 + r1r3 + r1r4 + r1σ + r2r3 + r2r4 + r2σ + r3r4 + r3σ + r4σ)+

s2(r1r2r3 + r1r2r4 + r1r2σ + r1r3r4 + r1r3σ + r1r4σ + r2r3r4+

r2r3σ + r2r4σ + r3r4σ)+

s(r1r2r3r4 + r1r2r3σ + r1r2r4σ + r1r3r4σ + r2r3r4σ)+

r1r2r3r4σ

a b c

d e f

Figure 8.  Sensitivity of β(t) with 50%, 40%, 30%, 20% and 10% reduction from current contact rate (India). 
Note that not all panels are in the same scale.
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Defining G(s) = N(s)/D(s) , and noting that the system is positive, and hence H∞ norm of G(s) is equal to the 
static gain G(0) = N(0)/D(0) = R0 . To have the real part of every root of the polynomial to be zero or negative 
(Hurwitz), we should have S̄∗ = 1/G(0) = 1/R0 . Note that the stability of the equilibrium occurs for S̄R0 < 1 . 
Since in the beginning of an epidemic we have S̄ very close to 1, it should be noted that R0 < 1 is required to have 
small effect and stability.   �

Fitting of the model for the COVID‑19 outbreak: Italy, India and Victoria. We consider three scenarios to fit 
and estimate parameters for our model. First, for Italy, where the epidemic was controlled and currently have a 
resurgence with increasing number of cases. Second, for India, which is observing significant number of cases in 
recent times. Third, for Victoria, Australia, where a second re-emergence is controlled with strict intervention.

For Italy, we use data from the official source (the Department of Civil Protection—Presidency of the Coun-
cil of Ministers) about the evolution of the epidemic in Italy from 2020-02-24 to 2022-03-04 (first 740 days). 
We convert this data to fraction of population by taking total population data from The World Bank Group 
(about 60297396, in 2019). The estimated parameter values are based on the data about the number of currently 
infected individuals that can be observed and roughly corresponding to (Q(t)+H(t)+ C(t)) , and the number 
of recovered individuals that can be observed and roughly corresponding to 

∫ t
0 (µQ(s)+ ψH(s)+ ζC(s))ds . To 

avoid the pitfalls described by authors  in42, we do not fit the model to cumulative number of cases or cumulative 
number of deaths—however, we present them for comparison.

The ordinary differential equation (ODE) system was solved using  LSODA43,44. We use lmfit python  package45 
for non-linear least-squares and minimize of the sum of the squares of the errors using trust region reflective 
method and obtaining goodness of fit measure of χ2 = 5.3331e−07 for Italy. Confidence interval for the fit is 
shown in Fig. 12a. The problem to minimize error is shown in following equation for fitting parameter set p:

N(s) =

s3β0σ(1− α)κ + s3β0σα

s2β0σ(1− α)(ε0ω + ν + κ(r1 + r2 + r4))+ s2β0σα(ρθ + (r2 + r3 + r4))+

sβ0σ(1− α)(ε(ωr1 + ωr2 + ρϕ)+ κ(r1r2 + r1r4 + r2r4)+ ν(r2 + r4 + ρθ))+

sβ0σα(r2r3 + r2r4 + r3r4 + r3ρθ + r4ρθ)+ σ r1r2r3r4R0

a b c

d e f

Figure 9.  Sensitivity of ε(t) with changed rate of testing by 1.2, 1.4, 1.6, 1.8 and 2 times the current rate (India). 
Note that not all panels are in the same scale.
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where yi are observations and fi is the model output.
For India (population 1366417754, in 2019), we use data from Johns Hopkins University Center for Systems 

Science and Engineering (JHU CSSE). We use data from 2020-03-09 to 2021-08-04. The estimated parameter 
values are based on the data about the number of currently infected individuals that can be observed and roughly 
corresponding to (Q(t)+H(t)+ C(t)) . In this case we obtain a goodness of fit measure of χ2 = 4.4811e−08 and 
confidence interval for the fit is shown in Fig. 12b. Parameters β0,βmin,βnew , t0, t1, r, u, ε0, εmax, t2 and s have all 
been estimated from fitting the model to data. It is important to note that contact rat β(t) and testing rate ε(t) 
has been modelled as time variant functions.

For the state of Victoria, Australia (population 6629870, in 2019), we use data from Covid19data.com.au, 
which is independent and voluntarily-run. We use data from 2020-03-11 to 2022-01-13. From January 2022 
onwards recovery data is not available and hence we could not compare the model with the actual number of 
currently active cases to which we fit our model for parameter estimation. The estimated parameter values are 

(19)p̂ ∈ argmin
p

S(p) = argmin
p

m
∑

i=1

[

yi − fi(xi , p)
]2

a b

c d

e f

Figure 10.  Model simulation compared to real data (Victoria, Australia)–Comparison between 
the official data (histogram) and the results with our model. Description of panels: (a) Number 
of currently active cases, (Q(t)+H(t)+ C(t)) , (b) number of reported recovered individuals. 
∫ t

0
(µQ(s)+ ψH(s)+ ζC(s))ds , (c): number of reported infected with life-threatening symptoms, 

admitted to ICU, C(t), (d) Number of deceased individuals D(t), (e) Cumulative number of cases, 
Q(t)+H(t)+ C(t)+ D(t)+

∫ t

0
(µQ(s)+ ψH(s)+ ζC(s))ds (f) number of reported infected with symptoms, 

who are hospitalized. H(t).
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based on the data about the number of currently infected individuals, and we obtain a goodness of fit measure 
of χ2 = 1.5728e−06 and confidence interval for the fit is shown in Fig. 12c.

Sensitivity analysis. In this section we present the sensitivity analysis for the base model using Latin Hypercube 
Sampling (LHS) and Partial Rank Correlation Coefficient (PRCC) to determine the most influential parameters 
of the  model46. LHS, which is a stratified sampling method, is implemented by dividing the range of values for a 
given parameter (see Table 1) into equally probable intervals and each parameter is sampled in the range inde-
pendently. This results in a matrix having N rows for the number of samples and M columns corresponding to 
the number of varied parameters. We consider the increasing number of infected individuals as our outcome of 
interest. Base model is then simulated with population size of 1e7 , with each row of the above mentioned metric 
with parameter values while setting initial values in each compartment close to 0 as per Proposition-1. Since our 
model has two type of parameters—one that are dependent on the time e.g. β(t) and ε(t) , and others that are 
independent of time e.g. α, θ . We have performed sensitivity analysis of these parameters in two different simu-
lations to understand their importance. The result of sensitivity analysis is given in Fig. 13. It can be seen from 
Fig. 13a that parameter α ( −0.91525 ), which determines the fraction of infections that become symptomatic 
has most significant influence. In other words, since it has negative PRCC it implies that number of undetected 
asymptomatic cases can drive the cases significantly. Among the other parameters µ ( −0.89681 ) and parameters 
related to recovery rate ( η,ψ ) are also influential. Among the remaining parameters rate of hospitalization also 
has impact.

Among the time dependent parameters β(t) , and ε(t) we can observe in Fig. 13b that parameter r, which 
determines how fast β(t) converges from β0 to βmin , or effectiveness of stringency measures has significant influ-
ence. Also εmax , which determines the effectiveness of testing, has moderate importance.

a b

c d

Figure 11.  Model simulation compared to real data (Victoria, Australia)—Epidemic evolution predicted by the 
model based on the available data. Description of panels: (a,c) The short-term epidemic evolution obtained by 
reproducing the data trend with the model, (b,d) Long term epidemic evolution over 350 days. Plots refers to all 
cases of infection, both diagnosed and non-diagnosed, predicted by the model, although non-diagnosed cases 
are of course not counted in the data. Note that not all panels are in the same scale.
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Discussion
In this section we consider various extension of the model and parameters. First extension is to model confine-
ment—where a large proportion of susceptible population is placed under restricted movement, and thereby 
reducing the probability of contact. Such restriction has been modelled by introducing another compartment 
L. Individuals from S move to L at rate u(t). In many countries, confinement was spread over several weeks fol-
lowed by a period of de-confinement. We model de-confinement by individuals moving from L to S at rate p(t). 
In specific we modify Eq. (9) as follows

We also add following dynamics to the baseline model

Thus, Eqs. (1–8), Eq. (20), and (21) along with Eq. (10), defines the confinement—de-confinement scenario. A 
few remarks are in place for the time dependent functions u(t) and p(t).

To consider the possibility of loosing acquired immunity over time and having a reinfection, we modify Eq. 
(9) and add a term +χR and modify Eq. (8) by adding term −χR to obtain:

In this scenario, we assume that the susceptible individuals are vaccinated at rate ξ(t) . Initially ξ(t) can be small 
and as more vaccines are produced at a larger scale, the waiting time to receive vaccine reduces (see Eq. (24)).

We also assume a vaccine efficiency parameter, and assume that vaccine does not confer immunity to all vac-
cine recipients, and hence a vaccinated individuals may become infected but at a lower rate than un-vaccinated. 
Hence, by (1− φ) we denote vaccine efficiency. Thus, effective contact rate is multiplied by a scaling factor of 
φ : 0 ≤ φ ≤ 1 , where φ = 0 represents vaccine that offers 100% protection against infection.

The vaccinated individuals will be denoted with compartment V. With that, the augmented model can be 
represented with following system of equations, where we replace Eq. (1) with (25), Eq. (9) with (27), remaining 
Eqs. (2)–(8) remains same and we add Eqs. (26), and ((28):

(20)
dS

dt
= p(t)L− β(t)(I + κA+ ωQ + ρH)

S

N
− u(t)S,

(21)
dL

dt
= u(t)S − p(t)L,

(22)
dS

dt
=− β(t)(I + κA+ ωQ + ρH)

S

N
+ χR,

(23)
dR

dt
=(ηI + γA+ µQ + ψH + ζC)− χR,

(24)ξ(t) =

{

ξ0 t < t0
ξmax − (ξmax − ξ0)e

−s(t−t0) t > t0

Table 1.  Baseline parameters, brief description, possible ranges based on modeling and clinical studies, and 
default value chosen for this study. Note that these parameters were estimated to fit the model to real data.

Param Description Possible range Default

β infectious contact rate 0.5–1.5 day−134,35 1.14 day−1

κ infectiousness factor asymptomatic 0.4–0.635,36 0.5

ω infectiousness factor quarantined 0.005–0.01149 0.0114

ρ infectiousness factor isolated 0.005–0.01149 0.0114

σ transition rate exposed to infectious 1/14–1/3 day−135,37 1/5.2 day−1

α fraction of infections that become symptomatic 0.15–0.735,36,38 0.3

ν transition rate asymptomatic to symptomatic 0.025–0.1259 0.125

ε detection rate asymptomatic 0.1719 0.171

ϕ rate of quarantined to isolation 0.025–0.1259 0.125

θ rate of detection of symptomatic 0.3719 0.371

τ rate of developing life-threatening symptoms in isolation 0.0279 0.027

� rate of developing life-threatening symptoms for symptomatic 0.0179 0.017

γ recovery rate of asymptomatic 0.0349 0.034

η recovery rate of symptomatic 0.0179 0.017

µ recovery rate of quarantined 0.0349 0.034

ψ recovery rate of isolated 0.0179 0.017

ζ recovery rate of critical 0.0179,38 0.017

δ mortality rate 0.01–0.059,36,39 0.01
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where,

is the total population.
As described by extended model in Eqs. (22) and (23), we consider the possibility of losing acquired immunity 

over time and having a reinfection, we use parameter χ(t) to capture this. In our simulation we consider that χ 
varies from 1/180 to 1/60. This can be thought as number of days to lose immunity and hence corresponds to 
180 days to 60 days. As shown in Fig. 14, the simulation of the model after fitting current data for Italy indicates 
that if loss of immunity occurs within 3 months, there is a significant chance of subsequent waves of epidemic.

Finally, we simulate mass vaccination scenarios (see Figs. 15 and 16) according to Eqs. (25), (26), (27), (28) 
and (24). We assume that vaccine is available after 90 days from 27th August 2020. φ is varied from 1.0 (No 
vaccination), 0.5 (50% efficient), 0.25 (75% efficient), 0.125(87.5% efficient), and 0.0625 (93.75% efficient) and 
ξmax = 0.5 and ξmax = 0.9 . It can be concluded that even a 75% efficient vaccine can be significantly effective 
in reducing the impact.

(25)
dE

dt
=β(t)(I + κA+ ωQ + ρH)

S

N
+ φβ(t)(I + κA+ ωQ + ρH)

V

N
− σE,

(26)
dV

dt
=ξ(t)S − φβ(t)(I + κA+ ωQ + ρH)

V

N
,

(27)
dS

dt
=− β(t)(I + κA+ ωQ + ρH)

S

N
− ξ(t)S,

(28)N(t) = S(t)+ E(t)+ A(t)+ I(t)+ Q(t)+H(t)+ R(t)+ D(t)+ V(t),

Figure 12.  Parameter estimation and fitting model to actual data for Italy and India using lmfit. The plot show 
actual data, best fit by minimizing sum of the squares of the errors, and 2-σ uncertainty band.



17

Vol.:(0123456789)

Scientific Reports |         (2023) 13:3610  | https://doi.org/10.1038/s41598-023-30800-y

www.nature.com/scientificreports/

Figure 17 show the simulation study loss of acquired immunity for scenario in India. We note that this model 
is not very sensitive to χ(t) . This is due to the size of the population and current state of the epidemic in India—
reinfection within 2 months changes total number of infected population from 2.66 to 2.98%, while reinfection 
after 250 days changes this to 2.768%.

Simulation studies for vaccination is presented in Figs. 18 and 19. We assume that the vaccine is available from 
90 days after 16th September 2020. Simulation suggests that a 0.056% of population would die without vaccina-
tion, while 93.75% efficient vaccine given to 30% population would bring this down to 0.036% of population, 
and 93.75% efficient vaccine given to 70% population would bring this down to 0.034%.

Conclusion
In this work we have presented a deterministic compartmental model that is an extension of the SEIR model in 
which we have included current experience with SARS-CoV-2—namely, we have extended standard SEIR model 
to include symptomatic and asymptomatic classes, and the fact that in SARS-CoV-2, as it has been observed that 
asymptomatic classes can infect susceptible individuals. We have then extended this base model to address vari-
ous scenarios including the effects of non-pharmaceutical interventions (such as social distancing, self-isolation, 
contact tracing etc.) and pharmaceutical interventions (such as testing, mass vaccination with variable efficacy 
and variable percent of population being vaccinated). Scenario also includes the possibility of losing acquired 
immunity over time and reinfection.

In particular, our simulation of the model in various scenarios (Figs. 14, 15, 16, 17, 18, 19) suggests that 
shorter reinfection time, and/or usage of a vaccine of lower efficacy fails to control the exponential growth of 
infection in populations which is highly susceptible to the disease (e.g. because they are far from reaching herd 
immunity), and induces wave like growth patterns (with re-infection). In practice, such scenario indicates that 

Figure 13.  Partial rank correlation coefficients of parameters with cases (fraction of the population) from 120 
LHS samples.
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continued surveillance and re-introduction of non-pharmaceutical interventions remains necessary for longer 
term.

In order to estimate various parameters we have used published data in three different scenarios—in Italy, 
where in initial stages there were a growing number of cases and re-emergence of the epidemic, in India, where 
there were significant number of cases post confinement period and in Victoria, Australia where a re-emergence 
has been controlled with severe social confinement program. Following the initial stages we have used data 
to estimate various parameters during the emergence and spread of the Alpha B.1.1.7, Delta B.1.617.2, and 
Omicron B.1.1.529 VOCs. The estimated parameter values are based on the data about the number of currently 
infected individuals that can be observed and roughly corresponding to (Q(t)+H(t)+ C(t)) , and the number 
of recovered individuals that can be observed and roughly corresponding to 

∫ t
0 (µQ(s)+ ψH(s)+ ζC(s))ds . 

We obtain a goodness of fit measure between χ2 = [157.28− 4.4811]e−08 across these data sets. Sensitivity 
analysis of parameters of our model implies that number of undetected asymptomatic cases can drive the growth 
significantly and which in practice implies the importance of contact tracing and testing. This is corroborated 
further by importance of parameters that relate to effectiveness of stringency measures—which has significant 
influence. Also the fact that parameter which determines the effectiveness of testing, has moderate importance.

Our result shows the benefit of long term confinement of at least half of population and extensive testing 
in curbing exponential growth. With respect to loss of acquired immunity, our model suggests higher impact 
for a country with population like Italy. We also show that a reasonably effective vaccine with mass vaccination 
program are successful measures in significantly controlling the size of infected population. We show that for a 
country like India, a reduction in contact rate by half could reduce potential death by half in initial stages of the 
epidemic. Similarly, for a country like Italy, we show that reducing contact rate by half can reduce a potential 
peak infection and potential deaths by ten fold. With respect to vaccination, we show that even a 75% efficient 
vaccine administered to 50% population can reduce the peak number of infected population by nearly 50% in 
Italy. Similarly, for India, a 93.75% efficient vaccine given to 70% population would reduce potential death by 
half. These results might be useful in continued global effort in curbing exponential growth from ongoing and 
emerging future VOCs.

a b c

d e f

Figure 14.  Sensitivity of χ(t) with loss of acquired immunity over time by 180, 150, 120, 90 and 60 days (Italy). 
Note that not all panels are in the same scale.
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Figure 15.  Sensitivity of vaccine efficiency parameter (1− φ) , where φ = 0 represents vaccine that offers 100% 
protection against infection, and ξmax = 0.5 , i.e. maximum of 50% population is administered with vaccine. φ 
is varied from 1.0 (No vaccination), 0.5 (50% efficient), 0.25 (75% efficient), 0.125(87.5% efficient), and 0.0625 
(93.75% efficient) (Italy).
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Figure 16.  Sensitivity of vaccine efficiency parameter (1− φ) , where φ = 0 represents vaccine that offers 100% 
protection against infection, and ξmax = 0.9 . φ is varied from 1.0 (No vaccination), 0.5 (50% efficient), 0.25 (75% 
efficient), 0.125(87.5% efficient), and 0.0625 (93.75% efficient) (Italy).
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Figure 17.  Sensitivity of χ(t) with loss of acquired immunity over time by 250, 200, 150, 100 and 50 days 
(India). Note that not all panels are in the same scale.
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Figure 18.  Sensitivity of vaccine efficiency parameter (1− φ) , where φ = 0 represents vaccine that offers 100% 
protection against infection, and ξmax = 0.3 , i.e. maximum of 30% population is administered with vaccine. φ 
is varied from 1.0 (No vaccination), 0.5 (50% efficient), 0.25 (75% efficient), 0.125(87.5% efficient), and 0.0625 
(93.75% efficient) (India).
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Data availibility
All of the data are publicly available and were extracted from https:// github. com/ M3IT/ COVID- 19_ Data, from 
https:// github. com/ pcm- dpc/ COVID- 19, and from https:// github. com/ CSSEG ISand Data/ COVID- 19.

Code availibility
Python codes were used for model implementation. All source codes can be accessed from https:// github. com/ 
subha skgho sh/ model_ covid_ 19.
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