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Data driven pathway analysis 
and forecast of global warming 
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Climate change is a critical issue of our time, and its causes, pathways, and forecasts remain a topic 
of broader discussion. In this paper, we present a novel data driven pathway analysis framework to 
identify the key processes behind mean global temperature and sea level rise, and to forecast the 
magnitude of their increase from the present to 2100. Based on historical data and dynamic statistical 
modeling alone, we have established the causal pathways that connect increasing greenhouse 
gas emissions to increasing global mean temperature and sea level, with its intermediate links 
encompassing humidity, sea ice coverage, and glacier mass, but not for sunspot numbers. Our results 
indicate that if no action is taken to curb anthropogenic greenhouse gas emissions, the global average 
temperature would rise to an estimated 3.28 °C (2.46–4.10 °C) above its pre-industrial level while the 
global sea level would be an estimated 573 mm (474–671 mm) above its 2021 mean by 2100. However, 
if countries adhere to the greenhouse gas emission regulations outlined in the 2021 United Nations 
Conference on Climate Change (COP26), the rise in global temperature would lessen to an average 
increase of 1.88 °C (1.43–2.33 °C) above its pre-industrial level, albeit still higher than the targeted 
1.5 °C, while the sea level increase would reduce to 449 mm (389–509 mm) above its 2021 mean by 
2100.

As of 2021, the global mean surface temperature had already risen by 1.21 °C over its pre-industrial level 
(1850–1900 average)1, while the global mean sea level had increased by 82 mm compared to its 1986–2005 
 average2. Global warming and sea level rise are two critical indicators of climate change. The record breaking 
summer of 2022 has sent an urgent and harsh reminder for action and resolution, with temperatures exceeding 
40 °C in many parts of Europe and the  USA3. Identifying the causal pathways leading to this change based on 
historical, open-box data and models that clarify the often complicated physical processes involved will provide 
more transparency on the role and significance of greenhouse gas emissions in driving climate change. In this 
work, we use the unified structural equation modeling (uSEM) approach developed by our research  group4 to 
identify the climate change pathways leading to increased global mean surface temperature (GMST) and global 
mean sea level (GMSL) based on yearly historical data. Backtesting is performed to validate the pathway models. 
The confirmed pathway models are then used to forecast future GMST and GMSL based on (1) the unrestricted 
scenario assuming the global community will make no significant actions to contain the anthropogenic green-
house gas emissions, (2) the COP26 scenario of restricted anthropogenic carbon dioxide  (CO2) and methane 
 (CH4) emissions, and (3) the SSP (Shared Socioeconomic Pathways) scenarios of greenhouse gases concentration 
projection. We have also modeled the link between global sea level to regional sea level and illustrated the impact 
of regional sea level rise on coastal metropolises such as New York City, USA, and Osaka, Japan, by 2050 and 2100.

Many previous studies have endeavored to establish causal relations and predictions for global mean surface 
temperature (GMST), and global mean sea level (GMSL)5–8. Traditionally physical models utilizing complex 
process models of the general circulation of the planet’s atmosphere and ocean have been employed to generate 
global climate change predictions, with strict boundary and starting  conditions9–24. These models can be used to 
comprehend the fundamental dynamics of the physical components of the natural climate phenomena, derive 
global temporal and spatial changes, and make predictions based on the future greenhouse gases  emissions25. 
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Differences between simulations and observations are often expected, with significant differences usually caused 
by numerical approximations, nonlinear behaviors, unresolved small-scale processes, and variability in  data26–28. 
Therefore, the projections of the physical models can range  widely29.

In the last few decades, data-driven methods utilizing time series analysis and machine learning methods 
have been increasingly adopted to forecast global surface temperature or sea  level5–7,30–41 and local  climate28,42–48. 
Data-driven models attempt to obtain evidence of externally driven climate change while minimizing the use of 
complex climate models. The advantages are usually simpler models and lower computational burdens. These 
models can be typically divided into two categories: cointegration  approaches49 and regression  approaches50. 
Cointegration is a statistical technique used to find the equilibrium connection between two or more non-
stationary time series over the long run. The cointegration method assumes that non-stationary time series have 
a long-term relationship. These models, however, are not designed to capture the complex inter-relationships 
among climate  variables46. Unlike physical models, data-based models often suffer from data inconsistency and 
absence more severely. Machine learning methods, including deep learning, have been applied to examine global 
climate change  recently28,30,31,41,44. However, machine learning methods are often regarded as black boxes, with the 
model’s underlying dynamics unseen to the users. In addition, machine learning methods require large amount 
of training data which are often unattainable in climate change studies.

In 2021, we published the first  work7 on pathway analysis of global warming and sea level rise utilizing 
monthly historical data. In this paper, we have drastically extended the climate change network analysis by 
adopting much longer yearly data, representing the effect of greenhouse gas emissions in a more comprehensive 
manner, adding humidity and sunspot activities, and improving the pathway identification process by using both 
the system-wise and the equation-wise variable selection methods. Importantly, for the forecasting of GMST and 
GMSL based on the confirmed pathway models, we have focused on two scenarios: (1) without any restriction 
on anthropogenic greenhouse gas emission, and (2) with restriction on anthropogenic greenhouse gas emission 
as outlined in the 2021 United Nations Conference on Climate Change (COP26). To make our analysis more 
comparable, we also included SSP scenarios in this work. Finally, we have expanded the regional sea level projec-
tions beyond the US coastal line to include other global regions heavily affected by climate change.

Results
Path discovery and analysis of global mean surface temperature (GMST) and global mean sea 
level (GMSL). To analyze the causal pathways between GMST, GMSL, and other climate factors, we have 
considered 9 variables: (1) Global Mean Sea Level (GMSL), (2) Glaciers and Ice Sheets Mass Balance (Mass), (3) 
Arctic Sea Ice August Extent (SeaIce), (4) Global Mean Surface Temperature with the sea ice area temperature 
measured by air (GMST), (5) Global Specific Humidity (Humidity), (6–8) Greenhouse Gases:  CO2,  CH4, and 
 N2O (which are represented jointly by their total global warming potential (GWP) to avoid multi-collinearity), 
and (9) Sunspot Number (SSN), a measurement of solar activity. We started with a full hypothetical unified 
structural equation model (uSEM)4 that includes all conceivable paths by only excluding those contradictory to 
common sense (Fig. 2a). The uSEM approach can incorporate both the contemporaneous and the longitudinal 
pathways, with the uSEM equation system consisting of a set of autoregressive distributed lags (ARDL) models. 
Subsequently, two variable selection methods were applied to select significant pathways based on historical data 
(Fig. 1). 

First, a system-wise variable selection for the entire uSEM equation system was conducted using the adaptive 
LASSO (least absolute shrinkage and selection operator) in the regularized unified structural equation modeling 
(RuSEM)  approach51. Secondly, an equation-wise variable selection was performed on each ARDL model of the 
uSEM equation system using the backward stepwise variable selection based on the Akaike information criterion 
(AIC). In our analysis, these two variable selection methods yielded the same selected model, confirming the 
robustness of the climate change pathways identified via uSEM. The identified uSEM system with significant 
paths was only refitted to obtain the estimated path coefficients (red for positive and blue for negative path 
coefficient values) and the corresponding p-values in parentheses (Fig. 2b). Backtesting using both the one-
step forecast as well as the multi-step forecast methods was performed to further validate the identified climate 
change pathways. This uSEM path model is entirely data-driven, open-box with explicit equations, and with the 
minimum use of existing scientific knowledge for an intuitive and independent inference of the status and the 

Equation-wise variable selection via  
individual autoregressive distributed lags (ARDL) model

System-wise variable selection via  
regularized unified structural equation model (RuSEM)

Final uSEM confirmed
and refitted

Full Hypothetical
unified structural
equation model

(uSEM)

Figure 1.   Flow chart of unified structural equation model (uSEM) pathway identification process using 
two variable selection methods, the system-wise regularized unified structural equation modeling (RuSEM) 
approach, and the equation-wise stepwise variable selection method using each individual uSEM equation, 
which is also an autoregressive distributed lags (ARDL) model. The fully hypothesized uSEM model and the 
final confirmed uSEM pathway model are depicted in Fig. 2a,b, respectively. For this work, the two variable 
selection methods identified a common final pathway model as shown in Fig. 2b below.
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future of our climate system in addition to the sophisticated physics-driven models which are often represented 
as a black-box to the laymen.

The data confirmed uSEM pathway as shown in Fig. 2b indicates that increases in greenhouse gas emission, in 
terms of the increased Global Warming Potential (GWP), would significantly increase the Global Mean Surface 
Temperature (GMST), while the Sunspot Number (SSN) has no significant impact on GMST. Humidity and 
GMST have a positive mutual interactive relationship. Furthermore, the increase in GMST would significantly 
decrease the Sea Ice coverage (SeaIce) and the Glaciers and Ice Sheets Mass Balance (Mass), which would in 
turn significantly increase the Global Mean Sea Level (GMSL). The melting glaciers also have a direct hand in 
the melting (or reduced formation) of sea ice, possibly due to the decreased ice sheet coverage leading to less 
reflective ice surfaces, or a decreased albedo, thus leading to a greater absorption (rather than reflection) of solar 
radiation that creates a positive feedback loop for increasing temperatures and the increased melting of ice sheets 
and sea ice. Sea ice is critical in the regulation of temperature, albedo, and ocean circulation, therefore a decrease 
in sea ice would lead to significant consequences for global climate. Notably, it has a significant role in driving 
the global ocean conveyor belt by sinking salty, denser water that forms underneath its surface, which circulates 
along the ocean floor and drives the flow of the warmer, less dense water on the  surface52. An increase in GMST 
would also promote a higher GMSL directly besides its indirect role through Sea Ice decrease and Glacier melting.

Notably, the data-driven model yielded pathways highly consistent with recent scientific findings. GWP, for 
instance, has a positive impact on GMST, in agreement with the scientific verdict of the greenhouse  effect53,54. 
The positive mutual relationship between Humidity and GMST is consistent with the theory of the water vapor 
greenhouse effect and the water cycle theory, which states that warmer air contains more water  vapor55, thus 
increasing evaporation and reducing condensation. It is sensible that higher GMST results in melting of the 
glaciers, ice sheets, and sea ice due to warmer  temperature56,57. The negative impact from Mass or Sea Ice to 
GMSL can be explained  similarly58. Besides, the melting of Sea Ice may have contributed to GMSL rise indirectly 
through reduction in solar reflection and ocean thermal expansion. The positive impact from GMST to GMSL 
is consistent with the generally held view that the GMSL increase is partially driven by the thermal expansion of 
the  oceans58,59. In short, the data driven pathway analysis results align well with the principles of climate science. 
Detailed information about the data and methods, as well as detailed descriptions of the consistency between 
this data-driven approach and those based on physics, are shown in the Method section.

Forecast of global mean surface temperature (GMST) and global mean sea level (GMSL). The 
most recent United Nations Conference on Climate Change (COP26) was held in 2021 in Glasgow, Scotland, 
gathering almost 200 nations to discuss the critical issue of climate change and global strategy. To combat climate 
change, nations are urged to establish ambitious emission reduction plans. The conference participants agreed to 
a new climate deal, the Glasgow Climate Pact, aiming to keep GMST within 1.5 °C above its pre-industrial levels. 
According to the Glasgow Climate  Conference60, it is essential that the anthropogenic  CO2 emissions should 

0.433  (0.005)
-0.329  (< 0.001)

0.374 (0.017)

0.443 (< 0.001)

0.089 (0.006)

-0.022 (0.007)

0.683 (< 0.001)
-0.335 (< 0.001)

-0.097 (0.036)

0.606  (< 0.001)

0.347  (0.002)

1.008 (< 0.001)

-0.228 (0.003)

0.320 (0.007)

ba

0.226
(0.001)

Figure 2.  (a) Full hypothesized unified structural equation model (uSEM), and (b) the confirmed uSEM with 
significant pathways selected in unison by two variable selection methods—the system-wise regularized uSEM 
(RuSEM) approach and the equation-wise stepwise variable selection based on each ARDL model. Climate 
Factors included (from left top to right bottom) are: Global Specific Humidity (Humidity), Global Warming 
Potential (GWP), Sunspot Number (SSN), Global Mean Surface Temperature with sea ice area measured by air 
above sea ice (GMST), Arctic Sea Ice August Extent (Sea Ice), Glaciers and Ice Sheets Mass Balance (Mass), and 
Global Mean Sea Level (GMSL). In (a), the full hypothesized path model with all conceivable directed paths 
not contradictory to common sense as depicted by the black arrows. In (b), the final path model identified, 
significant positive or negative pathways are labeled with red or blue arrows with the corresponding path 
coefficients and p-values (in parentheses, 1-sided) labeled, while grey dashed arrows represent insignificant 
pathways at the significant level of 0.05 (1-sided).
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decrease by 45% by 2030 relative to its 2010 level, and the anthropogenic  CH4 emissions should decrease by 30% 
by 2030 relative to its 2020 level in order to achieve this goal. However, several  studies61–63 have since questioned 
the sufficiency of the COP26 guidelines. Our research aims to answer the following questions by using pure 
data-driven models based on historic data: (1) What will the GMST and GMSL be by 2100 if the anthropogenic 
greenhouse gas emission is not controlled per COP26 regulations (namely, the unrestricted scenario)? (2) What 
will the GMST and GMSL be by 2100 if COP26 regulations are followed through (namely, the COP26 scenario)?

As shown in Fig. 2b, the GWP is solely incorporated in our path model as a predictor. In other words, no 
ARDL model in the uSEM equation system includes GWP as a response variable. For forecasting, we can model 
the trend of GWP changes from both anthropogenic and natural causes by fitting classic autoregressive integrated 
moving average (ARIMA) time series models, to historical data. The best fitting time series model for the histori-
cal data is an ARIMA(1,1,1) model. For forecasting under the COP26 scenario, our model calculates the future 
values of anthropogenic GWP of  CO2 and  CH4 using the COP26 guidelines assuming a constant rate of emission 
reduction while modeling the unrestricted component of GWP using the ARIMA(1,1,1) model. Permafrost can 
also contribute to future greenhouse gas  emissions64. To incorporate permafrost’s effect in the forecast model, 
the forecast of  CO2 and  CH4 emissions from the Arctic permafrost under medium and low scenarios  according64 
are added to the forecast of GWP under the unrestricted scenario and COP26 restricted emission scenario cor-
respondingly. Details about permafrost greenhouse gas emission can be found in the Supplementary Materials.

Our uSEM pathway model (Fig. 2b) predicts that under the unrestricted scenario, GMST will increase to 
1.97 °C above its pre-industrial level (or 0.76 °C above its 2021 level) by 2050, and 3.28 °C above its pre-industrial 
level (or 2.07 °C above its 2021 level) by 2100 (Fig. 3c). Using the 20-year mean level from 1986 to 2005 as the 
baseline, GMSL will increase to 246.72 mm (or 164.30 mm above its 2021 level) by 2050, and 655.25 mm (or 
572.83 mm above its 2021 level) by 2100 (Fig. 3e). In contrast, under the COP26 scenario, GMST will increase to 
1.66 °C above its pre-industrial level (or 0.45 °C above its 2021 level) by 2050, and 1.88 °C above its pre-industrial 
level (or 0.67 °C above its 2021 level) by 2100 (Fig. 3d). The GMSL will increase to 229.67 mm (or 147.25 mm 
above its 2021 level) by 2050, and 531.23 mm (or 448.81 mm above its 2021 level) by 2100 (Fig. 3f). Table 1 
summarizes these results, with the inclusion of confidence intervals. This study and the projections indicate that 
the mandates set by COP26 will have a substantial influence on climate change mitigation. However, our results 
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Figure 3.  Data driven forecast of Global Warming Potential (GWP) (a,b), Global Mean Surface Temperature 
(GMST) (c,d), and Global Mean Sea Level (GMSL) (e,f) under the unrestricted scenario (red), the COP26 
scenario (grey), SSP5-8.5 (orange), SSP3-7.0 (light-green), SSP4-6.0 (brown), SSP2-4.5 (dark-green), SSP1-
2.6 (light-grey) and SSP1-1.9 (light-blue) from now till 2100, the uncertainties (forecast interval) under the 
unrestricted and the COP26 scenarios were shown by the red and grey shaded area. For the unrestricted and 
the COP26 forecast, values of the expected means and the 95% and 99% forecast intervals are shown for 2050 
and 2100 respectively. Historical data before 2022 are shown in black. The modeling and forecast of GWP was 
based on an estimated ARIMA(1,1,1) model using historical data for the unrestricted scenario and integrating 
the proposed restriction for the COP26 scenario (with greenhouse gas emitted by Arctic permafrost added). The 
estimation and forecast of GMST and GMSL are based on the confirmed uSEM model as shown in Fig. 2b.
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indicate that the proposed plans may fall slightly short of keeping the global temperature rise below 1.5 °C over 
its pre-industrial level, as we forecast an average warming of 1.88 °C based on COP26 guidelines. Therefore, the 
COP26 guidelines are proven to be insufficient in keeping warming within 1.5 °C to curb the effects of severe 
climate change. To put in perspective, we have also included several Shared Socioeconomic Pathways (SSP) 
scenarios for the greenhouse  emissions65. We use future concentrations for  CO2,  CH4, and  N2O under the SSP 
 scenarios66,67 to forecast the GMST and GMSL. The forecasts for the GMST and GMSL under different SSP 
scenarios by using our pathway model are also shown in Fig. 3. Under SSP 5-8.5 scenario, which is the most 
extreme scenario, GMST will increase to 2.43 °C above its pre-industrial (or 1.22 °C above its 2021 level) by 
2050, and 6.79 °C above its pre-industrial (or 5.58 °C above its 2021 level) level by 2100. GMSL will increase to 
271.93 mm (or 189.51 mm above its 2021 level) by 2050, and 921.64 mm (or 839.22 mm above its 2021 level) by 
2100. As shown in Fig. 3, our projection of the unrestricted scenario is closest to the SSP 2-4.5 scenario, while 
our projection of COP26 scenario is closest to the SSP 1-2.6 scenario. 

Forecast of regional mean sea level (RMSL). Regional sea level rise along the coastal lines is of great 
concern to the public and policymakers. For each major coastal region, we use the ARDL model, a versatile time 
series regression model, to predict the regional mean sea level (RMSL) based on its previous levels in time as well 
as the global mean sea level (GMSL) at the same and the prior time points. We studied eight coastal regions in 
total, with the New York City and Osaka results presented below. The other six regions are included in the Sup-
plementary Materials. With stepwise variable selection, RMSLt−1 and GMSLt are selected as significant predictors 
for all eight regional models. Based on the ARDL models, forecasts for New York City and Osaka are shown in 
Table 2 and Fig. 4.

The mean of 20 years of regional sea levels from 1986 to 2005 was taken as the baseline for the regional mean 
sea levels. By 2050, the New York City regional mean sea level (NYRMSL) will increase to 373.63 mm above the 
baseline, or equivalently 245.56 mm above its 2021 level under the unrestricted scenario, and these will reach 
995.85 mm or 867.79 mm respectively by 2100. Under the COP26 scenario, by 2050, NYRMSL will increase 
to 348.34 mm above the baseline, or equivalently 220.28 mm above its 2021 level, and by 2100, these will be 
808.25 mm or 680.20 mm, respectively. Under SSP 5-8.5, which is the most extreme scenario, by 2050, NYRMSL 
will increase to 411.23 mm above the baseline, or equivalently 283.16 mm above its 2021 level, and by 2100 these 
will be 1398.03 mm or 1269.97 mm, respectively (Fig. 4a,b).

Under the unrestricted scenario, the Osaka regional mean sea level (OSARMSL) will increase to 393.22 mm 
above the baseline, or 271.32 mm above its 2021 sea level by 2050, and these will reach 1061.39 mm or 939.49 mm 
by 2100. Under the COP26 scenario, OSARMSL will increase to 366.93 mm above the baseline, or 245.03 mm 
above its 2021 level by 2050, and these will reach 861.65 mm or 739.75 mm, respectively by 2100. Under SSP 
5-8.5, which is the most extreme scenario, in 2050, OSARMSL will increase to 432.45 mm above the baseline, or 
equivalently 310.55 mm above its 2021 level, and by 2100 these will be 1488.58 mm or 1366.68 mm, respectively 
(Fig. 4c,d).

Considering the tidal effect, storm surge, and other climate factors, the maximum regional sea level can be 
much higher than the yearly mean sea level. The New York City (1920–2019) and Osaka (1961–2020) hourly mean 
sea level data were gathered to compute the yearly sea level fluctuation (the difference between the yearly maxi-
mum sea level and the yearly mean sea level). On the average, the yearly highest sea level is 1536.93 mm above 
the yearly mean sea level for New York City, while for Osaka it is 1138.95 mm. The Augmented Dickey–Fuller 
(ADF) tests confirm that the yearly fluctuations are stationary. On average, based on these assumptions and cal-
culations, under the unrestricted scenario, the yearly highest sea level in 2100 could reach 2662.64 mm for New 
York City and 2326.49 mm for Osaka. Under the COP26 restricted emission scenario, these will be 2437.56 mm 
for New York City and 2098.60 mm for Osaka.

Table 1.  Predicted means and forecast intervals (95% and 99%) of GMST rise and GMSL rise by 2050 and 
by 2100 under unrestricted or COP26 restrictions on greenhouse gas emissions; and the predicted means of 
GMST rise and GMSL rise by 2050 and by 2100 under SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP4-6.0 and 
SSP5-8.5 scenarios. The baseline for GMST is the pre-industrial (1850–1900 average) level, while the baseline 
for GMSL is the 20-year mean value of GMSL from 1986 to 2005. The units of GMST are °C and the units of 
GMSL are mm.

Year

Unrestricted scenario COP26 scenario

Mean
95% Forecast 
interval

99% Forecast 
interval Mean

95% Forecast 
interval

99% Forecast 
interval

GMST (°C)
2050 1.97 1.62–2.31 1.52–2.42 1.66 1.34–1.97 1.24–2.07

2100 3.28 2.46–4.10 2.20–4.36 1.88 1.43–2.33 1.29–2.48

GMSL (mm)
2050 246.72 223.72- 269.72 216.49–276.95 229.67 207.96–251.38 201.13–258.21

2100 655.25 556.68–753.82 525.70–784.80 531.23 471.52–590.95 452.76–609.71

Year SSP1-1.9 SSP1-2.6 SSP 2–4.5 SSP3-7.0 SSP4-6.0 SSP5-8.5

GMST (°C)
2050 1.43 1.66 2.02 2.32 2.17 2.43

2100 1.04 1.44 2.81 5.09 3.54 6.79

GMSL (mm)
2050 216.15 229.47 250.33 268.39 259.03 271.93

2100 453.92 507.36 638.03 805.73 701.11 921.64
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Table 2.  Predicted mean and forecast interval (95% and 99%) for the regional mean sea level (RMSL) rise 
at New York City and Osaka by 2050 and 2100 respectively under unrestricted or COP26 restrictions on 
greenhouse gas emissions; and the predicted means of the regional mean sea level (RMSL) rise at New York 
City and Osaka by 2050 and 2100 under SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP4-6.0 and SSP5-8.5 
scenarios. The RMSL baselines for New York City and Osaka are the respective mean values of the 20-year 
RMSL for the two regions from 1986 to 2005. The units of RMSL are mm.

Year

Unrestricted scenario COP26 scenario

Mean (mm)
95% Forecast 
interval

99% Forecast 
interval Mean (mm)

95% Upper 
forecast interval

99% Upper 
forecast interval

New York
2050 373.63 307.18–440.07 286.30–460.95 348.34 282.48–414.20 261.78–434.89

2100 995.85 865.99–1125.71 825.19–1166.51 808.25 715.88–900.63 686.85–929.66

Osaka
2050 393.22 312.77–473.67 287.49–498.94 366.93 286.84–447.02 261.68–472.19

2100 1061.39 935.24–1187.54 895.61–1227.18 861.65 763.65–959.65 732.86–990.44

Year SSP1-1.9 (mm) SSP1-2.6 (mm) SSP 2–4.5 (mm) SSP3-7.0 (mm) SSP4-6.0 (mm) SSP5-8.5 (mm)

New York
2050 328.16 348.01 379.08 405.96 392.03 411.23

2100 691.30 772.42 970.29 1223.20 1065.67 1398.03

Osaka
2050 345.81 366.56 398.99 427.07 412.51 432.45

2100 737.11 823.84 1034.80 1303.12 1136.31 1488.58
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Figure 4.  Regional mean sea level (RMSL) rise projections. The New York City (a,b) and Osaka (c,d) regional 
sea level rise projections under the unrestricted scenario (red), the COP26 scenario (grey), SSP5-8.5 (orange), 
SSP3-7.0 (light-green), SSP4-6.0 (brown), SSP2-4.5 (dark-green), SSP1-2.6 (light-grey) and SSP1-1.9 (light-blue) 
from now till 2100, the uncertainties (forecast interval) under the unrestricted and the COP26 scenarios were 
shown by the red and grey shaded area. For unrestricted and COP26 forecast, values of the expected means 
and the 95% and 99% forecast intervals are shown for 2050 and 2100 respectively. Historical data before 2022 
are shown in black. The projections of the regional mean sea level are based on the ARDL models in Method 
section.
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For New York City, if the yearly mean sea level will increase to 997.65 mm above the 2021 level (the upper 
95% forecast interval bound under the unrestricted scenario) by 2100, according to historical hourly data, on 
average there will be 45.54 days per year the daily highest sea level will be higher than 2 m above its current level 
as shown in Fig. 5c. The 45.54 days of severe flooding will reduce to 6.29 days if the COP26 restrictions on green-
house gas emissions can be followed through. For Osaka, if the yearly mean sea level increases to 1065.64 mm 
above its 2021 level (the upper 95% forecast interval bound under unrestricted scenario) by 2100, according 
to historical hourly data, on average we will see 3.55 severe flooding days that the daily highest sea level will be 
higher than 2 m above its current level as shown in Fig. 5f, while this will reduce to 0.38 day under the COP26 
restricted emission scenario. In summary, we found that the COP26 resolutions on anthropogenic greenhouse 
gas reduction would be helpful in controlling the global mean surface temperature to a certain extent, although 
such effects are not as pronounced in regulating global and regional sea level rises.

Figure 5 uses the program Google Earth Pro to present a 3D simulation for the chosen areas in 2100 under 
the different scenarios. Although the sea level rise conditions in the 3D maps do not exactly match individual 
greenhouse gas emission scenarios in our analysis due to limitations in the Google map resolution, these maps 
do sufficiently convey the range of consequences of sea level rise from the spectrum of greenhouse gas emission 
scenarios included in this study. Osaka will be more severely affected than New York City due to the difference 
in altitude between these two cities.

Discussion
In this work, we presented a data driven approach to identify pathways leading to global warming and sea level 
rise. As expected, greenhouse gas emissions play a significant role in driving climate change. Furthermore, we 
found that the number of sunspots does not influence climate change significantly. We also found global surface 
temperature and humidity in a positive feedback loop with each other, while higher temperature induces higher 
sea level through the melting of sea ice and glaciers as well as ocean water thermal expansion. The melting gla-
cier also has a direct hand in the melting of sea ice in addition to the higher temperature. Forecasting based on 
the pathway system reveals that without any intervention, global surface temperature will rise to a mean level 
of 3.28 °C above its pre-industrial level by 2100; whereas if the COP26 resolution on the reduction of anthro-
pogenic greenhouse gas emission can be followed through, such increase would reduce to 1.88 °C, just short 
of the intended goal of 1.5 °C. The global sea level, however, will not be as drastically reduced by the COP26 
resolution, with the global sea-level expected to rise an average of 448.81 mm above its 2021 mean following 
COP26 emission regulations, while 572.83 mm with no regulations. Regional sea level projections based on our 
models show that the increased global sea level will induce more frequent and severe flooding for the world’s 
coastal regions including heavily populated metropolis such as New York City and Osaka. This calls for added 
protective measures in infrastructure to ensure that urban areas are more resilient to extreme flooding and tidal 
surges. Lastly, the data driven findings for the unrestricted scenario are found to be highly consistent with the 

a b c

d e f

Figure 5.  The 3D Google map simulation for regional mean sea level increase ranging from 0, to 1 and finally 
to 2 m for New York City (a–c) and Osaka (d–f) respectively, from its current level. According to our analysis, 
the New York City regional mean sea level will rise to 680.20 mm, 867.79 mm and 1269.97 mm higher than its 
current level under the COP26, unrestricted, and SSP5-8.5 scenarios respectively. The Osaka regional mean 
sea level will rise to 739.75 mm, 939.49 mm and 1366.68 mm higher than its current level under the COP26, 
unrestricted, and SSP5-8.5 scenarios, respectively.
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2021 IPCC projections on climate change, underscoring the necessity to take drastic actions to mitigate future 
damages. The passage of the Inflation Reduction Act with $369bn (£305bn) budgeted for climate action through 
the US Congress, the largest investment in US history—has brought a glimmer of hope in this critical moment 
of our collective fight to ensure a sustainable earth and future.

Finally, we acknowledge that the main obstacle to our analysis is the limited length of historical data available. 
Our model is a linear system due to data limitation, while the real-world climate processes are often non-linear. 
However, the short-term prediction accuracy of our system has been validated by back-testing based on historical 
data. Moving forward, we will update our forecasting system as more data are available. Furthermore, we will 
include more climate features such as ocean processes and paleoclimate time series as these data are increasingly 
procured and validated as technology  progresses68. We are hopeful to have a more panorama view of the climate 
change on earth through this incremental process.

Methods
Data. In this study, the following climate-related variables with yearly frequency from 1950 to 2021 were 
collected from multiple sources:

 1. Global Mean Sea Level (GMSL) in mm was gathered from the mean of two data  sources69,70. The data for 
the year 2021 were collected and calibrated from GSFC (2021)2.

 2. Glaciers and Ice Sheets Mass Balance (Mass) in Gt (Gigaton) was estimated by two methods: (i) the product 
of global mean glacier mass in water equivalence from the world glacier monitoring service [1950–2021]71 
and the total glaciers and ice sheets  area72; (ii) Summation of 17 mountain glaciers mass  balance73, Green-
land and Antarctica ice sheet mass balance [2002–2020]74, with missing values imputed by Kalman  filter75; 
overlapping period of estimation (i) and (ii) were calibrated by the average values.

 3. Arctic Sea Ice August Extent (SeaIce) in Mkm2 was gathered from two sources: (i) observed August Arctic 
sea-ice extent [1870–2008]76, and (ii) observed north hemisphere sea ice extent in August [1979–2021]77. 
The least squares method was adopted to calibrate and combine these two data sources.

 4. Global Surface Temperature (with sea ice area measured by the air above sea ice) (GMST) in °C was 
obtained from Rohde (2020)1.

 5. Global Specific humidity (Humidity) in kg/kg (mass of water vapor per kilogram of moist air)78.
 6. Greenhouses gases:  CO2 [1950–1957]79 [1958–2021]80,  CH4 [1950–1983]81 [1984–2021]82, and  N2O [1950–

1977]81 [1978–2021]83. Global warming potential (GWP), which is measured by units of  CO2 equivalents 
in the environmental impacts, is adopted to analyze the effect of greenhouse gases in this study. The for-
mulation to calculate GWP is shown in Eq. (1), following Intergovernmental Panel on Climate Change 
(IPCC)  reports84.

 7. Greenhouse gases concentration projection for  CO2,  CH4 and  N2O [2022–2100] under SSP  scenarios66,67.
 8. Sunspot Number (SSN)85.
 9. Regional Mean Sea Level (RMSL) data were obtained from the Permanent Service for Mean Sea  Level86,87: 

New York City RMSL is obtained from the Battery station, and Osaka RMSL is obtained from the Osaka 
station.

 10. New York City Hourly Water Level data were collected from the University of Hawaii Sea Level  Center70, 
and Osaka Hourly Water Level data were collected from Japan Oceanographic Data  Center88.

Augmented Dickey–Fuller (ADF) test results confirm all the variables are integrated of order 1, i.e. I(1) 
processes, based on historical data analysis.

Path analysis model identification and estimation for global mean surface temperature 
(GMST) and global mean sea level (GMSL). Structural equation modeling (SEM) refers to a family of 
multivariate procedures designed to infer causal relationships among a set of  variables89. It can be viewed as a 
system of multivariate regression equations with variables that can serve as both independent and dependent 
variables. Latent variables are also common although in this work we did not use any latent variables. Inference 
of SEM usually focuses on estimating the model implied population covariance matrix through the likelihood 
function:

where �(θ) is the model implied covariance matrix with θ representing model parameters including path coef-
ficients, S is the sample variance–covariance matrix, and q is the number of parameters to be estimated. The 
unified structural equation model (uSEM)4, also known as Vector Autoregression-Structural Equation Modeling 
(VAR-SEM) or the Dynamic SEM modeling can be used to analyze the proposed causal associations among a 
set of time-series variables by incorporating both the contemporaneous relations and the longitudinal relations, 
simultaneously. Contemporaneous relations reflect relationships between variables at the same time point, while 
longitudinal temporal relations are defined as relationships between variables at different time points.

Variable selection for the hypothesized full uSEM model in this work was done in two approaches:

(1) A system-wise variable selection based on the entire set of uSEM equations via the regularized unified struc-
tural equation modeling (RuSEM)  method51, where regularization is done through the adaptive  Lasso90.

(1)GWP = CO2 + 28CH4 + 265N2O

(2)FML = log|�(θ)| + tr(S�(θ)−1)− log|S| − q,
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(2) An equation-wise variable selection based on each individual uSEM equation, which can also be viewed as 
an autoregressive distributed lags (ARDL) model. The variable selection for each ARDL was done through 
the backward stepwise variable selection method.

The adaptive  LASSO90 penalizes parameters after each parameter is scaled by the un-penalized maximum 
likelihood estimators (MLE) in the following equation:

where λ is the regularization parameter with a common initialization value of 0.1.
For equation-wise variable selection, each individual ARDL model has the following general form:

where yt is the endogenous variable at time t, xt is the exogenous variable at time t, β0 is the intercept, 
βi , i ∈ {1, . . . , p} and δj , j ∈ {0, . . . , q} are the coefficients. The Akaike information criterion (AIC) is used to 
de-select unnecessary paths in the backward stepwise variable selection.

For our work, the final path model selected based on the system-wise and the equation-wise variable selection 
methods happen to be identical—signifying the robustness of our climate pathway result. The final path model, 
namely, the final refitted uSEM using only the significant pathways identified, is represented in the matrix form 
as follows, which can also be viewed as a system of ARDL time series regression equations:

GWP forecasts under COP26. The 26th United Nations Climate Change Conference (COP26), held in 
Glasgow, UK, from 31 October to 13 November 2021, has reached two key resolutions to reduce the anthro-
pogenic greenhouse gas emissions: (1) to reduce the anthropogenic  CO2 (carbon dioxide) emission by 45% by 
2030, compared to its 2010 levels, and (2) to reduce the anthropogenic  CH4 (methane) emissions by 30% by 
2030, compared with its 2020 levels.

It is assumed that without anthropogenic emissions, the greenhouse concentration should remain stable, the 
same as last year. The global  CO2 concentration level in 2010 and 2009 was measured at 389.89 parts per million 
(ppm) and 387.34 ppm respectively, featuring a yearly increase of 2.54 ppm. With the assumption, we conclude all 
2.54 ppm increase is anthropogenic, that is, due to human activities. Per COP26, for 2030, the expected concen-
tration increase caused by anthropogenic emission of  CO2 will be (1− 0.45) ∗ 2.54 ≈ 1.40 ppm. To simplify the 
matter, we have adopted a linear decrease, which means every year we will see the amount of emission decrease 
stays constant (we can also use other models such as exponential, which will not significantly change our results). 
The increase in  CO2 concentration in 2021 is 2.12 ppm. Therefore, if we can follow through the COP26 resolution, 
the annual increase of anthropogenetic  CO2 concentration, from 2022 to 2030, in a linear decreasing pattern, 
will be (2.04, 1.96, 1.88, 1.80, 1.72, 1.64, 1.56, 1.48, 1.40) ppm. After 2030, it is assumed that the increase of  CO2 
concentration will continue decreasing at the same rate until dropping to zero increase.

The global  CH4 concentration levels in 2020 and 2019 were measured at 1879.11 parts per billion (ppb) and 
1866.60 ppb respectively, featuring a yearly increase of 12.51 ppb. With the assumption above, we conclude all 
12.51 ppb is anthropogenic, that is, due to human activities. Per COP26, for 2030, the expected concentration 
increase caused by anthropogenic emission of  CH4 will be (1− 0.3)× 12.51 ≈ 8.76 ppb. To simplify the matter, 
we have adopted a linear decrease, which means every year we will see the amount of emission decrease stays 
constant (we can also use other models such as exponential, which will not significantly change our results). The 
increase in  CH4 concentration in 2021 is 16.52 ppb. Therefore, if we can follow through the COP26 resolution, 
the annual increase of anthropogenetic  CH4 concentration, from 2022 to 2030, in a linear decreasing pattern, 
will be (15.66, 14.79, 13.93, 13.07, 12.21, 11.34, 10.48, 9.62, 8.76) ppb. After 2030, it is assumed that the increase 
of  CH4 concentration will continue decreasing at the same rate until dropping to zero increase.

Since no constraints were proposed for  N2O, it is assumed the  N2O concentration will increase following 
its historical trend, which is well fitted by an ARIMA(1,1,1) model. The uncertainty of the forecasted GWP 
level associated with the COP26 scenario was calculated under the assumption that the coefficient of variation 
( CV = σ/µ , where σ is the standard deviation and µ is the mean) remains constant. The standard deviation in 

(3)Falasso = FML + ��θ−1
ML ∗ θpen�1,

(4)yt = β0 + β1yt−1 + · · · + βpyt−p + δ0xt + δ1xt−1 + · · · + δqxt−q + ǫt ,

(5)
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the COP26 scenario is the corresponding standard deviation under the unrestricted scenario times the ratio of 
the mean of these two scenarios ( σC = σNµC/µN ). The final identified uSEM, the time series forecasts of GWP 
and its uncertainties, are used to forecast the future trend and uncertainties of GMST and GMSL until 2100 
under the unrestricted scenario, the COP26 restriction scenario and the SSP scenarios. Meanwhile, backtesting 
tests using historical data were conducted to validate the forecast models. The backtesting used a 9:1 ratio of the 
training set to the test set. For the test data, both one-step ahead (predictors updated with true observed values 
at each time step) and multi-step ahead forecasting (predictors updated with forecasted values at each time step) 
were performed. Both results show that all the true values fall within the 99% forecast intervals validating the 
robustness of our model. Details are available in the Supplementary Materials.

Regional mean sea level (RMSL) forecasts. To forecast the RMSL, we have adopted the ARDL model 
with the stepwise variable selection method. The ARDL variable selection results are provided in Eq. (6) below:

where NYRMSLt is the regional mean sea level for New York City in year t, OSARMSLt is the regional mean sea 
level in Osaka in year t, GMSLt is the global mean sea level in year t. Results for the other six coastal locations 
examined are available in the Supplementary Materials. To reduce the impact of missing values in regional sea 
level data, we used a longer time span (1950–2015) for the training data when backtesting regional models. 
Model validation is confirmed by the backtesting results, showing that all the true values fall within the predicted 
range for all regions.

Consistency with physics-based models and forecasts. Although the data driven uSEM pathway 
modeling does not rely on physical theories and models, it still comes as a relief when we found our results 
highly consistent with the recent forecasts based largely on scientific theories. The IPCC 2021 climate change 
 report91 has shown projections for global mean surface temperature (GMST) and global mean sea level (GMSL) 
rise under different scenarios. As the IPCC reports use a different method to assess greenhouse gas emissions 
than our model, we use Meinshausen et al.92 to compare the scenarios of our model with those of the IPCC. 
According to Meinshausen et al.92, the GWP concentration in 2100 will be 568.96 ppm in the SSP 1-2.6 scenario 
and 749.91 ppm in the SSP 2-4.5 scenario, which is comparable to our COP26 scenario forecast of 631.60 ppm 
and the unrestricted scenario forecast of 821.02 ppm, respectively. According to IPCC 2021, GMST under SSP2-
4.5 scenario will be approximately 2.7 (2.1–3.5) °C by 2100, which is comparable to our unrestricted scenario 
projection of 3.28 (2.46–4.10) °C, and 1.8 (1.3–2.4) °C under SSP 1-2.6 scenario, which is close to our COP26 
projection of 1.88 (1.43–2.33) °C under COP26 scenario. The GMSL is anticipated to rise by 464–784 mm under 
SSP2-4.5 scenario and 344–644 mm under SSP1-2.6 scenario in 2100 according to IPCC 2021, which agree well 
with our projection of 655.25 (556.68–753.82) mm for the unrestricted scenario and 531.23 (471.52–590.95) mm 
for the COP26 scenario. All estimates are calibrated to our baselines as mentioned before.

Per physics driven forecasts conducted by our  group8, the GMSL will be 2.3 feet (701.04 mm) by 2100, which 
is highly consistent with our data driven forecast (655.25 mm) for the unrestricted scenario. The 95% confi-
dence interval of the New York City regional sea level is estimated to range from 1.6 feet (487.68 mm) to 4.1 feet 
(1249.68 mm) above the baseline based on the physics driven  models8, while the 95% confidence interval based 
on our data driven models is 865.99–1125.71 mm, residing completely inside the former confidence interval.

From a climate science point of view, the relationship between temperature and the specific humidity is not 
linear and outlined by the August–Roche–Magnus (ARM)  formula93,94 as follows:

where es is the saturation vapor pressure in hPa, T is the temperature in Celsius degree (T = GMST + 14.105 °C), 
q is the specific humidity in kg/kg, RH is the relative humidity ranging from 0 to 1, p is the atmospheric pressure 
in hPa (≈ 1013.25), and β is a constant coefficient (≈ 0.622). Although the ARM formula indicates a nonlinear 
relationship between temperature (T) and humidity (q), we can prove that this nonlinear relation can be well 
approximated by a linear relationship between T and q via Taylor Theorem, thus validating the sufficiency of 
our linear model structure.

According to the Taylor expansion, a function q(T) that is infinitely differentiable at T = T0 is equal to a 
power series of the form q(T) =

∑∞
i=0 ai(T − T0)

i , where ai =
q(n)(T0)

i!  . Therefore, we can write the ARM as:

According to the Taylor Theorem, the error term R2(T) satisfies R2(T) =
q(2)(T ′)

2! (T − T0)
2 for some T ′ in 

the range of T and T0. Choosing T0 = 14.62 and using the first two terms as the linear representation qlin(T) of 
the ARM, we can show that the difference between the ARM formula ( qARM(T) ) and the linear representation 
( qlin(T) ) is:

(6)
NYRMSLt = 0.2477+ 0.2640NYRMSLt−1 + 1.1248GMSLt

OSARMSLt = −2.4039+ 0.4461OSARMSLt−1 + 0.9129GMSLt ,

(7)
es = 6.1094exp

(

17.625T

T + 243.04

)

q = β ∗ RH ∗ es/
(

p− (1− β)es
)

,

(8)q(T) = a0 + a1(T − T0)+ R2(T).

(9)
∣

∣qARM(T)− qlin(T)
∣

∣ = |R2(T)| < 1.94× 10−4RH < 1.94× 10−4, for T ∈ [13.80, 17.50].
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The temperature range includes the observed data from 1950 and the 99% prediction intervals of our model. 
Therefore, a linear representation is sufficient in approximating the non-linear relationship between GMST 
and Humidity given by the ARM formula. A numeric comparison is provided in the Supplementary Materials.

Reduced form and structural form of the uSEM. There are two equivalent ways to present the unified 
structural equation model (uSEM), the reduced form and the structural form. The main differences are: (1) In 
the reduced form, the right-hand (regressor) side features only terms at previous lags such t − 1, etc.; while the 
structural form includes both terms at time t, and at the previous lags, t − 1, etc., on the right-hand side. (2) For 
the reduced form, the errors of the uSEM are correlated, while for the structural form, the errors are uncor-
related.

In our work, we have shown the structural form for the pathway model, which is more intuitive in under-
standing the temporal autocorrelations as follows:

where corr(ǫ1t, ǫ2t) ≈ 0 . We have applied the structural form for prediction as it is easier to compute as well 
thanks to the uncorrelated error structure. Worth to mention, the negative coefficient of from Humidityt−1 to 
GMSTt is caused by the multi-collinearity between Humidityt−1 and Humidityt , the interactive effect between 
Humidity and GMST are positive overall with both Humidityt−1 and Humidityt.

Additionally, GMSTt and Humidityt affect each other simultaneously actually, which is represented by a cor-
relation between the error terms { ǫ1t , ǫ′2t } in the equivalent reduced form shown below:

where the estimated correlation, corr(ǫ1t, ǫ′2t) ≈ 0.869.

Data availability
Datasets containing Global Mean Sea Level matched for this study are available at Climate.gov: https:// www. 
clima te. gov/ sites/ defau lt/ files/ Clima te_ dot_ gov_ dashb oard_ SeaLe vel_ Jan20 21upd ate. txt and https:// clima te. 
nasa. gov/ vital- signs/ sea- level/ (Retrieved on May 20th, 2022). Datasets containing Glaciers and Ice Sheets Mass 
Balance for this study are available at World Glaciers Monitoring Service: https:// wgms. ch/ global- glaci er- state/, 
Datasets underlying the publication: Global Glacier Mass Loss During the GRACE Satellite Mission: https:// 
doi. org/ 10. 4121/ 13663 433. v1, and NASA’s GRACE and GRACE Follow-On satellites: https:// doi. org/ 10. 5067/ 
TEMSC- 3MJ62 (Retrieved on May 20th, 2022). Datasets containing Arctic Sea Ice August Extent for this study 
are available at National Snow and Ice Data Center: https:// nsidc. org/ arcti cseai cenews/ sea- ice- tools/ and http:// 
poles. tpdc. ac. cn/ en/ data/ fb3cf ed6- 9d2f- 4664- b30b- c1c41 d253d db/ (Retrieved on May 20th, 2022). Datasets con-
taining Global Mean Surface Temperature for this study are available at Berkeley Earth: http:// berke leyea rth. org/ 
data/ (Retrieved on May 20th, 2022). Datasets containing Global Specific Humidity for this study are available at 
Copernious: https:// cds. clima te. coper nicus. eu/# !/ home (Retrieved on Jan 29th, 2022). Datasets containing  CO2 
for this study are available at CDIAC https:// cdiac. ess- dive. lbl. gov/ trends/ co2/ lawdo me. html and Scripps  CO2 
Program https:// scrip psco2. ucsd. edu/ data/ atmos pheric_ co2/ mlo. html (Retrieved on May 20th, 2022). Datasets 
containing  CH4 for this study are available at NOAA: https:// www. ncei. noaa. gov/ access/ paleo- search/ study/ 9959 
and https:// gml. noaa. gov/ ccgg/ trends_ ch4/ (Retrieved on May 20th, 2022). Datasets containing  N2O for this 
study are available at NOAA: https:// www. ncei. noaa. gov/ access/ paleo- search/ study/ 9959 and https:// gml. noaa. 
gov/ hats/ combi ned/ N2O. html (Retrieved on May 20th, 2022). Datasets containing furture concentrations for 
 CO2,  CH4 and  N2O under SSP scenarios at University of Melbourne: https:// green house gases. scien ce. unime lb. 
edu. au/# !/ ghg? mode= downl oads (Retrieved on Nov. 27th, 2022). Datasets containing Sunspot Number for this 
study are available at SILSO: https:// www. sidc. be/ silso/ datafi les (Retrieved on May 20th, 2022). Datasets for all 
the Regional Mean Sea Level (RMSL) data is obtained from the Permanent Service for Mean Sea Level (PSMSL): 
http:// www. psmsl. org/ data/ obtai ning/ (Retrieved on May 27th, 2022). Datasets containing New York City hourly 
water levels are available at https:// uhslc. soest. hawaii. edu/ datai nfo/ and Osaka at https:// jdoss1. jodc. go. jp/ vpage/ 
tide. html (Retrieved on Apr 29th, 2022).
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The R codes used for the analysis and graphics of this paper are available upon request.
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